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Abstract 
Internet of Things-based smart e-waste management is a new eco-friendly technology. Wasted electronics harm humans 
and the environment, making e-waste a worldwide concern. This study suggests a smart electronic garbage management 
technique. E-waste collection, sorting, and disposal are managed by this system using IoT devices and sensors. These sensors' 
real-time data may assist in the collection and disposal of electric waste. People typically see e-waste as a valuable resource 
due to its recycling potential. Machine learning has the potential to recycle metals from discarded electronics into solar 
cells, convert plastics into biofuel via pyrolysis, and create biochar. A sustainable waste management and material recovery 
alternative, they optimise utilisation and reduce environmental impact. The recommended method uses cloud-based systems 
to analyse data trends and patterns. A cloud-based autoregressive Integrated Moving Average can estimate garbage levels, 
which may assist in optimising waste collection schedules and processes. 
Keywords: Smart e-waste Management, Internet of Things, Long-Term Waste Management, Electronic Garbage, 
Machine Learning. 
 
1. INTRODUCTION 
Refused electronic gadgets that are about to be used again are called e-waste. This includes things like 
computers, mobile phones, and other similar equipment [1]. Due to rapid technological advancement, more 
people are buying electronics. Asia is expected to generate the most electronic waste [2]. Only 15% of 
electronic garbage was recycled, therefore 85% was burnt or disposed of in dumps [3]. Discarded gadgets pose 
significant environmental harm [4]. These gadgets contain high levels of lead and mercury, which may damage 
landfill soil [5]. Electronic waste swiftly decomposes into hazardous compounds that affect the environment 
[6]. This mechanism increases air pollution by releasing hazardous chemicals [7]. E-waste's toxic chemicals, 
carried by rain and groundwater, may affect land and marine organisms [8]. Separating electronic waste from 
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MSW is challenging yet vital, requiring a lot of time and labour [9]. Recycling e-waste involves specialized 
sorting and processing, which costs more [10]. The main research topics include machine learning-based e-
waste sorting, pyrolysis-based plastic recycling, biochar applications, and metal-based solar battery production 
[11]. Time series data can be used to monitor cloud trash levels, ARIMA can forecast and analyse lifetimes, 
and e-waste metals can be changed into solar batteries to provide energy that is sustainable and renewable 
[12]. Cloud computing, IoT, and machine learning simplify and centralize the waste-to-asset procedure in 
garbage collection and sorting [13]. This system can continually inform the garbage level in the clouds and 
store information, making waste management more efficient and easier, promoting an environmentally 
friendly approach to trash removal by improving management while reducing bin overflow, and collecting 
and analysing waste patterns [14]. This might influence rubbish management strategies. Even though meagre 
countries may struggle to construct procedures, this system has limits that might hinder its success. Time 
series data, mode collapse, training instability, and picture evaluation [15]. 
Solar batteries and biofuels may operate differently owing to contaminants and chemical interactions. E-waste 
management efficacy is the study's main emphasis. The primary goal is to assess the advantages of e-waste 
management systems that use IoT and smart solutions hosted on the cloud [16]. These technologies would 
provide effective communication and connectivity between all electronics waste management system 
equipment and parties. The project examines machine learning for e-waste sorting. The system will identify 
e-waste without human interaction using machine learning. This increases recycling accuracy and efficiency 
while minimizing sorting labour [17]. Data-driven initiatives accelerate e-waste collection, maximise resource 
utilisation, boost operational efficiency, and enhance management. Data analysis and interpretation help 
stakeholders choose the collection of waste, recycling, and allocation of resources [18]. Research also reveals 
how to turn e-waste plastic into biofuels and charcoal. E-waste metals may also be used to build solar batteries 
[19]. Recycling electronic waste into solar batteries is an eco-friendly solution to address renewable energy 
needs [20]. The use of these metals converts environmental risk into resource. This research seeks sustainable 
and efficient e-waste management. They may evaluate pyrolysis as a recycling process, uncover new 
applications for e-waste metals, develop sustainable strategies, promote data-driven decision-making, and 
explore IoT and cloud-based systems. This helps us build a greener, healthier future. 
The paper's main contributions are listed below: 
1. Using these state-of-the-art technologies, may have improved the precision and efficiency of e-waste 
recycling, which should lead to better sorting and separation of costly components. 
2. The training of a numerical copy processing camera to identify ideal waste components, and the 
seamless integration of devices and the cloud can analyse data and recycle garbage flawlessly.  
3. With the support of the cloud a basic model of an Internet of Things (IoT) waste management system 
will automate the whole process. 
4. Through the improvement of the waste management and recycling system are transforming trash 
into valuable assets. 
 
2. Suggested Framework: 
Efficient and automated collection of e-waste and shipment for recycling is the primary objective. They are 
utilizing a blend of IoT and machine intelligence to gather electronic waste for recycling purposes. Their 
strategy involves deploying a Field-Programmable Gate Array, along with the GAN algorithm, to differentiate 
electronic waste from other types of waste and properly dispose of the processing components in a dumpster. 
An intelligent trash that can autonomously track and update its contents is at the core of the suggested 
solution. The SIM900A module notifies the collectors by messages if the bin is filled to its utmost capacity. 
Systematically, sort the trash into plastic and metal after it's collected. The metal parts are recycled into solar 
panels and batteries, while the plastic parts are pyrolyzed to make biofuel.  
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2.1. Step by step system framework: 
Figure 1 depicts the suggested system for efficient e-waste management, the system employs several measures. 
In the first stage (step-1), machine learning is used to categorise wastes according to their kind and a smart 
bin is used to collect e-waste, depending on the garbage. In steps 2 and 3, a notice is issued to the garbage 
collector if the data on the trash level exceeds specified thresholds. This procedure begins by evaluating the 
trash level data against these levels.  
 In the background, the cloud-based technology is constantly checking the garbage level. The fourth step is to 
sort the electronic trash into metal and plastic bins. In the next step, the metal waste is prepared for use in 
solar series. After that use the pyrolysis process to convert the plastic trash into bio-char, with bio-fuel being 
a by-product. The last stage involves turning the recycled and reused materials into something valuable.  

 
Figure 1: Proposed solution system architecture. 
 
An example of a procedure for making decisions based on data for collecting electronic waste is illustrated in 
Figure 2. The process is based on the analysis of data. A built-in ultrasonic sensor in the garbage can keeps 
track of the current trash level in real time. This information is gathered so that e-waste levels may be analyzed 
in real time. According to the results, Collectors of electronic garbage get notices to collect e-waste from 
designated containers. In response to the alerts, the collectors gather the e-waste and check that it was recycled 
correctly. By optimizing collection efficiency and facilitating timely and targeted e-waste collection, this data-
driven strategy aids in effective e-waste management and contributes to environmental sustainability.  

 
Figure 2: Database-driven decision-making 
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Three levels are shown in Figure 3. Ultrasonic garbage with intelligence is part of the sensor layer that keeps 
tabs on garbage accumulation. The ESP-8266 Wi-Fi Unit transmits sensor data to the cloud layer. The cloud 
layer receives information after the sensor layer and saves it in a database that contains period sequence 
information.  
Temporal sequence databases manage data gained over time, such as garbage levels in bins. Users may query 
and analyse time series record data to make future predictions. Applying the Auto-Regressive Integrated 
Moving Average is a statistical analysis tool that is commonly used in finance and economics to analyze time 
series data. It is often abbreviated as RIMA.technique to the record predicts future garbage levels. The cloud 
layer enables real-time garbage level and other information viewing and transmission to the microcontroller. 
Users may access this interface via an online or mobile app. When garbage levels exceed a specific threshold, 
the microcontroller transmits a message to the application layer via the GSM module level of the application 
gets the notice, and the collector gathers data. The smart bin system collects and analyses waste-level data 
using sensors, cloud computing, and prediction algorithms. These data enhance trash management and notify 
users in real-time.  
 

 
 
Figure 3: Garbage collection and monitoring system design via cloud and IoT 
 
2.2 Methodology 
The work procedure includes an e-waste container. The garbage will be transported on a conveyor belt, using 
a trained camera and Generative Adversarial Network (GAN) algorithm in the first portion. The GAN needs 
plenty of memory and processing. FPGAs are strong hardware platforms that compute well. The discriminator 
and generator comprise the GAN. The generator monitors waste and generates a picture if the generator and 
discriminator images match. The electronic waste smart bin is designated for garbage, while a separate pile is 
used for other types of rubbish. The smart bin uses an ESP8266 Wi-Fi module and an ultrasonic waste level 
sensor to transmit data to a cloud-based database. To predict waste levels, use the ARIMA model. Forecasting 
may optimise the system by estimating garbage level thresholds and scheduling pick-ups appropriately. 
Forecasting can optimise the system by anticipating waste levels and scheduling pick-up according to the 
threshold. It may improve productivity while reducing costs. The SIM900A GSM module will alert the 
garbage collector and send it for recycling if the trash level exceeds a certain edge. The process of recycling 
electronic trash involves pulverizing the material with a strong blade and then sorting it into metal and plastic 
pieces utilizing a magnetic arena. 
Plastic components will be pyrolyzed. Pyrolysis has numerous steps:  
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Shredded plastic increases surface area for better pyrolysis. Plastic shreds enter pyrolysis reactors. Pyrolysis 
uses heat to break down complex organic molecules (plastic) into simpler ones without oxygen. Pyrolysis 
produces liquid fuel (bio-oil) and gaseous syngas, suitable for generating electricity and chemical 
manufacturing. Pyrolysis occurs without oxygen; hence the container is enclosed to prevent air entrance. The 
reactor temperature and pressure are precisely managed to effectively convert plastic into biofuel. Heat causes 
the plastic to degrade into gas, liquid, and char. Condensed gases and liquids become biofuel. Reactor cooling 
and biofuel recovery from the condenser follow pyrolysis. The gathered biofuel may need additional 
purification to eliminate contaminants like water and acids. To do this, use processes like filtering or 
distillation. Tanks or containers hold finished biofuels till use. Mixing organic materials like bio-solids with 
plastic garbage may produce bio-char, which can be recycled for improving the soil, storage of carbon, and 
energy generation. This solution significantly improves soil quality and eliminates contaminants from 
wastewater. Additionally, scrubbers and electrostatic precipitators reduce pollutants. Solar batteries may be 
made from metal scrap. Metal is shredded and treated with acids to eliminate impurities and extract pure 
metals. Electrolysis processes metals that are pure by infusing a current of electricity into a metal ion solution. 
Electrodes develop metal deposits when metallic ions receive or lose electrons during this process. Metal 
deposits are used to make solar battery anodes, cathodes, and electrolytes. These parts make a solar battery 
that stores and releases electricity. The technique of transforming metal roils into solar series varies based on 
the metal kind and the intended final result. In general, chemical and electrochemical methods are used to 
clean and refine metal and manufacture battery components.  
The methodological parts of the procedure are:  
• Method of information collection  
• Machine learning and Camera: a trained camera system monitored and photographed conveyor belt 
garbage. 
• The e-waste smart bin has a sensor that uses ultrasound to assess garbage levels.  
• ESP8266 Wi-Fi module: ultrasonic sensor waste data were sent to a cloud database.  
• The SIM900A GSM Module alerted the collector when trash levels surpassed the threshold.  
• Data analysis: ARIMA model used to predict waste levels.  
2.3 Flowchart representation 
Garbage aggregation and classification using a GAN-trained camera is the first step in the process flow 
diagram for cloud and IoT-based e-waste management (Figure 4). This device uses visual processing to identify 
electronic garbage. If electronic waste is not present, it is placed in a separate pile. Otherwise, it is deposited 
in a smart bin. The disposal of e-waste tends to increase garbage levels, which are updated and monitored in 
the cloud using an ultrasonic sensor to ensure that the bin is full. If the bin is not full, the procedure continues 
or the collector is notified. Recycling begins after the e-waste has been collected. The initial process involves 
churning the e-waste, followed by magnetic separation. Two pieces result after separation: plastic and metallic 
churns. Plastic is converted into biofuel by pyrolysis, while metallic churns are used to make solar batteries. 
The technique produces bio-fuel, charcoal, and solar batteries, transforming e-waste into environmentally 
friendly and sustainable resources.  
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Figure 4: Proposed System Flowchart. 
 
2.4 Algorithm 
GAN, a high-level algorithm, processes images. GAN image processing accuracy depends on the use case and 
model training and optimisation methods. This GAN training will use real-life e-waste photos to inform the 
machine's decision-making. Below is the GAN pseudo code:  
Generator and discriminator networks are initialized with random weights in Algorithm 1. Initialise β, α, 
and γ hyper-parameters. For a certain amount of training iterations, the following steps are carried out: a 
mini-batch of m sample of noise from a distribution; a sample of m photographs from the dataset was taken; 
and for each generator update, a given number of discriminator updates are carried out. Generator network 
G creates fake pictures. Minimizing the binary cross-entropy loss among actual and false pictures and 
computing gradients via back-propagation updates the discriminator network D. Noise distribution mini-
batch samples are taken.  
Gradient steps on the harm purpose which exploits the binary loss of cross-entropy across produced and 
actual pictures are calculated using back-propagation to update generator network G. To update hyper-
parameters β and α, a decline factor γ is used. Returns qualified generator network G. 
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Discriminator and generator neural networks train on actual e-waste pictures. Training the generator network 
to make pictures that look like actual ones and the discriminator network to discriminate between them is 
the aim. In training, the generator creates pictures to mislead the discriminator, while the discriminator 
improves at discriminating actual and created images. After training, the generator may produce new pictures 
that can be compared to genuine ones. Similar rubbish may be thrown in the right trashcan. Algorithm 2 
detects when a smart trashcan is nearly full of e-waste and alerts the garbage collection. This algorithm has 
three inputs: n (iterations), x (echo), and y (trip). A smart trashcan can identify e-waste at a maximum distance 
of 4. E-waste is placed in the smart trashcan and the programme loops until n is not 0. The starting point of 
y is set to 0 or Low inside the loop. The procedure then sets y to 1 or High after 10 repetitions. Y returns to 
0 after 10 repetitions. Set x to 1 or High.  

 
The algorithm uses time and sound speed to compute the smart dustbin-e-waste distance. Distance minus 
dustbin distance equals rubbish level. ESP8266 sends data to the cloud. If the distance exceeds the threshold, 
the algorithm notifies the trash collector via the SIM900A GSM module. Otherwise, smart dustbins gather 
e-waste. 

https://www.theaspd.com/ijes.php


International Journal of Environmental Sciences  
ISSN: 2229-7359 
Vol. 11 No. 1, 2025 
https://www.theaspd.com/ijes.php 
 

454 

 

 3. EVALUATING RESULTS 
3.1. Cloud E-Waste Level Updates Graphical Analysis 
Figures 5–6 show the smart waste bin's empty area and the processes of informing cloud information over 
time. The gap between the trash can's contents and the top signifies vacant space. The greater distance equals 
more vacant space. 
 

 
Figure 5: Cloud e-waste level updates. 

 
Figure 6: Cloud e-waste level updates with timestamps. 
 
3.2. GAN Algorithm Accuracy Chart 
The dataset is separated into training, validation, and testing sets using the GAN technique. The training set 
trains the model, its validation set tunes its hyper-parameters, and its performance on unknown data is tested. 
Table 1 illustrates a GAN-based e-waste identification system's accuracy chart. The graphic displays the 
accuracy, F1-score and recall for every type of e-waste the system can recognize: TVs, cellphones, monitors, 
laptops, and others. 
 
Table 1: GAN Algorithm E-waste Recognition Accuracy Chart. 
 

Category Accuracy (%) Recall (%) F1-Score (%) 
Cellphone 96 98 97 
Laptop 91 86 88 
TV 86 92 89 
Monitor 93 90 91 
Other 81 76 78 
Overall 91 89 90 

 
Figure 7 shows precision, a performance parameter that assesses a system's relevance detection accuracy. It 
measures the percentage of system-identified things correctly. Precision is the ratio of actual positives to true 
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positives plus false positives. High accuracy means the system properly identifies relevant things. It indicates 
that the system seldom misidentifies unrelated things as the target. An accuracy of 96% means the algorithm 
seldom misidentifies non-smartphone goods as cell phones. 

 
Figure 7: Individual category precision. 
Precision simply may not reveal the system's performance. To assess the system's relevance detection ability, 
it should be assessed with recall and the F1-score. For instance, a system that distinguishes cell phones from 
other objects. The technology accurately classified 96% of smartphones as phones. The remaining 4% may 
be misclassified smartphones. Recall, shown in Figure 8, measures a system's ability to detect relevant objects. 
Divide the number of actual positives by the total of true positives and false negatives. Recall is crucial when 
false negatives have serious effects. By increasing memory, the approach reduces the probability of missing 
important items and improves recognition. Consider a laptop identification system between items. A system 
with an 86% recall accurately recognized 86% of the computers in the sample. The other 14% were laptops 
that the operating system failed to recognize. A greater recall score indicates that the system captures more 
relevant items. It means the algorithm misses fewer target category items due to fewer false negatives. The 
example's 91% recall indicates that the system can recognize and identify TVs.  

 
Figure 8: Individual category recall 
 
The F1-score, shown in Figure 9, evaluates classification models based on accuracy and recall. Such models' 
efficacy depends on precision and recall. A balanced metric, the F1-score takes the harmonic average of 
accuracy and recall. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 − 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
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Figure 9: Individual category F1-Score (%) 
Choosing the harmonic mean gives smaller numbers more weight, ensuring accuracy and recall are equal. In 
the F1-score, accuracy and recall are combined to measure performance. It balances accuracy and recall by 
detecting important objects accurately and recording their entire range. When there is no discernible pattern 
to the class delivery or when recall and accuracy are identical, the F1-score might be useful. To make 
comparisons and decisions easier, it gives a single figure for the effectiveness of classification models. Table 
3's “Overall” row shows system performance in Figure 10. Precision, recall, and F1-Score are P, R, and F. 
Performance parameters including accuracy, recall, and F1-score are shown here. The system has 91% 
accuracy,90% F1-score, and 89% recall, according to the table. All aspects of system performance are assessed 
using these measures. The technology accurately identifies e-waste with 91% precision. The method collects 
a considerable part of the sample's e-waste, as shown by its 89% recall. 
 

 
Figure 10: Category performance overall. 
 
The 90% F1 score strikes a good mix of recall and precision. The system's performance is evaluated using 
both metrics. The system consistently identifies e-waste goods, with an acceptable balance of accuracy and 
recall. However, it may make a few minor errors in certain categories, as shown by this score. 
3.3. Pyrolysis Method Graphical Analysis 
Pyrolysis yields biofuel from plastic waste (Figure 11). The x-axis temperature in degrees and the y-axis shows 
biofuel yield as a percentage. The temperature-biofuel yield link is shown in blue. Temperature boosts biofuel 
output. Yield is 21% at 300 °C and 51% at 500 °C. This graph demonstrates that pyrolysis may produce 
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biofuel from plastic trash and that greater temperatures provide more biofuel. The red line shows biofuel 
output, according to the caption. In Table 2, elements analysis of combined recyclable plastic pyrolysis liquid 
models from thermal and catalyzed procedures is shown. The table displays sample carbon, hydrogen, 
nitrogen, and Sulphur weight percentages. The findings show that catalyzed pyrolysis had more carbon and 
less hydrogen than thermal pyrolysis. Both procedures had identical nitrogen and Sulphur levels in pyrolysis 
liquid samples. 

 
Figure 11: Pyrolysis yields biofuel from plastic trash. 
 
Table 2: Mixture waste plastic pyrolysis liquid elemental analysis. 
 

Weight (%) Thermal Pyrolysis Catalyzed 
Pyrolysis 

C 95.25 98.12 
H 12.74 11.13 
N 0.62 0.29 
S 5.9 5.37 

 
4. Future Work and Limitations 
Pyrolysis plant structures vary by feedstock, demands, products, and needs. Plastic recycling's future is 
pyrolysis. Pyrolysis will be mitigated by the following measures: 
• Health and environmental dangers from emissions 
• Inputs of energy 
• Release of contaminants 
The suggested system will mitigate all pyrolysis risks. The method may have these big drawbacks: 
• Variability in feedstock 
• Impurities and contaminants 
• Emissions of pollutants 
E-waste pyrolysis must be tested, developed, and researched to improve emission characterization and 
monitoring for safety and sustainability. The research paper should optimise the pyrolysis process, improve 
data-driven decision-making by using advanced technologies, analyse waste streams for easy reprocessing, 
manage and control solar batteries to maximise performance and lifespan and optimise the recycling process 
to train recycling facilities on various recycling processes. 
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5. CONCLUSION  
IoT- and cloud-based trash management and recycling solve the e-waste problem. IoT, machine learning, and 
cloud computing were utilized to efficiently separate and dispose of e-waste. The study showed better 
efficiency, cost savings, monitoring, and sustainability. Real-time data analysis optimised rubbish collection 
routes, reduced environmental impact, and created biofuel and solar batteries. IoT and cloud-based trash 
management increased garbage monitoring, streamlined collection routes, and produced bio-fuel from 
pyrolysis and solar batteries from e-waste metal. The study's results match the primary research aims, showing 
that the system can overcome conventional waste management issues. IoT devices and cloud services provide 
security and privacy risks that must be handled with strong data protection procedures. Mode collapse, when 
the generator generates restricted output, stability while training and difficulties assessing produced pictures 
may also impair GAN algorithm performance. In conclusion, waste management solutions that are cloud-
based and IoT-based have the potential to revolutionise the industry. Streamlined data gathering, 
optimisation of operations, distribution of resources, and production of recycled goods all contribute to 
reduced environmental effects, cost savings, and increased sustainability. Future deployment of such systems 
requires resolving security issues and undertaking further research to achieve general acceptance. 
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