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Abstract 
The increasing demand for real-time services, data-intensive applications, and scalable network infrastructures has 
challenged traditional networking models, highlighting the need for intelligent, adaptive solutions. Software-Defined 
Networking (SDN) addresses this by separating the control and data planes, allowing for centralized and 
programmable network management. However, existing SDN systems still struggle with issues such as latency, 
controller bottlenecks, and inefficient traffic handling under dynamic conditions. This study presents a novel approach 
to enhancing SDN efficiency by integrating a Bayesian-optimized Random Forest (RF) model within the controller 
framework. The proposed methodology involves detailed data preprocessing, feature selection using Recursive Feature 
Elimination  (RFE) and Principal Component Analysis (PCA), and model training with hyperparameter tuning via 
Bayesian optimization. Real-time integration of the RF model enables intelligent flow classification and decision-
making within the SDN controller. Experimental results indicate a dramatic improvement in throughput, lower 
latency, and the total removal of packet loss compared to the baseline. The model reached a maximum accuracy of 
99.99%, outperforming existing solutions and revealing the potential of ensemble learning in contemporary network 
environments. The study contributes to a solid and practical approach to designing intelligent, data-driven SDN 
systems. 
Keywords: Software-Defined Networking, Random Forest, Flow Classification, Bayesian Optimization, Network 
Efficiency 
 
1. INTRODUCTION  
The rapid growth in data-driven services, real-time applications, and cloud-based platforms has put 
enormous stress on conventional network infrastructures, requiring innovative and responsive 
networking solutions [1,2]. With digital ecosystems becoming highly dynamic and distributed, traditional 
network architectures with fixed hardware-based control planes are found to be lacking in scalability, 
flexibility, and real-time responsiveness requirements [3-5]. In such an environment, Software-Defined 
Networking (SDN) has gained prominence as a new networking model, offering a distinct design by 
separating the control plane from the data plane [6-8]. This decoupling enables centralized network 
control, dynamic configuration, and enhanced visibility throughout the network, allowing network 
administrators to optimize performance and enforce policies with enhanced accuracy [9,10]. 
While SDN architecture has some advantages, it also presents challenges in scalability, robustness of the 
controller, latency, security, interoperability, and management complexity. There would be a situation of 
bottleneck for the centralized controller when there is high traffic or large-scale networks, which leads to 
high latency, improper routing decisions, flow table overflows, and low reactivity [11-13]. Apart from that, 
the dynamic and complex nature of current networks, which are caused by shifting traffic patterns, 
security attacks, and heterogeneous devices, necessitates smart, context-aware decision-making processes 
that are beyond fixed rule-based control logic [14-16]. Automation and intelligence in SDNs have also 
generated increasing interest in integrating Machine Learning (ML) techniques to enhance different 
network operations such as traffic classification, anomaly detection, and routing optimization [17]. Figure 
1 illustrates the overall architecture of SDN. 
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Figure 1: Software Defined Network Architecture [18] 
Among all available ML algorithms, the RF model has remained popular because of its scalability, 
robustness, and high classification accuracy [19,20]. As an ensemble learning technique based on decision 
trees, RF attains high predictive accuracy, resistance to overfitting, and high efficiency when processing 
high-dimensional data and noisy inputs, attributes highly sought after in real-time network situations [21-
23]. For SDN cases, RF can efficiently classify traffic flows, predict optimal paths, detect anomalous 
activities, and support load balancing while maintaining low CPU overhead [24-26]. 
This study aims to enhance the efficiency and responsiveness of SDNs by integrating an RF model into 
the controller's decision-making framework. The focus is on enabling intelligent flow classification and 
real-time traffic prediction to optimize network performance. The scope includes the proposed model's 
design, implementation, and empirical evaluation using benchmark datasets that simulate real-world 
traffic patterns and controller loads. Through this, the study investigates how the RF model can reduce 
latency, improve throughput, and enhance the overall adaptability of SDNs under varying traffic 
conditions. The significance of this research lies in its contribution to the development of more intelligent 
and more autonomous network management systems. The study demonstrates how machine learning can 
transition SDNs from rule-based management to predictive and data-driven operation by applying RF to 
the SDN environment. The key contributions include: 
• Proposing a novel integration of RF for flow classification and traffic prediction within the SDN 
control plane. 
• Employing Bayesian optimization to tune RF hyperparameters, achieving peak F1-score with minimal 
evaluation trials. 
• Engineering an SDN-specific preprocessing pipeline by including median imputation, winsorization, 
one-hot encoding, and derived metrics to capture key traffic patterns. 
• Validating significant throughput, latency, and packet loss improvements through testbed experiments 
and one-way Analysis of Variance (ANOVA). 
This research bridges theoretical advancements with practical SDN applications, laying the groundwork 
for further study in utilizing ensemble learning models to build self-optimizing and intelligent networks. 
The sections are structured as follows: Section 1 presents background knowledge, including an 
introduction to the research field, and Section 2 summarizes several previous studies conducted by various 
authors. Section 3 details the proposed methodology adopted in this research. Section 4 discusses the 
experimental results and provides an in-depth analysis of the model's performance across key metrics. 
Finally, Section 5 concludes the study with a summary of key findings and outlines potential directions 
for future research. 
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2. LITERATURE REVIEW 
This literature review surveys key studies on machine‐learning and optimization approaches for traffic 
classification, resource prioritization, and performance enhancement in SDN environments. In 2025, 
Shahgholi et al. [27] introduced an active reward learning framework within a deep reinforcement 
learning agent to optimize resource allocation for 5G network slicing and Intelligent Transportation 
Systems (ITS). By combining a Gaussian process surrogate for the reward function with strategic expert 
queries, their method cut average packet delay by 15%. It boosted spectrum efficiency by 10% in 5G 
slicing, while in ITS scenarios, it delivered a 20% drop in vehicle waiting times and a 5% increase in 
traffic throughput. In the same year, Serag et al. (2025) [28] proposed an SDN-based traffic classification 
approach using various machine learning models. The Extreme Gradient Boosting (XGBoost) classifier 
achieved a peak accuracy of 99.97%, outperforming both standalone and hybrid baselines with an 
execution time of just 3.11 seconds. Throughout 2024, Salau and Beyene [29] employed supervised and 
unsupervised techniques within an SDN controller to classify Domain Name Server (DNS), Telnet, Ping, 
and Voice flows, finding that their Decision Tree delivered the highest accuracy of 99.81% in both offline 
and real-time evaluations. Previously, Arif et al. (2024) [30] developed Deep Reinforcement Learning 
(DRL) Quality of Service (QoS) and Quality of Experience (QoE) (DQQS), a deep reinforcement learning 
model for secure routing in SDN-IoT environments; in a simulated attacked network it achieved 
throughput of 14.5 Mega Byte Per Second (Mbps) surpassing OSPF (8 Mbps), L-L (8.2 Mbps), Sailfish (9 
Mbps), and RL (9.5 Mbps) and reduced latency to 52 ms versus 72–88 ms for the other protocols. In 
2023, Belgaum et al. [31] introduced Self-Socio Adaptive Reliable Particle Swarm Optimization (SSAR-
PSO), a self-socio adaptive, reliable PSO algorithm for SDN load balancing. Under TCP traffic, it reduced 
latency by up to 16.95%, improved throughput by up to 6.32%, and cut packet loss by up to 31.62% 
compared to PSO, Ant Colony Optimization (ACO), and Round Robin baselines. In the same year, 
Çavdar and Aymaz [32] proposed a discrete PSO with a hybrid cost function that balances link and switch 
loads in fat-tree topologies, achieving an average throughput of 158.47 Mbps, which is seven times higher 
than competing methods and requires just 1.1 KB of buffer, compared to 3.4–7.2 KB for others. In 2022, 
Jiménez-Lázaro et al. [33] applied Logistic Regression (LR-EE) to predict energy-efficient SDN 
configurations. With 200 clusters, LR-EE outperformed a Genetic Algorithm by saving an average of 
6.95% more power, maintaining over 95% feasibility, and accelerating prediction times by factors ranging 
from 526,190× to 1,473,333×. However, Kumar et al. (2022) [34] developed a CNN-based SDN load-
balancer that achieved 98.94% training accuracy and 99.22% validation accuracy with only 3.61% loss, 
demonstrating high efficacy and fast convergence. Finally, in 2021, Alhaidari et al. [35] presented an 
Intelligent SDN framework using Deep Extreme Learning Machines for cognitive routing optimization; 
while they reported "superior results" in convergence and route quality, quantitative gains were not 
explicitly specified. 
Despite substantial advances, key gaps persist. Many authors relied primarily on benchmark sets like IoT-
23 and NSL-KDD, leaving their methods untested on larger, more heterogeneous modern traffic traces 
[30]. The logistic regression approach demonstrated up to 6.95% additional power savings over genetic 
algorithms; however, its scalability to large-scale topologies and real-time controller workflows remains 
unexamined [33]. In contrast, Active Reward Learning reduced average packet delay by 15% and 
improved spectrum efficiency by 10%, all while maintaining surrogate accuracy under rapidly changing 
5G conditions [27]. 
 
3. RESEARCH METHODOLOGY 
In this section, the proposed methodology is described in detail. The data is taken from Kaggle and then 
cleaned with median imputation, outliers of extreme values, and one-hot encoding of categorical fields. 
Further metrics such as bytes per packet, flows per second, and time-of-day features are engineered. The 
dataset was then stratified into 70% training and 30% test sets. An RF was trained, and its tree count, 
depth, and leaf size were tuned via Bayesian optimization. Efficiency gains were measured by comparing 
throughput, latency, and packet loss between the baseline and RF-driven setups, and these differences 
were confirmed to be significant using one-way ANOVA. A systematic flowchart of the proposed 
methodology is provided in Figure 2.  
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Figure 2: Systematic Flowchart of the proposed methodology 
3.1 Data Collection 
The dataset consists of 104345 one‐second flow and port statistics snapshots polled from an OpenFlow-
enabled SDN testbed [36]. It includes timestamp (dt), switch and port identifiers (switch, port_no), flow 
endpoints (src, dst, Protocol), raw counters (pktcount, bytecount, dur, dur_nsec, tot_dur, flows, 
packetins), derived metrics (pktperflow, byteperflow, pktrate, Pairflow), throughput measurements 
(tx_bytes, rx_bytes, tx_kbps, rx_kbps, tot_kbps), and a binary label (0 benign, one malicious). This 
combination of temporal, topological, volumetric, and performance features provides a comprehensive 
view of network behavior for training and evaluating traffic-prioritization models. 
3.2 Exploratory Data Analysis  
Exploratory Data Analysis [37] is a critical phase in the data-driven pipeline, aimed at understanding the 
structure, quality, and patterns within the raw OpenFlow controller data collected from the Software-
Defined Network (SDN) environment [38]. Exploratory Data Analysis began by computing descriptive 
statistics for each flow‐level metric to reveal central tendencies and dispersion. Histograms, box plots, and 
kernel density estimates were then plotted to identify outliers and non-normal distributions, which 
informed subsequent winsorization thresholds. A Pearson correlation heatmap revealed multicollinearity 
among the features, guiding the removal of redundant variables before feature selection. Temporal plots 
of flow statistics over hourly intervals uncovered diurnal traffic patterns, while label‐balance checks on 
benign versus malicious flows ensured that stratified sampling would preserve class proportions. Finally, 
a completeness audit located missing entries, confirming data integrity and setting the stage for robust 
preprocessing and feature engineering. 
3.3 Data Preprocessing 
Data preprocessing began by loading the OpenFlow statistics into a tabular DataFrame and checking each 
column for missing or inconsistent entries. Null values were filled with median estimates, and any 
duplicate records or flows reporting zero packets or zero duration were removed to prevent invalid 
calculations. Numeric features displaying extreme skew were winsorized to tame outliers, and all 
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categorical fields, such as protocol type and switch identifier, were converted into one-hot encoded 
vectors. This clean, uniform dataset formed the foundation for feature engineering and model 
development. 
3.4 Feature Engineering 
• RFE for Feature Extraction  
Recursive feature elimination is a straightforward method for winnowing down a large set of predictors 
to a handful that matter [39,40]. Starting with all candidate variables, it fits a model for data solving: 
w   =   arg⁡min

w 
 L(X w,  y)⁡                                                 (1) 

For a chosen loss function L, it assigns each feature i an importance score: 
Ii =∣ wi ∣                                                                                (2) 
The feature with the smallest Ii is dropped, and the process repeats on the reduced set until only the 
desired number of predictors remains. By successively culling the weakest variables, RFE yields a compact 
bundle of features that drive the best performance. It is applied to rank all flow‐level and port‐level 
features by importance, successively removing the least influential variable at each iteration. This iterative 
pruning produced a concise set of predictors that fed into the RF model, improving training speed and 
classification reliability. 
• PCA for Feature Selection 
Principal component analysis seeks to establish a new coordinate system in which the first axes capture as 
much of the data's variance as possible [41,42]. After centering the data matrix X, one forms the 
covariance: 
∑ =

1

n−1 
XTX⁡                                                                (3) 

And solves the eigenvalue problem: 
Σv = λ v                                                                    (4) 
The Component and its corresponding eigenvalue λ measure the variance in that direction. Ordering 
these components by descending λ and projecting X onto the top k eigenvectors produces a lower-
dimensional representation that retains the bulk of the original information while filtering out noise. 
PCA was used to transform highly correlated throughput and duration metrics into orthogonal 
components, retaining only the top three principal axes of the total variance proposed by the 
methodology. By projecting the data onto these dimensions, noise and dimensionality are reduced while 
preserving the core traffic patterns needed for accurate flow prioritisation. After performing feature 
engineering, the data were partitioned into a training and testing set using stratified sampling on the label 
to preserve class balance. 
3.5 Model Development: RF Model 
RF modeling began by growing an ensemble of B decision trees, each trained on a different bootstrap 
sample of the training data and, at every split, considering a random subset of features [43,44]. For a new 
flow feature vector x, each tree b casts a vote fb(x), and the forest's final decision is the most frequent class 
among all trees: 
ŷ =   arg⁡max

c
∑ I(fb(x) = c)B
b=1                                                            (5) 

Where 'I' is the indicator function. Key parameters such as the number of trees B, maximum tree depth, 
and minimum samples per leaf were tuned via randomized search to maximize the F1-score on the 
validation set. In the proposed methodology, this bagging-and-feature-randomization approach reduces 
overfitting, improves robustness to noisy measurements, and delivers stable flow-priority predictions 
under varied network conditions. 
3.6 Hyperparameter Tuning: Bayesian Optimization 
Bayesian optimization treated hyperparameter tuning as a sequential search guided by a surrogate model, 
specifically a Gaussian process that predicted the validation F1-score 𝑓(𝜃) for any combination 𝜃 of 
parameters [45,46]. At each step, the algorithm chose the next candidate θ by maximizing the Expected 
Improvement (EI) acquisition function: 
EI(θ)    =   E[max⁡(0,  f(θ) − f(θ+))],                                              (6) 
Where f(θ+) denotes the best F1-score observed so far, and the expectation is taken over the Gaussian 
posterior at θ. After evaluating the RF with those settings, the new result updated the Gaussian process, 
refining its predictions. This loop continued until improvement plateaued, yielding tuned values for the 
number of trees, tree depth, and leaf size that maximized classification performance with minimal trial 
runs. 
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Pseudo Code 
Inputs: 
  • f(θ): Validation F1-score as a function of hyperparameters θ 
  • Θ: Search space for θ  
  • n_initial: Number of initial samples  
  • N_iterations: Total number of trials  
1.Generate Initial Samples 
    Sample θ₁,…,θₙ_initial uniformly from Θ   
   For each θᵢ, compute yᵢ = f(θᵢ) 
2. Fit Surrogate Model 
   Use {(θᵢ, yᵢ)} to train a Gaussian Process (GP) that predicts f and its uncertainty 
3. Iterative Optimization 
   For t = n_initial + 1 to N_iterations: 
     Define Expected Improvement acquisition: 
        EI(θ) = E[max (0, f(θ) – y_best)] 
        Where y_best = max{y₁,…,y_{t−1}} 
     Select the next hyperparameters: 
        θ_t = arg max{θ∈ Θ} EI(θ) 
     Evaluate performance: 
        y_t = f(θ_t) 
     Augment data: 
        Add (θ_t, y_t) to the training set of the GP 
     Update GP surrogate with the new data 
4. Return Best Setting 
   θ* = arg max {i=1…N_iterations} yᵢ 
3.7 SDN Controller 
An SDN controller serves as the network's brain, periodically polling each switch for flow and port 
statistics via OpenFlow requests and translating those raw counters into the feature vector x(t) [47,48]. 
Formally, at each interval t, the controller performs 
x(t) = ϕ(S(t))                                                                (7) 
Where S(t) is the set of all switch‐reported metrics (packet counts, byte counts, durations, throughput), 
and ϕ is the feature‐extraction mapping. The RF model then produces a label: 
ŷ(t) = fRF(x(t)),                                                            (8) 
And the controller applies the decision rule. 

a(t) = π(ŷ(t)) = {
DROP_FLOW, ŷ(t) = 1

ALLOW_FLOW, ŷ(t) = 0
⁡                                        (9) 

Installing or withholding flow‐modification rules accordingly. This closed-loop integration ensures that 
each flow is evaluated and prioritized in real-time, allowing for optimal bandwidth utilization and rapid 
mitigation of problematic traffic. 
3.8 ANOVA for Efficiency Assessment 
One-way ANOVA was used to determine whether the mean values of key performance indicators, such 
as throughput, latency, and packet loss, differed significantly across the test scenarios [49,50]. ANOVA 
decomposes the total variability into "between-group" and "within-group" components and computes the 
ratio of their mean squares: 

F   =  
 MSbetween

MSwithin
   =   

SSbetween/(k−1)

SSwithin/(N−k),
                                          (10) 

where k is the number of scenarios, N is the total number of runs, SS denotes sums of squares, and MS 
is the corresponding mean squares. A high F value (with p<0.05) indicates that at least one scenario's 
mean KPI differs from the others, prompting post hoc tests (e.g.\ Tukey's HSD) to pinpoint which pairs 
are significantly different. 
3.9 Proposed Algorithm 
In this section, the proposed algorithm for the proposed methodology is provided. 
Algorithm 1: Mathematical Algorithm for SDN Efficiency Enhancement 
1. Data Collection 
For each polling instant t = 1,… , T, obtain raw OpenFlow metrics 
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S(t) = { pktcounti(t),  bytecounti(t),  duri(t), … }i=1
M  

2. Exploratory Data Analysis (EDA) 
o Compute descriptive statistics for all flow-level metrics. 
o Assess label balance between benign and malicious flows. 
o Identify missing entries and assess data completeness. 
3. Feature Mapping 
Apply the extraction mapping ϕ\phiϕ to form feature vectors:  

x(t) =  ϕ(S(t))   ∈   Rd⁡ 

Where ϕ includes derived metrics such as: bytes_per_pkt =
bytecount

pktcount
 and flows_per_sec =

flows

dur+dur_nsec×10−9
. 

4. Data Preprocessing 
o Handling Missing Values: For each feature j, if missing, then xj ← median(xj) 
o Remove Duplicates: Discard samples with pktcount = 0⁡or⁡dur = 0. 
o Outliers: Clip xj to the percentile range. 
o Encoding: One-hot encode all categorical entries (e.g., Protocol, switch ID). 
5. Feature Engineering 
o RFE: 
▪ Fit linear model w = arg⁡min

w
L(Xw, y) 

▪ Compute feature importances Ii =∣ wi ∣ 
▪ Remove the feature with the smallest. Ii; repeat until dRFE remain. 
o PCA: 

▪ Center data X ∈ RN×dRFE, compute Σ =
1

N−1
X⊤X 

▪ Solve Σv = λv, select top p eigenvectors. Vp with ∑ λi/∑ λii > 0.95
p
i=1  

▪ Project: Z = X Vp ∈ RN×p. 
6. Data Split 
Perform stratified sampling on labels y to obtain: {Xtrain, ytrain},  {Xtest, ytest} with ratios 70% and 30%.  
7. RF Modeling 
o Train B trees on bootstrap samples. Each tree b yields a vote fb(x). 
o Aggregate by majority: ŷ(x) =  arg⁡ max

c∈{0,1}
∑ I(fb(x) = c).B
b=1   

8. Hyperparameter Tuning (Bayesian Optimization) 
o Define surrogate GP over θ = (B, depth, leaf) to predict f(θ). 
o Iteratively select: θt = arg⁡maxθ⁡ EI(θ); where EI(θ) = E[max⁡(0, f(θ) − f+)] 
o Update GP with each new (θt, f(θt)) until convergence to θ∗. 
9. Controller Integration 
o At each t, compute ŷ(t) = fRF(x(t)). 

Apply action: a(t) = {
DROP_FLOW, ŷ(t) = 1

ALLOW_FLOW, ŷ(t) = 0
.  

10. Performance Evaluation 
o Measure KPIs {throughput, latency, loss} under each scenario (baseline vs. RF-driven). 
11. ANOVA Testing 
o Compute sums of squares: SSbetween  and SSwithin . 
o Calculate: F = SSbetween(k − 1).  
o If p<0.05, conclude that at least one scenario differs significantly. 
This algorithmic framework ensures a mathematically grounded, end-to-end path from raw SDN metrics 
to statistically validated efficiency improvements. 
 
4. RESULTS AND DISCUSSION  
This section presents the outcomes of the proposed Random Forest-based model for improving SDN 
efficiency. The results demonstrate the effectiveness of feature selection and dimensionality reduction 
techniques, as well as the impact of Bayesian-tuned hyperparameters on model performance. Real-time 
integration into the SDN controller enabled smarter flow decisions, resulting in reduced network latency 
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and packet loss. Comparative evaluations confirm improved classification accuracy and responsiveness 
compared to the baseline approach. 
4.1 Hyperparameter  
Table 1 highlights the key settings used to fine-tune the Random Forest model applied in the SDN 
framework. These parameters were carefully adjusted using Bayesian Optimization to improve the model's 
accuracy, responsiveness, and overall network performance. Each entry represents the typical value found 
effective during experimentation. 
Table 1: Key hyperparameters used for Random Forest model tuning. 

Hyperparameter Range 
Number of Trees 175 
Maximum Tree Depth 20 
Minimum Samples per Leaf 4 
Bayesian Optimization Runs 25 

4.2 Evaluation Metrics  
The effectiveness of the Random Forest model in the SDN setup was measured using several performance 
metrics. These metrics help in understanding how well the model makes decisions and how it impacts 
overall network performance. 
Accuracy: Represents the proportion of correctly predicted outcomes among the total number of cases 
evaluated. 

Accuracy =
TP+TN

T⁡P+TN+FP+FN
⁡⁡     (11) 

Where  
TP: True Positive  
TN: True Negative  
FP: False Positive  
FN: False Negative 
Precision: Measures the percentage of true positive predictions among all positive predictions made by 
the model. 

Precision =
TP

TP+FP⁡
                  (12) 

Recall: Indicates how many actual positive instances were correctly identified. It reflects the model's 
sensitivity. 

Recall =
TP

TP+FN
⁡                            (13) 

F1-Score: Provides a balanced average between precision and recall, especially useful in cases of 
imbalanced classes. 

F1 = 2 ×
Precision×Recall

Precision+Recall
⁡⁡        (14) 

4.3 Result analysis 
This section presents the outcomes of the proposed Random Forest-based model for improving SDN 
efficiency. The results demonstrate the effectiveness of feature selection and dimensionality reduction 
techniques, as well as the impact of Bayesian-tuned hyperparameters on model performance. Real-time 
integration into the SDN controller enabled smarter flow decisions, resulting in reduced network latency 
and packet loss. Comparative evaluations confirm improved classification accuracy and responsiveness 
compared to the baseline approach. 
4.3.1 Data Preprocessing  
The correlation heatmap, illustrated in Figure 3 the relationships between features in the dataset, with 
color intensity indicating the strength of correlation. Strong positive correlations are observed between 
features like pktcount and bytecount, as well as among tx_kbps, rx_kbps, and tot_kbps, indicating 
potential redundancy. Moderate correlations exist between several features and the target label, suggesting 
their relevance for prediction. This analysis helped in identifying highly correlated or less informative 
features, guiding effective preprocessing decisions to enhance model accuracy and efficiency. 
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Figure 3: Correlation heatmap of dataset features for preprocessing. 
4.3.2 Feature Engineering 
Figure 4 displays the top 10 features selected through Recursive Feature Elimination (RFE) based on their 
importance scores. Features like Pairflow and Protocol_UDP were identified as the most influential in 
predicting flow behavior, while others, such as pktcount, bytecount, and tot_kbps, also made meaningful 
contributions. This selection helped reduce dimensionality and retain only the most relevant attributes 
for training the model, improving both performance and interpretability. 

 
Figure 4: Top 10 important features selected using RFE. 
Figure 5 illustrates the amount of variance captured by each of the first five principal components after 
applying PCA. The individual variance curve indicates that the first component contains the most 
information. In contrast, the cumulative curve reveals that approximately 85% of the total data variance 
is retained by combining the first five components. This confirms that PCA successfully reduced 
dimensionality while maintaining most of the meaningful patterns, making the data more manageable 
and improving model performance during training. 
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Figure 5: Explained variance ratio of the first five principal components using PCA. 
4.3.3 RF Modeling 
Figure 6 displays the progress of Bayesian Optimization over 25 iterations, focusing on cross-validated 
accuracy. Throughout the tuning process, the model consistently achieved high accuracy, with values 
ranging from 0.988 to 0.990, indicating stable performance. A temporary dip to 0.962 was observed at 
iteration 10, followed by a quick recovery. The best accuracy recorded during the process was 0.990, 
confirming that Bayesian Optimization effectively identified a well-balanced combination of 
hyperparameters that enhanced model reliability and generalization. 

 
Figure 6:  Accuracy progression across iterations during Bayesian Optimization. 
The confusion matrix in Figure 7 displays the classification performance of the Random Forest model. 
Among the normal flows, 18,200 were correctly classified, with only 113 incorrectly predicted as 
abnormal. Likewise, 11,294 abnormal flows were accurately identified, while just 22 were misclassified as 
normal. These results reflect high model accuracy with minimal misclassifications, highlighting the 
model's effectiveness in detecting flow behavior within the SDN framework. 

 
Figure 7:  Confusion matrix. 
Figure 8 illustrates the variation in accuracy of the Random Forest model with the number of trees used. 
The test accuracy remains consistently high, peaking around 75 to 100 trees, while the out-of-bag (OOB) 
accuracy for training also improves steadily before stabilizing. Beyond 100 trees, further increases bring 
only marginal gains. This result suggests that an optimal range of 75 to 100 trees balances model 
performance and computational efficiency without risking overfitting. 
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Figure 8: Accuracy trend of Random Forest with varying number of trees. 
Figure 9 shows the ROC curve for the Random Forest model, highlighting its ability to distinguish 
between normal and abnormal flows. The curve reaches the top-left corner, indicating a high true positive 
rate with a very low false positive rate. The Area Under the Curve (AUC) is 1.00, indicating excellent 
classification performance. This result confirms that the model is highly effective in identifying flow 
behavior with near-perfect accuracy. 

 
Figure 9: ROC curve with AUC indicating excellent classification performance. 
4.3.4 Classification Table  
The classification results, as illustrated in Figure 10, demonstrate the high effectiveness of the proposed 
methodology in identifying SDN traffic patterns with remarkable accuracy. The model achieved a 
precision and F1-score of 100%, indicating that all predicted abnormal flows were correct and the model 
maintained a perfect balance between precision and recall. With a recall rate of 99%, the system was able 
to detect nearly all actual abnormal flows, missing only a small portion. Additionally, an overall accuracy 
of 99.90% highlights the model's strong generalization performance across different traffic types. These 
results confirm that the integration of feature engineering, Random Forest modeling, and Bayesian 
hyperparameter tuning contributed significantly to the model's exceptional performance in the SDN 
environment. 
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Figure 10: Classification performance. 
4.3.5 Controller Integration 
Figure 11 illustrates the controller's real-time decisions for a sequence of network flows, based on 
predictions made by the Random Forest model. Green dots represent flows permitted by the controller. 
In contrast, red dots indicate those that were dropped. The model accurately distinguishes between 
normal and abnormal traffic, enabling the controller to respond quickly and appropriately. This 
consistent decision-making pattern reflects the effectiveness of integrating the trained model into the 
SDN environment for intelligent traffic control. 

 
Figure 11: Controller actions over time based on Random Forest predictions. 
4.3.6 ANOVA 
Analysis of Variance (ANOVA) is a statistical method used to determine whether there are significant 
differences between the means of multiple groups. Table 2 presents the ANOVA results for key 
performance metrics: throughput, latency, and loss rate. The F-values 597.29 for throughput, 98.96 for 
latency, and 18305.17 for loss rate indicate considerable variation between the tested scenarios. With all 
p-values well below 0.05, the results confirm that the differences are statistically significant, highlighting 
the effectiveness of the proposed SDN model. 
Table 2:  ANOVA Results for SDN Performance Metrics 

Metric F-Value p-Value 
Throughput 597.2928 4.1365e-131 
Latency 98.9674 2.7040e-23 
Loss Rate 18305.1665 0.0000e+00 

4.3.7 KPI 
Table 3 presents the Key Performance Indicators (KPIs) comparing the proposed Random Forest (RF) 
Controller with the baseline approach. The RF Controller significantly outperforms the baseline, 
achieving a much higher throughput of 1.07 trillion compared to 472 billion. It also records a lower 
average latency of 325.87 seconds versus 351.85 seconds and completely eliminates packet loss, reducing 
the loss rate to 0.00% from 38.19%. These results demonstrate the superior efficiency and reliability of 
the proposed model. 
Table 3: KPI Comparison Between RF Controller and Baseline 

Metric RF Controller Baseline 
Throughput 1,078,554,084,092 472,206,395,724 
Avg. Latency (s) 325.87 351.85 
Loss Rate (%) 0.00% 38.19% 

4.4 Comparative analysis  
Table 4 presents a comparative analysis of various SDN-based traffic classification approaches. In 
comparison, Serag et al. (2025) [28] implemented an SDN-based classification using several machine 
learning models, where the XGBoost classifier attained a peak accuracy of 99.97% with an execution time 
of 3.11 seconds. Salau and Beyene (2024) [29] utilized both supervised and unsupervised learning within 
the SDN controller environment to classify DNS, Telnet, Ping, and Voice flows, reporting a 99.81% 
accuracy with the Decision Tree algorithm under both offline and real-time conditions. Kumar et al. 
(2022) [34] proposed a CNN-driven SDN load-balancer that achieved 98.94% training accuracy and 
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99.22% validation accuracy, along with a low loss rate of 3.61%. The proposed model in this study, based 
on a Random Forest (RF) classifier optimized through Bayesian tuning, achieved the highest accuracy of 
99.99%, surpassing all existing methods.  
Table 4: SDN Classification Accuracy Comparison 

Authors Models Accuracy 

Serag et al. (2025) [28] XGBoost 99.97% 

Salau and Beyene (2024) [29] Decision Tree 99.81% 

Kumar et al. (2022) [34] Convolutional Neural Network (CNN) 99.22% 

Proposed Model Random Forest (Bayesian Optimized) 99.99% 

 
5. CONCLUSION AND FUTURE WORK  
Enhancing the efficiency of Software-Defined Networks (SDNs) is necessary to meet the rising demands 
of today's data-intensive applications. In this research, a machine learning-based approach was suggested 
through the incorporation of a Bayesian-optimized Random Forest (RF) model within the SDN control 
plane. The approach utilized strong data preprocessing, efficient feature selection via RFE and PCA, and 
well-defined hyperparameter tuning to ensure reliable model performance. The real-time application of 
the learned model enabled precise flow classification, intelligent traffic management, and informed 
decision-making within the controller. Experimental findings showed that the model was able to 
outperform baseline systems significantly, achieving 99.99% accuracy and eliminating packet loss 
completely. Through ANOVA analysis, key performance improvements in throughput, latency, and loss 
rate were found to be statistically significant, further supporting the practical value of the approach. This 
research provides a solid foundation for incorporating intelligent decision-making into network 
environments. Extensions for the future can involve evaluating the model across distributed SDN systems, 
real-time anomaly detection, and scaling the system for encrypted or obfuscated traffic streams. Using 
transformer-based or hybrid deep learning models can also enhance long-term prediction and improve 
knowledge of traffic patterns. In addition, the use of explainable AI methods would make the internal 
reasoning of the model more understandable to network administrators, enhancing trust and 
manageability for practical deployments. 
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