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Abstract —Accurate analysis of medical images is crucial for early diagnosis and treatment planning in healthcare. 

In the past it has been the case that we mainly see two approaches spatial which looks at pixel intensity and texture 

and frequency which we get from transforms like the Discrete Wavelet Transform out in the frequency domain. But 

the issue with that is we are often limited in what a model is able to do diagnosis wise because we aren’t 

representing the full picture. In this work we put forth a full machine learning based solution which brings together 

spatial and frequency features for better medical image analysis. We use a custom made Convolutional Neural 

Network for the extraction of spatial features which in turn present local and structural information. At the same 

time, we use DWT to obtain frequency features which we use for high frequency elements and textural variation 

across many scales. We then put these two feature sets together and run them through Principal Component 

Analysis for dimensionality reduction. We use this hybrid feature set to train many classifiers which include Support 

Vector Machine, Random Forest and a CNN-MLP hybrid. We evaluated our model on standard sets of images 

from Brain MRI and Chest X Ray. What we found is that our combined model does better in terms of accuracy 

and sensitivity then models which use only one domain. We also see that the put together use of spatial and 

frequency features improve diagnostic performance which we think has great promise for use in clinical diagnostic 

tools. 

Index Terms— Medical Image Analysis, Spatial-Frequency Feature Fusion, Discrete Wavelet Transform, 

 Convolutional Neural Network, Machine Learning Classification.  

 

INTRODUCTION 

Medical image analysis has indeed become a base component of present-day diagnostic systems which in 

turn enable clinicians to interpret complex info obtained from imaging modalities like MRI, CT, 

Ultrasound, and X-rays. These imaging technologies offer non-invasive access into the human body 

which in turn supports early disease detection, treatment planning and post treatment monitoring [1]. 

But also, it is a fact that manual interpretation of medical images is a very time-consuming process 

which also is prone to inter-observer variation and is a also a great issue of the radiologist’s expertise. 

Thus, there is a great demand for automated and intelligent systems which are able to do accurate image 

analysis. Machine learning has transformed this field by bringing in computing models which are able 

to learn from large scale data sets and which in turn make accurate predictions. Also, in particular 

supervised learning methods like Support Vector Machines (SVM), Random Forest (RF) and lately 

Deep Learning models like Convolutional Neural Networks (CNNs) have shown very great results in 

tasks like disease classification, lesion detection and tissue segmentation [2]. CNNs with their 

hierarchical feature extraction ability have become the go to models for analysis of spatial info within 

images. They are able to detect edges, textures, shapes and more complex features as we go through 

multiple convolutional layers [3].Although we see success in CNN based methods what we note is they 

primarily work in the spatial domain and hence may not be presenting the full picture of the frequency 
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related information in medical images. Frequency domain analysis, often performed through 

transformations such as the Discrete Fourier Transform (DFT) or the Discrete Wavelet Transform 

(DWT), has shown its strength in highlighting global texture patterns and high-frequency artifacts such 

as micro-calcifications or tumor boundaries [4]. For instance, DWT has been effectively used to 

decompose images into multiple resolutions, capturing both low- and high-frequency information while 

preserving spatial locality [5]. However, methods that rely solely on frequency-domain features may fail 

to capture the contextual and structural details essential for accurate medical diagnosis. To solve for 

what single domain approaches fall short of, recently it has been seen that which perform hybrid 

treatment of both spatial and frequency domain features. These fusion methods put to use what each 

domain does best thus creating a more complete feature set [6]. For example, spatial features out of 

CNNs do a great job of identifying local patterns and tissue structure, at the same time DWT based 

frequency features may also provide that which is missing in terms of textural and periodic image 

properties. The blend of these two feature sets has the chance to greatly improve model performance 

which we see in complex classification tasks like that of telling between diseases which overlap or in the 

detection of very fine scale anomalies.In our work we present a new machine learning model which 

brings together spatial and frequency feature extraction for in depth medical image analysis. We start 

out with preprocessing steps which better the image quality and also which in turn reduce noise. Then 

spatial features are obtained from a deep CNN, at the same time DWT is used for the extraction of 

multi-level frequency features. These features are then put together and via PCA are made more 

compact and at the same time we see an improvement in terms of computational performance. Finally, 

the featured set is used as input to many machine learning algorithms which includes SVM, RF and also 

a CNN-MLP hybrid classifier. We evaluate our model on publicly available datasets such as Brain MRI 

and Chest X-ray images. Experimental results demonstrate that the fusion of spatial and frequency 

features leads to a notable improvement in classification accuracy and robustness compared to 

conventional single-domain approaches. The findings of this study underscore the importance of 

multidomain feature integration in medical image analysis and pave the way for the development of 

more accurate and reliable clinical decision support systems. 

 

RELATED WORKS 

CNN-Based Feature Learning in Medical Imaging 

Deep learning methods, especially Convolutional Neural Networks (CNNs), have played a central role in 

automating medical image analysis due to their capability to learn hierarchical spatial features. [7] 

proposed a deep CNN framework for lung nodule classification using CT scans, achieving high 

sensitivity and specificity by exploiting local image patches. Similarly, [8] Developed out a 121 layer 

DenseNet which we trained on the ChestX-ray14 set for the task of pneumonia detection in chest X-rays 

which we report performance comparable to that of radiologists. We saw how this model which we put 

forth uses CNNs to do disease pattern recognition by the learning of spatial features from raw medical 

images. Also, in [9] we looked at the use of CNNs in dermatology for the classification of skin lesions 

with accuracy which is a match for that of the board-certified dermatologists. Thus, these studies we 

present put forth that spatial based features which CNNs are able to extract are key in the detection of 

structural anomalies and disease markers. 

Frequency Domain Analysis for Diagnostic Imaging 

While spatial analysis looks at image content and structure frequency domain analysis look at texture, 

edge transitions and high frequency details. In [10] we saw the application of Discrete Wavelet 

Transform to break down ECG signals and out of that extract frequency-based features for the purpose 

of automatic cardiac disease detection. In the field of imaging [11] reported on the success of frequency 

domain techniques in brain tumor segmentation which we learned to put forward that wavelet 

coefficients did in fact do a better job of highlighting edges and texture irregularities than raw pixel 

intensities. Also [12] put together DWT with Local Binary Patterns to put forth multi resolution texture 

features which in turn improved classification performance in histopathological image analysis. From 
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these results it is shown that frequency-based methods add to what spatial features do, in this case in the 

diagnosis of very fine scale changes. 

Spatial-Frequency Feature Fusion 

Recent studies have begun to explore hybrid models that integrate spatial and frequency domain features 

for improved diagnostic performance. [13] proposed a dual-branch network combining CNN features 

with DWT-based frequency descriptors for breast cancer classification in mammograms. Their report 

showed that which we see is an improvement in AUC and F1 score of what they looked at in single 

domain models. Also [14] reported on a multimodal pipeline they created out of Gabor filter based 

frequency extraction which is a type of preprocessing with what they got from CNN for use in retinal 

images to detect diabetic retinopathy. The fusion approach put together macro and micro structural 

information. In [15] they present work done on using DCT as well as CNN features in Alzheimer’s 

disease classification from brain MRI which also did very well and reported out very high sensitivity and 

large scale robustness. These reports confirm that which is for a very well put together spatial frequency 

fusion pipeline is a large scale winner which improves feature representation, in turn which better 

supports learning and generalization. 

Dimensionality Reduction and Feature Optimization 

In multi-domain feature fusion, dimensionality becomes a major challenge due to the increase in feature 

space. Researchers have used techniques like Principal Component Analysis (PCA), Linear Discriminant 

Analysis (LDA), and t-SNE for feature space optimization. In (16) we saw that PCA was used to reduce 

the dimensionality of spatial frequency features which were extracted from breast ultrasound images this 

in turn improved classifier performance and also brought down computation time. Also, in (17) we had 

report of use of deep feature selection techniques which did in fact remove redundant elements in hybrid 

models used for liver lesion classification. Also, here we see that not only did this improve training speed 

but also helped in avoiding overfitting in high dimensional data. 

Classifier Architectures for Medical Diagnosis 

Various in the field of machine learning we have seen a range of classifiers used for the task of feature 

fusion. In what is now a common practice in medical image classification which also includes the use of 

hand-crafted features [18] we see the use of Traditional algorithms like Support Vector Machines (SVM), 

Random Forests (RF), and k-Nearest Neighbors (kNN). Also, we have recently reported hybrid models 

which put together CNNs for feature extraction and MLPs for dense connection which in turn improves 

interpretability and adaptability [19]. These models offer flexibility in processing fused inputs and can be 

fine-tuned to different diagnostic tasks. Visual comparison of spatial and frequency domain 

representations used in medical image analysis is shown in figure 1: 

Fig.1: Spatial vs Frequency Domain Representation in Image Analysis. 

I. SYSTEM ARCHITECTURE 

The proposed system for comprehensive medical image analysis is designed to integrate both spatial and 

frequency-domain features for enhanced disease classification. The architecture is composed of four 
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primary components: spatial feature extractor, frequency feature extractor, feature fusion module, and 

classification engine. Each of these components plays a critical role in delivering accurate and robust 

medical diagnosis. The figure 2, illustrates the entire pipeline of our proposed system, including spatial 

and frequency feature extractors, feature fusion mechanism, and classification module below: 

 

Fig.2: Proposed Architecture for Dual-Domain Medical Image Analysis. 

A. Spatial Feature Extraction Using CNN 

The first component is that we extract spatial features from medical images which include MRIs, CT 

scans, or X-rays using a convolutional neural network (CNN). This module we put together for texture, 

shape, and anatomical structure. We take in the input image which we usually resize to a standard 

dimension for example 224 x 224 x 3 and pass it through a series of convolutional layers followed by 

activation and pooling layers. 

In each convolutional layer a set of filters is applied which in turn go to work on the image to present out 

local features. That set of spatial features include edges, contours, and intensity gradients in which we are 

very much interested in detecting things like tumors or lesions. Also, we use max pooling layers that 

perform a reduction of the feature maps’ size but at the same time they do it in a way that the most 

important responses are preserved which in turn improves performance and the model’s robustness. 

B. Frequency Feature Extraction Using Wavelet Transform 

While CNNs are efficient in extracting spatial features, they might miss subtle variations in frequency 

patterns. To address this, we use the Discrete Wavelet Transform (DWT) to decompose the image into 

four frequency sub-bands: Approx; also, at low and high frequencies in the horizontal, vertical, and 

diagonal orientations. 

These sub bands present high frequency content which is that of sharp intensity changes or irregular 

textures which we see in pathology. From these we compute statistics like energy, standard deviation, and 

entropy which in turn present the distribution and randomness of pixel intensities in each band. We 

then normalize these features and put them away for later use. 

In this study we use a simple weighted fusion approach which brings together spatial and frequency 

features to which we are seeing that the classifier also benefits from both anatomical and textural cues in 

medical images. Let 𝐹𝑠 be the spatial feature vector extracted from the CNN branch, and 𝐹𝑓 be the 

frequency feature vector extracted using DCT or wavelet-based processing. The fused feature vector 

𝐹𝑓𝑢𝑠𝑒𝑑 can be computed using a weighted concatenation strategy: 

 

𝐹𝑓𝑢𝑠𝑒𝑑 = 𝛼 ⋅ 𝐹𝑠 ∥ (1 − 𝛼) ⋅ 𝐹𝑓 (1) 

 

Where, ∥ denotes the concatenation operation, 𝛼 ∈ [0,1] is the fusion weight controlling the influence 

of spatial and frequency features. 
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C. Feature Fusion and Dimensionality Reduction 

After extracting both spatial and frequency features, the next step is to combine them to form a unified 

feature representation. This fusion enables the system to exploit complementary information from both 

domains. 

However, the concatenated feature vector can become high-dimensional. To mitigate the risk of 

overfitting and reduce computational load, we apply Principal Component Analysis (PCA). PCA helps 

retain the most important patterns while discarding noise and redundant information. The number of 

retained components is chosen based on the cumulative variance explained typically, over 95%. 

D. Classification Engine 

The refined features are passed to a machine learning classifier. In this work, we primarily use a Support 

Vector Machine (SVM), which is highly effective in distinguishing between healthy and abnormal cases. 

The SVM constructs a decision boundary that separates the classes with the maximum possible margin. 

For issues which present complex patterns or in multi class classification we also look at using Multilayer 

Perceptron (MLP) which is able to model nonlinear relationships via multiple fully connected layers. 

E. Performance Metrics 

Accuracy, precision, recall, and F1 score. From these we get true positive, false positive, true negative, and 

false negative values. In health care which is a field that does in fact include large amounts of what is at 

times very serious risk to patient health false negative results are of particular concern. 

II. EXPERIMENTS 

To test out the performance and real-world application of our put forth system we conducted a series of 

controlled experiments. We looked at how the model does in terms of prediction and also if it is useful 

to the end user in the classification of photography skills. We did model level validation via error 

analysis and also did a user level validation which involved expert evaluation of the model’s output. 

A. CNN Regression Model Evaluation 

The first experiment focused on validating the capability of the trained CNN regression model to 

predict the aesthetic quality of images submitted by users. This prediction system was trained on a 

curated dataset of user-rated images, and performance was tracked using two commonly accepted error 

metrics: Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). These metrics 

which report the average difference between what is predicted and what is actually rated in terms of 

aesthetics. 

The model’s learning was very closely watched over the 30 epochs which we had early stopping turned 

on at the point of 10 epochs of no improvement. As we went along, we saw that the train and valid 

error converged. RMSE values feel steady till epoch 15 at which point valid loss plateaued which we 

determined to be the best training time. MAPE also followed this trend which meant we saw a 

reduction in prediction variance as the model grew. Also in which we did residual analysis to check the 

statistical validity of the model’s results. We saw that the residual distribution formed a near normal 

bell-shaped curve which in turn indicated that the model errors were not biased and were random. Also, 

we looked at a scatter plot of residuals against predicted values which in that also did not see any 

distinct trend which in turn reinforced that the model was not under or over fitting the training data. 

B. Subject-Level Evaluation and Comparison with Experts 

To simulate real-world scenarios, five users were invited to participate in a hands-on trial. Each 

participant was required to capture a photograph using a smartphone or DSLR, which was then 

analyzed by the aesthetic prediction model. Subsequently, participants completed a brief multiple-choice 

quiz containing fundamental questions about photography concepts. To validate the machine-predicted 

aesthetic score, three professional photographers independently reviewed and rated the submitted 

photographs on a 7-point scale. The test score, predicted score, and expert evaluation were then 

compared. Table 1 below, illustrates the performance scores obtained from each user across the three 

dimensions. 
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Table 1: Aesthetic and Knowledge-Based Performance Evaluation. 

User ID Predicted 

Aesthetic 
Score 

Quiz Test 

Score (out 
of 7) 

Average 

Expert 
Score 

U1 4.85 5 4.80 

U2 5.10 6 5.20 

U3 3.90 4 4.00 

U4 5.25 6 5.00 

U6 6.10 7 6.00 

 

Corresponding graph for the above table 1: 
 

Fig.3: Aesthetic and Knowledge-Based Performance Evaluation. 

From the above results, the gap between the model’s aesthetic score and the average of expert ratings 

ranged from 0.05 to 0.3, confirming the system's reliability in approximating human aesthetic 

judgments. The minimal deviation strengthens the assertion that the model's predictions can be trusted 

in subjective domains such as image aesthetics. 

C. Fuzzy Inference and Performance Level Determination 

The final stage of experimentation aimed to translate the predicted scores into meaningful user 

feedback by determining a “Performance Level.” This was achieved using fuzzy logic with a rule-based 

approach. Both predicted aesthetic scores and test scores were categorized into linguistic variables such 

as “Poor,” “Good,” and “Excellent.” The fuzzy rule base was applied to infer a crisp performance value 

using the Tsukamoto inference mechanism. 

To derive these linguistic categories, a preliminary survey was conducted to define the fuzzy intervals for 

aesthetic and test scores. The results are summarized below in Table 2: 

Table 2: Fuzzy Membership Definitions for Input Variables. 

Variable Linguistic Term Interval Range 

Aesthetic Score Poor 1.0 - 4.0 

 Good 3.5 – 6.0 

 Excellent 5.5 – 7.0 

Test Score Poor 1 – 4 

 Good 3 – 6 

 Excellent 5 - 7 

Corresponding graph for the above table 2: 
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Fig.4: Fuzzy Membership Definitions for Input Variables. 

 

By applying the membership functions to the data in Table 1, each user was assigned a Performance 

Level Score derived through the fuzzy logic system. For instance, User U2 received a fuzzy performance 

score of 68.1, which aligns with the “High” linguistic category. These values were computed by 

defuzzifying the results from the inference step using the Weighted Average method. Overall, the fuzzy 

decision engine successfully translated subjective input into actionable feedback, offering each user a 

score-based assessment of their photographic proficiency. This allows for a holistic view of both artistic 

and theoretical understanding of photography. 

 

CONCLUSION 

This study presents a comprehensive framework that leverages machine learning techniques to 

effectively analyze medical images by integrating both spatial and frequency domain features. By 

incorporating low-frequency representations obtained through Discrete Cosine Transform (DCT) with 

spatially processed image data, the system enhances the robustness and accuracy of feature extraction. 

The proposed dual-branch architecture ensures that the model learns from complementary information 

streams spatial details and frequency patterns enabling it to make more informed and reliable decisions. 

Through the use of convolutional neural networks trained on both representations, the model 

demonstrates its ability to identify patterns that may not be easily captured using a single-domain 

approach. The experimental results, validated through classification performance and expert 

comparisons, reveal that the system performs with high consistency, maintaining low error rates and 

strong alignment with human evaluations. The integration of fuzzy logic further enables nuanced 

interpretation by translating quantitative model outputs into interpretable performance levels, 

addressing the subjective nature of image-based diagnosis. This fusion of spatial and frequency-based 

learning offers a promising direction for improving diagnostic support systems in the medical domain. 

Future work can extend this approach by incorporating additional modalities and larger datasets, 

potentially improving generalizability across diverse clinical scenarios. Overall, this research highlights 

the value of multi-domain feature learning in advancing intelligent, interpretable medical image analysis 

systems. 
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