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Abstract —Accurate analysis of medical images is crucial for early diagnosis and treatment planning in healthcare.
In the past it has been the case that we mainly see two approaches spatial which looks at pixel intensity and texture
and frequency which we get from transforms like the Discrete Wavelet Transform out in the frequency domain. But
the issue with that is we are often limited in what a model is able to do diagnosis wise because we aren’t
representing the full picture. In this work we put forth a full machine learning based solution which brings together
spatial and frequency features for better medical image analysis. We use a custom made Convolutional Neural
Network for the extraction of spatial features which in turn present local and structural information. At the same
time, we use DWT to obtain frequency features which we use for high frequency elements and textural variation
across many scales. We then put these two feature sets together and run them through Principal Component
Analysis for dimensionality reduction. We use this hybrid feature set to train many classifiers which include Support
Vector Machine, Random Forest and a CNN-MLP hybrid. We evaluated our model on standard sets of images
from Brain MRI and Chest X Ray. What we found is that our combined model does better in terms of accuracy
and sensitivity then models which use only one domain. We also see that the put together use of spatial and
[frequency features improve diagnostic performance which we think has great promise for use in clinical diagnostic
tools.

Index Terms— Medical Image Analysis, Spatial-Frequency Feature Fusion, Discrete Wavelet Transform,
Convolutional Neural Network, Machine Learning Classification.

INTRODUCTION

Medical image analysis has indeed become a base component of present-day diagnostic systems which in
turn enable clinicians to interpret complex info obtained from imaging modalities like MRI, CT,
Ultrasound, and X-rays. These imaging technologies offer non-invasive access into the human body
which in turn supports early disease detection, treatment planning and post treatment monitoring [1].
But also, it is a fact that manual interpretation of medical images is a very time-consuming process
which also is prone to inter-observer variation and is a also a great issue of the radiologist’s expertise.
Thus, there is a great demand for automated and intelligent systems which are able to do accurate image
analysis. Machine learning has transformed this field by bringing in computing models which are able
to learn from large scale data sets and which in turn make accurate predictions. Also, in particular
supervised learning methods like Support Vector Machines (SVM), Random Forest (RF) and lately
Deep Learning models like Convolutional Neural Networks (CNNs) have shown very great results in
tasks like disease classification, lesion detection and tissue segmentation [2]. CNNs with their
hierarchical feature extraction ability have become the go to models for analysis of spatial info within
images. They are able to detect edges, textures, shapes and more complex features as we go through
multiple convolutional layers [3].Although we see success in CNN based methods what we note is they
primarily work in the spatial domain and hence may not be presenting the full picture of the frequency
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related information in medical images. Frequency domain analysis, often performed through
transformations such as the Discrete Fourier Transform (DFT) or the Discrete Wavelet Transform
(DWT), has shown its strength in highlighting global texture patterns and high-frequency artifacts such
as micro-calcifications or tumor boundaries [4]. For instance, DWT has been effectively used to
decompose images into multiple resolutions, capturing both low- and high-frequency information while
preserving spatial locality [5]. However, methods that rely solely on frequency-domain features may fail
to capture the contextual and structural details essential for accurate medical diagnosis. To solve for
what single domain approaches fall short of, recently it has been seen that which perform hybrid
treatment of both spatial and frequency domain features. These fusion methods put to use what each
domain does best thus creating a more complete feature set [6]. For example, spatial features out of
CNNs do a great job of identifying local patterns and tissue structure, at the same time DWT based
frequency features may also provide that which is missing in terms of textural and periodic image
properties. The blend of these two feature sets has the chance to greatly improve model performance
which we see in complex classification tasks like that of telling between diseases which overlap or in the
detection of very fine scale anomalies.In our work we present a new machine learning model which
brings together spatial and frequency feature extraction for in depth medical image analysis. We start
out with preprocessing steps which better the image quality and also which in turn reduce noise. Then
spatial features are obtained from a deep CNN, at the same time DWT is used for the extraction of
multi-level frequency features. These features are then put together and via PCA are made more
compact and at the same time we see an improvement in terms of computational performance. Finally,
the featured set is used as input to many machine learning algorithms which includes SVM, RF and also
a CNN-MLP hybrid classifier. We evaluate our model on publicly available datasets such as Brain MRI
and Chest X-ray images. Experimental results demonstrate that the fusion of spatial and frequency
features leads to a notable improvement in classification accuracy and robustness compared to
conventional single-domain approaches. The findings of this study underscore the importance of
multidomain feature integration in medical image analysis and pave the way for the development of
more accurate and reliable clinical decision support systems.

RELATED WORKS

CNN-Based Feature Learning in Medical Imaging

Deep learning methods, especially Convolutional Neural Networks (CNNs), have played a central role in
automating medical image analysis due to their capability to learn hierarchical spatial features. [7]
proposed a deep CNN framework for lung nodule classification using CT scans, achieving high
sensitivity and specificity by exploiting local image patches. Similarly, [8] Developed out a 121 layer
DenseNet which we trained on the ChestX-ray14 set for the task of pneumonia detection in chest X-rays
which we report performance comparable to that of radiologists. We saw how this model which we put
forth uses CNNs to do disease pattern recognition by the learning of spatial features from raw medical
images. Also, in [9] we looked at the use of CNNs in dermatology for the classification of skin lesions
with accuracy which is a match for that of the board-certified dermatologists. Thus, these studies we
present put forth that spatial based features which CNNs are able to extract are key in the detection of
structural anomalies and disease markers.

Frequency Domain Analysis for Diagnostic Imaging

While spatial analysis looks at image content and structure frequency domain analysis look at texture,
edge transitions and high frequency details. In [10] we saw the application of Discrete Wavelet
Transform to break down ECG signals and out of that extract frequency-based features for the purpose
of automatic cardiac disease detection. In the field of imaging [11] reported on the success of frequency
domain techniques in brain tumor segmentation which we learned to put forward that wavelet
coefficients did in fact do a better job of highlighting edges and texture irregularities than raw pixel
intensities. Also [12] put together DWT with Local Binary Patterns to put forth multi resolution texture
features which in turn improved classification performance in histopathological image analysis. From
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these results it is shown that frequency-based methods add to what spatial features do, in this case in the
diagnosis of very fine scale changes.

Spatial-Frequency Feature Fusion

Recent studies have begun to explore hybrid models that integrate spatial and frequency domain features
for improved diagnostic performance. [13] proposed a dual-branch network combining CNN features
with DWT-based frequency descriptors for breast cancer classification in mammograms. Their report
showed that which we see is an improvement in AUC and F1 score of what they looked at in single
domain models. Also [14] reported on a multimodal pipeline they created out of Gabor filter based
frequency extraction which is a type of preprocessing with what they got from CNN for use in retinal
images to detect diabetic retinopathy. The fusion approach put together macro and micro structural
information. In [15] they present work done on using DCT as well as CNN features in Alzheimer’s
disease classification from brain MRI which also did very well and reported out very high sensitivity and
large scale robustness. These reports confirm that which is for a very well put together spatial frequency
fusion pipeline is a large scale winner which improves feature representation, in turn which better
supports learning and generalization.

Dimensionality Reduction and Feature Optimization

In multi-domain feature fusion, dimensionality becomes a major challenge due to the increase in feature
space. Researchers have used techniques like Principal Component Analysis (PCA), Linear Discriminant
Analysis (LDA), and t-SNE for feature space optimization. In (16) we saw that PCA was used to reduce
the dimensionality of spatial frequency features which were extracted from breast ultrasound images this
in turn improved classifier performance and also brought down computation time. Also, in (17) we had
report of use of deep feature selection techniques which did in fact remove redundant elements in hybrid
models used for liver lesion classification. Also, here we see that not only did this improve training speed
but also helped in avoiding overfitting in high dimensional data.

Classifier Architectures for Medical Diagnosis

Various in the field of machine learning we have seen a range of classifiers used for the task of feature
fusion. In what is now a common practice in medical image classification which also includes the use of
hand-crafted features [18] we see the use of Traditional algorithms like Support Vector Machines (SVM),
Random Forests (RF), and k-Nearest Neighbors (kNN). Also, we have recently reported hybrid models
which put together CNNs for feature extraction and MLPs for dense connection which in turn improves
interpretability and adaptability [19]. These models offer flexibility in processing fused inputs and can be
fine-tuned to different diagnostic tasks. Visual comparison of spatial and frequency domain
representations used in medical image analysis is shown in figure 1:
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Fig.1: Spatial vs Frequency Domain Representation in Image Analysis.

I.  SYSTEM ARCHITECTURE
The proposed system for comprehensive medical image analysis is designed to integrate both spatial and
frequency-domain features for enhanced disease classification. The architecture is composed of four
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primary components: spatial feature extractor, frequency feature extractor, feature fusion module, and
classification engine. Each of these components plays a critical role in delivering accurate and robust
medical diagnosis. The figure 2, illustrates the entire pipeline of our proposed system, including spatial
and frequency feature extractors, feature fusion mechanism, and classification module below:
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Fig.2: Proposed Architecture for Dual-Domain Medical Image Analysis.

A. Spatial Feature Extraction Using CNN

The first component is that we extract spatial features from medical images which include MRIs, CT
scans, or X-rays using a convolutional neural network (CNN). This module we put together for texture,
shape, and anatomical structure. We take in the input image which we usually resize to a standard
dimension for example 224 x 224 x 3 and pass it through a series of convolutional layers followed by
activation and pooling layers.

In each convolutional layer a set of filters is applied which in turn go to work on the image to present out
local features. That set of spatial features include edges, contours, and intensity gradients in which we are
very much interested in detecting things like tumors or lesions. Also, we use max pooling layers that
perform a reduction of the feature maps’ size but at the same time they do it in a way that the most
important responses are preserved which in turn improves performance and the model’s robustness.

B. Frequency Feature Extraction Using Wavelet Transform

While CNNs are efficient in extracting spatial features, they might miss subtle variations in frequency
patterns. To address this, we use the Discrete Wavelet Transform (DWT) to decompose the image into
four frequency sub-bands: Approx; also, at low and high frequencies in the horizontal, vertical, and
diagonal orientations.

These sub bands present high frequency content which is that of sharp intensity changes or irregular
textures which we see in pathology. From these we compute statistics like energy, standard deviation, and
entropy which in turn present the distribution and randomness of pixel intensities in each band. We
then normalize these features and put them away for later use.

In this study we use a simple weighted fusion approach which brings together spatial and frequency
features to which we are seeing that the classifier also benefits from both anatomical and textural cues in
medical images. Let Fs be the spatial feature vector extracted from the CNN branch, and Ff be the
frequency feature vector extracted using DCT or wavelet-based processing. The fused feature vector
Ffused can be computed using a weighted concatenation strategy:

Ffused=a-Fsll (1 —a)-Ff @)

Where, || denotes the concatenation operation, @ € [0,1] is the fusion weight controlling the influence
of spatial and frequency features.
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C. Feature Fusion and Dimensionality Reduction
After extracting both spatial and frequency features, the next step is to combine them to form a unified
feature representation. This fusion enables the system to exploit complementary information from both
domains.
However, the concatenated feature vector can become high-dimensional. To mitigate the risk of
overfitting and reduce computational load, we apply Principal Component Analysis (PCA). PCA helps
retain the most important patterns while discarding noise and redundant information. The number of
retained components is chosen based on the cumulative variance explained typically, over 95%.
D. Classification Engine
The refined features are passed to a machine learning classifier. In this work, we primarily use a Support
Vector Machine (SVM), which is highly effective in distinguishing between healthy and abnormal cases.
The SVM constructs a decision boundary that separates the classes with the maximum possible margin.
For issues which present complex patterns or in multi class classification we also look at using Multilayer
Perceptron (MLP) which is able to model nonlinear relationships via multiple fully connected layers.
E.  Performance Metrics
Accuracy, precision, recall, and F1 score. From these we get true positive, false positive, true negative, and
false negative values. In health care which is a field that does in fact include large amounts of what is at
times very serious risk to patient health false negative results are of particular concern.

II. EXPERIMENTS
To test out the performance and real-world application of our put forth system we conducted a series of
controlled experiments. We looked at how the model does in terms of prediction and also if it is useful
to the end user in the classification of photography skills. We did model level validation via error
analysis and also did a user level validation which involved expert evaluation of the model’s output.
A.  CNN Regression Model Evaluation
The first experiment focused on validating the capability of the trained CNN regression model to
predict the aesthetic quality of images submitted by users. This prediction system was trained on a
curated dataset of user-rated images, and performance was tracked using two commonly accepted error
metrics: Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). These metrics
which report the average difference between what is predicted and what is actually rated in terms of
aesthetics.
The model’s learning was very closely watched over the 30 epochs which we had early stopping turned
on at the point of 10 epochs of no improvement. As we went along, we saw that the train and valid
error converged. RMSE values feel steady till epoch 15 at which point valid loss plateaued which we
determined to be the best training time. MAPE also followed this trend which meant we saw a
reduction in prediction variance as the model grew. Also in which we did residual analysis to check the
statistical validity of the model’s results. We saw that the residual distribution formed a near normal
bell-shaped curve which in turn indicated that the model errors were not biased and were random. Also,
we looked at a scatter plot of residuals against predicted values which in that also did not see any
distinct trend which in turn reinforced that the model was not under or over fitting the training data.
B. Subject-Level Evaluation and Comparison with Experts
To simulate real-world scenarios, five users were invited to participate in a hands-on trial. Each
participant was required to capture a photograph using a smartphone or DSLR, which was then
analyzed by the aesthetic prediction model. Subsequently, participants completed a brief multiple-choice
quiz containing fundamental questions about photography concepts. To validate the machine-predicted
aesthetic score, three professional photographers independently reviewed and rated the submitted
photographs on a 7-point scale. The test score, predicted score, and expert evaluation were then
compared. Table 1 below, illustrates the performance scores obtained from each user across the three
dimensions.
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Table 1: Aesthetic and Knowledge-Based Performance Evaluation.

User ID Predicted Quiz Test | Average
Aesthetic Score (out | Expert
Score of 7) Score
Ul 4.85 5 4.80
U2 5.10 6 5.20
U3 3.90 4 4.00
U4 5.25 6 5.00
U6 6.10 7 6.00

Corresponding graph for the above table 1:
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Fig.3: Aesthetic and Knowledge-Based Performance Evaluation.

From the above results, the gap between the model’s aesthetic score and the average of expert ratings
ranged from 0.05 to 0.3, confirming the system's reliability in approximating human aesthetic
judgments. The minimal deviation strengthens the assertion that the model's predictions can be trusted
in subjective domains such as image aesthetics.

C. Fuzzy Inference and Performance Level Determination

The final stage of experimentation aimed to translate the predicted scores into meaningful user
feedback by determining a “Performance Level.” This was achieved using fuzzy logic with a rule-based
approach. Both predicted aesthetic scores and test scores were categorized into linguistic variables such
as “Poor,” “Good,” and “Excellent.” The fuzzy rule base was applied to infer a crisp performance value
using the Tsukamoto inference mechanism.

To derive these linguistic categories, a preliminary survey was conducted to define the fuzzy intervals for
aesthetic and test scores. The results are summarized below in Table 2:

Table 2: Fuzzy Membership Definitions for Input Variables.

Variable Linguistic Term Interval Range
Aesthetic Score Poor 1.0-4.0
Good 3.5-6.0
Excellent 5.5-70
Test Score Poor 1-4
Good 3-6
Excellent 5-7

Corresponding graph for the above table 2:
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Fuzzy Membership Intervals for Aesthetic and Test Scores
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Fig.4: Fuzzy Membership Definitions for Input Variables.

By applying the membership functions to the data in Table 1, each user was assigned a Performance
Level Score derived through the fuzzy logic system. For instance, User U2 received a fuzzy performance
score of 68.1, which aligns with the “High” linguistic category. These values were computed by
defuzzifying the results from the inference step using the Weighted Average method. Overall, the fuzzy
decision engine successfully translated subjective input into actionable feedback, offering each user a
score-based assessment of their photographic proficiency. This allows for a holistic view of both artistic
and theoretical understanding of photography.

CONCLUSION

This study presents a comprehensive framework that leverages machine learning techniques to
effectively analyze medical images by integrating both spatial and frequency domain features. By
incorporating low-frequency representations obtained through Discrete Cosine Transform (DCT) with
spatially processed image data, the system enhances the robustness and accuracy of feature extraction.
The proposed dual-branch architecture ensures that the model learns from complementary information
streams spatial details and frequency patterns enabling it to make more informed and reliable decisions.
Through the use of convolutional neural networks trained on both representations, the model
demonstrates its ability to identify patterns that may not be easily captured using a single-domain
approach. The experimental results, validated through classification performance and expert
comparisons, reveal that the system performs with high consistency, maintaining low error rates and
strong alignment with human evaluations. The integration of fuzzy logic further enables nuanced
interpretation by translating quantitative model outputs into interpretable performance Ievels,
addressing the subjective nature of image-based diagnosis. This fusion of spatial and frequency-based
learning offers a promising direction for improving diagnostic support systems in the medical domain.
Future work can extend this approach by incorporating additional modalities and larger datasets,
potentially improving generalizability across diverse clinical scenarios. Overall, this research highlights
the value of multi-domain feature learning in advancing intelligent, interpretable medical image analysis
systems.
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