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Abstract

The increasing demand for real-time services, data-intensive applications, and scalable network infrastructures has
challenged traditional networking models, highlighting the need for intelligent, adaptive solutions. Software-Defined
Networking (SDN) addresses this by separating the control and data planes, allowing for centralized and
programmable network management. However, existing SDN systems still struggle with issues such as latency,
controller bottlenecks, and inefficient traffic handling under dynamic conditions. This study presents a novel approach
to enhancing SDN efficiency by integrating a Bayesian-optimized Random Forest (RF) model within the controller
framework. The proposed methodology involves detailed data preprocessing, feature selection using Recursive Feature
Elimination (RFE) and Principal Component Analysis (PCA), and model training with hyperparameter tuning via
Bayesian optimization. Real-time integration of the RF model enables intelligent flow classification and decision-
making within the SDN controller. Experimental results indicate a dramatic improvement in throughput, lower
latency, and the total remowal of packet loss compared to the baseline. The model reached a maximum accuracy of
99.99%, outperforming existing solutions and revealing the potential of ensemble learning in contemporary network
environments. The study contributes to a solid and practical approach to designing intelligent, data-driven SDN
systems.

Keywords: Software-Defined Networking, Random Forest, Flow Classification, Bayesian Optimization, Network

Efficiency

1. INTRODUCTION

The rapid growth in data-driven services, real-time applications, and cloud-based platforms has put
enormous stress on conventional network infrastructures, requiring innovative and responsive
networking solutions [1,2]. With digital ecosystems becoming highly dynamic and distributed, traditional
network architectures with fixed hardware-based control planes are found to be lacking in scalability,
flexibility, and real-time responsiveness requirements [3-5]. In such an environment, Software-Defined
Networking (SDN) has gained prominence as a new networking model, offering a distinct design by
separating the control plane from the data plane [6-8]. This decoupling enables centralized network
control, dynamic configuration, and enhanced visibility throughout the network, allowing network
administrators to optimize performance and enforce policies with enhanced accuracy [9,10].

While SDN architecture has some advantages, it also presents challenges in scalability, robustness of the
controller, latency, security, interoperability, and management complexity. There would be a situation of
bottleneck for the centralized controller when there is high traffic or large-scale networks, which leads to
high latency, improper routing decisions, flow table overflows, and low reactivity [11-13]. Apart from that,
the dynamic and complex nature of current networks, which are caused by shifting traffic patterns,
security attacks, and heterogeneous devices, necessitates smart, context-aware decision-making processes
that are beyond fixed rule-based control logic [14-16]. Automation and intelligence in SDNs have also
generated increasing interest in integrating Machine Learning (ML) techniques to enhance different
network operations such as traffic classification, anomaly detection, and routing optimization [17]. Figure
1 illustrates the overall architecture of SDN.
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Figure 1: Software Defined Network Architecture [18]

Among all available ML algorithms, the RF model has remained popular because of its scalability,
robustness, and high classification accuracy [19,20]. As an ensemble learning technique based on decision
trees, RF attains high predictive accuracy, resistance to overfitting, and high efficiency when processing
high-dimensional data and noisy inputs, attributes highly sought after in real-time network situations [21-
23]). For SDN cases, RF can efficiently classify traffic flows, predict optimal paths, detect anomalous
activities, and support load balancing while maintaining low CPU overhead [24-26].

This study aims to enhance the efficiency and responsiveness of SDNs by integrating an RF model into
the controller's decision-making framework. The focus is on enabling intelligent flow classification and
real-time traffic prediction to optimize network performance. The scope includes the proposed model's
design, implementation, and empirical evaluation using benchmark datasets that simulate real-world
traffic patterns and controller loads. Through this, the study investigates how the RF model can reduce
latency, improve throughput, and enhance the overall adaptability of SDNs under varying traffic
conditions. The significance of this research lies in its contribution to the development of more intelligent
and more autonomous network management systems. The study demonstrates how machine learning can
transition SDNs from rule-based management to predictive and data-driven operation by applying RF to
the SDN environment. The key contributions include:

e Proposing a novel integration of RF for flow classification and traffic prediction within the SDN
control plane.

e Employing Bayesian optimization to tune RF hyperparameters, achieving peak Fl-score with minimal
evaluation trials.

e Engineering an SDN-specific preprocessing pipeline by including median imputation, winsorization,
one-hot encoding, and derived metrics to capture key traffic patterns.

e Validating significant throughput, latency, and packet loss improvements through testbed experiments
and one-way Analysis of Variance (ANOVA).

This research bridges theoretical advancements with practical SDN applications, laying the groundwork
for further study in utilizing ensemble learning models to build self-optimizing and intelligent networks.
The sections are structured as follows: Section 1 presents background knowledge, including an
introduction to the research field, and Section 2 summarizes several previous studies conducted by various
authors. Section 3 details the proposed methodology adopted in this research. Section 4 discusses the
experimental results and provides an in-depth analysis of the model's performance across key metrics.
Finally, Section 5 concludes the study with a summary of key findings and outlines potential directions
for future research.
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2. LITERATURE REVIEW

This literature review surveys key studies on machine-learning and optimization approaches for traffic
classification, resource prioritization, and performance enhancement in SDN environments. In 2025,
Shahgholi et al. [27] introduced an active reward learning framework within a deep reinforcement
learning agent to optimize resource allocation for 5G network slicing and Intelligent Transportation
Systems (ITS). By combining a Gaussian process surrogate for the reward function with strategic expert
queries, their method cut average packet delay by 15%. It boosted spectrum efficiency by 10% in 5G
slicing, while in ITS scenarios, it delivered a 20% drop in vehicle waiting times and a 5% increase in
traffic throughput. In the same year, Serag et al. (2025) [28] proposed an SDN-based traffic classification
approach using various machine learning models. The Extreme Gradient Boosting (XGBoost) classifier
achieved a peak accuracy of 99.97%, outperforming both standalone and hybrid baselines with an
execution time of just 3.11 seconds. Throughout 2024, Salau and Beyene [29] employed supervised and
unsupervised techniques within an SDN controller to classify Domain Name Server (DNS), Telnet, Ping,
and Voice flows, finding that their Decision Tree delivered the highest accuracy of 99.81% in both offline
and real-time evaluations. Previously, Arif et al. (2024) [30] developed Deep Reinforcement Learning
(DRL) Quality of Service (QoS) and Quality of Experience (QoE) (DQQS), a deep reinforcement learning
model for secure routing in SDN-IoT environments; in a simulated attacked network it achieved
throughput of 14.5 Mega Byte Per Second (Mbps) surpassing OSPF (8 Mbps), L-L (8.2 Mbps), Sailfish (9
Mbps), and RL (9.5 Mbps) and reduced latency to 52 ms versus 72-88 ms for the other protocols. In
2023, Belgaum et al. [31] introduced Self-Socio Adaptive Reliable Particle Swarm Optimization (SSAR-
PSO), a self-socio adaptive, reliable PSO algorithm for SDN load balancing. Under TCP traffic, it reduced
latency by up to 16.95%, improved throughput by up to 6.32%, and cut packet loss by up to 31.62%
compared to PSO, Ant Colony Optimization (ACO), and Round Robin baselines. In the same year,
Cavdar and Aymaz [32] proposed a discrete PSO with a hybrid cost function that balances link and switch
loads in fat-tree topologies, achieving an average throughput of 158.47 Mbps, which is seven times higher
than competing methods and requires just 1.1 KB of buffer, compared to 3.4-7.2 KB for others. In 2022,
JiménezLizaro et al. [33] applied Logistic Regression (LR-EE) to predict energy-efficient SDN
configurations. With 200 clusters, LR-EE outperformed a Genetic Algorithm by saving an average of
6.95% more power, maintaining over 95% feasibility, and accelerating prediction times by factors ranging
from 526,190 to 1,473,333%. However, Kumar et al. (2022) [34] developed a CNN-based SDN load-
balancer that achieved 98.94% training accuracy and 99.22% validation accuracy with only 3.61% loss,
demonstrating high efficacy and fast convergence. Finally, in 2021, Alhaidari et al. [35] presented an
Intelligent SDN framework using Deep Extreme Learning Machines for cognitive routing optimization;
while they reported "superior results" in convergence and route quality, quantitative gains were not
explicitly specified.

Despite substantial advances, key gaps persist. Many authors relied primarily on benchmark sets like IoT-
23 and NSL-KDD, leaving their methods untested on larger, more heterogeneous modern traffic traces
[30]. The logistic regression approach demonstrated up to 6.95% additional power savings over genetic
algorithms; however, its scalability to large-scale topologies and real-time controller workflows remains
unexamined [33]. In contrast, Active Reward Learning reduced average packet delay by 15% and
improved spectrum efficiency by 10%, all while maintaining surrogate accuracy under rapidly changing

5G conditions [27].

3. RESEARCH METHODOLOGY

In this section, the proposed methodology is described in detail. The data is taken from Kaggle and then
cleaned with median imputation, outliers of extreme values, and one-hot encoding of categorical fields.
Further metrics such as bytes per packet, flows per second, and time-of-day features are engineered. The
dataset was then stratified into 70% training and 30% test sets. An RF was trained, and its tree count,
depth, and leaf size were tuned via Bayesian optimization. Efficiency gains were measured by comparing
throughput, latency, and packet loss between the baseline and RF-driven setups, and these differences
were confirmed to be significant using one-way ANOVA. A systematic flowchart of the proposed
methodology is provided in Figure 2.
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Figure 2: Systematic Flowchart of the proposed methodology

3.1Data Collection

The dataset consists of 104345 one-second flow and port statistics snapshots polled from an OpenFlow-
enabled SDN testbed [36]. It includes timestamp (dt), switch and port identifiers (switch, port_no), flow
endpoints (src, dst, Protocol), raw counters (pktcount, bytecount, dur, dur_nsec, tot_dur, flows,
packetins), derived metrics (pktperflow, byteperflow, pktrate, Pairflow), throughput measurements
(tx_bytes, rx_bytes, tx_kbps, rx_kbps, tot_kbps), and a binary label (O benign, one malicious). This
combination of temporal, topological, volumetric, and performance features provides a comprehensive
view of network behavior for training and evaluating traffic-prioritization models.

3.2Exploratory Data Analysis

Exploratory Data Analysis [37] is a critical phase in the data-driven pipeline, aimed at understanding the
structure, quality, and patterns within the raw OpenFlow controller data collected from the Software-
Defined Network (SDN) environment [38]. Exploratory Data Analysis began by computing descriptive
statistics for each flow-level metric to reveal central tendencies and dispersion. Histograms, box plots, and
kernel density estimates were then plotted to identify outliers and non-normal distributions, which
informed subsequent winsorization thresholds. A Pearson correlation heatmap revealed multicollinearity
among the features, guiding the removal of redundant variables before feature selection. Temporal plots
of flow statistics over hourly intervals uncovered diurnal traffic patterns, while label-balance checks on
benign versus malicious flows ensured that stratified sampling would preserve class proportions. Finally,
a completeness audit located missing entries, confirming data integrity and setting the stage for robust
preprocessing and feature engineering.

3.3Data Preprocessing

Data preprocessing began by loading the OpenFlow statistics into a tabular DataFrame and checking each
column for missing or inconsistent entries. Null values were filled with median estimates, and any
duplicate records or flows reporting zero packets or zero duration were removed to prevent invalid
calculations. Numeric features displaying extreme skew were winsorized to tame outliers, and all
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categorical fields, such as protocol type and switch identifier, were converted into one-hot encoded
vectors. This clean, uniform dataset formed the foundation for feature engineering and model
development.

3.4Feature Engineering

o REFE for Feature Extraction

Recursive feature elimination is a straightforward method for winnowing down a large set of predictors
to a handful that matter [39,40]. Starting with all candidate variables, it fits a model for data solving:

w = arg n‘}\;n L(Xw, y) (1)

For a chosen loss function L, it assigns each feature i an importance score:

Ii =| Wj | (2)

The feature with the smallest I; is dropped, and the process repeats on the reduced set until only the
desired number of predictors remains. By successively culling the weakest variables, RFE yields a compact
bundle of features that drive the best performance. It is applied to rank all flow-level and port-level
features by importance, successively removing the least influential variable at each iteration. This iterative
pruning produced a concise set of predictors that fed into the RF model, improving training speed and
classification reliability.

o PCA for Feature Selection

Principal component analysis seeks to establish a new coordinate system in which the first axes capture as
much of the data's variance as possible [41,42]. After centering the data matrix X, one forms the
covariance:

Y = —X™X )
And solves the eigenvalue problem:
v =Av 4)

The Component and its corresponding eigenvalue A measure the variance in that direction. Ordering
these components by descending A and projecting X onto the top k eigenvectors produces a lower-
dimensional representation that retains the bulk of the original information while filtering out noise.
PCA was used to transform highly correlated throughput and duration metrics into orthogonal
components, retaining only the top three principal axes of the total variance proposed by the
methodology. By projecting the data onto these dimensions, noise and dimensionality are reduced while
preserving the core traffic patterns needed for accurate flow prioritisation. After performing feature
engineering, the data were partitioned into a training and testing set using stratified sampling on the label
to preserve class balance.

3.5Model Development: RF Model

RF modeling began by growing an ensemble of B decision trees, each trained on a different bootstrap
sample of the training data and, at every split, considering a random subset of features [43,44]. For a new
flow feature vector x, each tree b casts a vote fb(x), and the forest's final decision is the most frequent class
among all trees:

y = arg max¥p_; I(fy (%) = ©) (5)

Where 'T' is the indicator function. Key parameters such as the number of trees B, maximum tree depth,
and minimum samples per leaf were tuned via randomized search to maximize the Fl-score on the
validation set. In the proposed methodology, this bagging-and-feature-randomization approach reduces
overfitting, improves robustness to noisy measurements, and delivers stable flow-priority predictions
under varied network conditions.

3.6Hyperparameter Tuning: Bayesian Optimization

Bayesian optimization treated hyperparameter tuning as a sequential search guided by a surrogate model,
specifically a Gaussian process that predicted the validation Fl-score f(8) for any combination 8 of
parameters [45,46]. At each step, the algorithm chose the next candidate © by maximizing the Expected
Improvement (EI) acquisition function:

EI(6) = E[max (0, f(6) — f(67))], (6)

Where f(81) denotes the best Fl-score observed so far, and the expectation is taken over the Gaussian
posterior at 0. After evaluating the RF with those settings, the new result updated the Gaussian process,
refining its predictions. This loop continued until improvement plateaued, yielding tuned values for the
number of trees, tree depth, and leaf size that maximized classification performance with minimal trial
runs.
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Pseudo Code

Inputs:
* f(0): Validation Fl-score as a function of hyperparameters 0
¢ O: Search space for 0
* n_initial: Number of initial samples
¢ N _iterations: Total number of trials

1.Generate Initial Samples
Sample 04,...,0,_initial uniformly from ©
For each 6;, compute y; = f(0;)
2. Fit Surrogate Model
Use {(8;, yi)} to train a Gaussian Process (GP) that predicts f and its uncertainty
3. Iterative Optimization
For t = n_initial + 1 to N_iterations:
Define Expected Improvement acquisition:
EI(0) = E[max (0, f(B) - y_best)]
Where y_best = max{yx,...,y_{t—1}}
Select the next hyperparameters:
0_t = arg max{0€ O} EI(0)
Evaluate performance:
y_t=1(0_¢t)
Augment data:
Add (6_t, y_t) to the training set of the GP
Update GP surrogate with the new data
4. Return Best Setting
0* = arg max {i=1...N_iterations} y;

3.7SDN Controller
An SDN controller serves as the network's brain, periodically polling each switch for flow and port
statistics via OpenFlow requests and translating those raw counters into the feature vector x(t) [47,48].
Formally, at each interval t, the controller performs
x(t) = $(S(1) (7
Where S(t) is the set of all switch-reported metrics (packet counts, byte counts, durations, throughput),
and ¢ is the feature-extraction mapping. The RF model then produces a label:
y(©) = fre(x(1)), 8)
And the controller applies the decision rule.

) DROP_FLOW, §(t) = 1
a) =mEm) = {ALLOW_FLOW, 5 =0 ©)
Installing or withholding flow-modification rules accordingly. This closed-loop integration ensures that
each flow is evaluated and prioritized in real-time, allowing for optimal bandwidth utilization and rapid
mitigation of problematic traffic.
3.8ANOVA for Efficiency Assessment
One-way ANOVA was used to determine whether the mean values of key performance indicators, such
as throughput, latency, and packet loss, differed significantly across the test scenarios [49,50]. ANOVA
decomposes the total variability into "between-group" and "within-group" components and computes the

ratio of their mean squares:

MSpetween SSbetween/(k—-1)
F = MSwithin - SSwithin/(N-k), (10)
where k is the number of scenarios, N is the total number of runs, SS denotes sums of squares, and MS
is the corresponding mean squares. A high F value (with p<0.05) indicates that at least one scenario's
mean KPI differs from the others, prompting post hoc tests (e.g.\ Tukey's HSD) to pinpoint which pairs
are significantly different.

3.9Proposed Algorithm
In this section, the proposed algorithm for the proposed methodology is provided.

Algorithm 1: Mathematical Algorithm for SDN Efficiency Enhancement

1. Data Collection
For each polling instant t = 1, ..., T, obtain raw OpenFlow metrics
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S(t) = { pktcount;(t), bytecount;(t), dur;(t), ... }}1,
Exploratory Data Analysis (EDA)
Compute descriptive statistics for all flow-level metrics.
Assess label balance between benign and malicious flows.
Identify missing entries and assess data completeness.
. Feature Mapping
Apply the extraction mapping ¢ \phid to form feature vectors:

x() = ¢(S(V) € R

Where ¢ includes derived metrics such as: bytes_per_pkt =

wo 0 0 W

bytecount
DYTEEOT and flows_per_sec =
pktcount

flows
dur+dur_nsecx10~9°
Data Preprocessing
Handling Missing Values: For each feature j, if missing, then X; < median(x;)
Remove Duplicates: Discard samples with pktcount = 0 or dur = 0.
Outliers: Clip xj to the percentile range.

Encoding: One-hot encode all categorical entries (e.g., Protocol, switch ID).
Feature Engineering

RFE:

Fit linear model w = arg mv\i,n L(Xw,y)

" 0 \©o 0 0 O &

Compute feature importances I; =| wj |
» Remove the feature with the smallest. I;; repeat until dggg remain.

o PCA:
» Center data X € RNV¥IRFE compute T = tXTX

= Solve Zv = Av, select top p eigenvectors. V,, with Z&l A/ XA > 0.95

= Projec: Z =XV, € RN*P,

6. Data Split

Perform stratified sampling on labels y to obtain: {X¢rain, Virain {Xtest> Yiest } With ratios 70% and 30%.
7. RF Modeling

o Train B trees on bootstrap samples. Each tree b yields a vote f, (x).

o Aggregate by majority: §(x) = arg ng;{}zgzl I(f,(x) = ©).

Hyperparameter Tuning (Bayesian Optimization)
Define surrogate GP over 8 = (B, depth, leaf) to predict f(0).
[teratively select: 0, = arg maxg EI(0); where EI(8) = E[max (0, f(6) — f*)]
Update GP with each new (0, f(8;)) until convergence to 6*.
Controller Integration
At each t, compute §(t) = frp(x(t)).
DROP_FLOW, §(t) = 1
ALLOW_FLOW, §(t) = 0’
10.Performance Evaluation
o Measure KPIs {throughput, latency, loss} under each scenario (baseline vs. RE-driven).
11.ANOVA Testing
o Compute sums of squares: SSpetween aNd SSwithin -
o Calculate: F = SSpetween (K — 1).
o If p<0.05, conclude that at least one scenario differs significantly.

0O 00 0 0 ™

Apply action: a(t) = {

This algorithmic framework ensures a mathematically grounded, end-to-end path from raw SDN metrics
to statistically validated efficiency improvements.

4. RESULTS AND DISCUSSION

This section presents the outcomes of the proposed Random Forest-based model for improving SDN
efficiency. The results demonstrate the effectiveness of feature selection and dimensionality reduction
techniques, as well as the impact of Bayesian-tuned hyperparameters on model performance. Real-time
integration into the SDN controller enabled smarter flow decisions, resulting in reduced network latency
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and packet loss. Comparative evaluations confirm improved classification accuracy and responsiveness
compared to the baseline approach.

4.1Hyperparameter

Table 1 highlights the key settings used to fine-tune the Random Forest model applied in the SDN
framework. These parameters were carefully adjusted using Bayesian Optimization to improve the model's
accuracy, responsiveness, and overall network performance. Each entry represents the typical value found
effective during experimentation.

Table 1: Key hyperparameters used for Random Forest model tuning.

Hyperparameter Range
Number of Trees 175
Maximum Tree Depth 20
Minimum Samples per Leaf 4
Bayesian Optimization Runs 25

4.2Evaluation Metrics

The effectiveness of the Random Forest model in the SDN setup was measured using several performance
metrics. These metrics help in understanding how well the model makes decisions and how it impacts
overall network performance.

Accuracy: Represents the proportion of correctly predicted outcomes among the total number of cases

evaluated.
TP+TN

T P+TN+FP+FN (11)

Accuracy =

Where

TP: True Positive

TN: True Negative

FP: False Positive

FN: False Negative

Precision: Measures the percentage of true positive predictions among all positive predictions made by

the model.
TP

TP+FP (12)
Recall: Indicates how many actual positive instances were correctly identified. It reflects the model's

sensitivity.
TP
Recall = TPTFN (13)

F1-Score: Provides a balanced average between precision and recall, especially useful in cases of

imbalanced classes.
PrecisionxRecall

Fl=2X———— (14)

Precision+Recall
4.3Result analysis

This section presents the outcomes of the proposed Random Forest-based model for improving SDN
efficiency. The results demonstrate the effectiveness of feature selection and dimensionality reduction
techniques, as well as the impact of Bayesian-tuned hyperparameters on model performance. Real-time
integration into the SDN controller enabled smarter flow decisions, resulting in reduced network latency

Precision =

and packet loss. Comparative evaluations confirm improved classification accuracy and responsiveness
compared to the baseline approach.

4.3.1 Data Preprocessing

The correlation heatmap, illustrated in Figure 3 the relationships between features in the dataset, with
color intensity indicating the strength of correlation. Strong positive correlations are observed between
features like pktcount and bytecount, as well as among tx_kbps, rx_kbps, and tot_kbps, indicating
potential redundancy. Moderate correlations exist between several features and the target label, suggesting
their relevance for prediction. This analysis helped in identifying highly correlated or less informative
features, guiding effective preprocessing decisions to enhance model accuracy and efficiency.
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Figure 3: Correlation heatmap of dataset features for preprocessing.

4.3.2 Feature Engineering

Figure 4 displays the top 10 features selected through Recursive Feature Elimination (RFE) based on their
importance scores. Features like Pairflow and Protocol_UDP were identified as the most influential in
predicting flow behavior, while others, such as pktcount, bytecount, and tot_kbps, also made meaningful
contributions. This selection helped reduce dimensionality and retain only the most relevant attributes

for training the model, improving both performance and interpretability.
Top 10 Feature Importances {RFE )

pktcount

bytecount

byteperflow

Pairflow

Feature

tx_kbps
x_kbps
tot kbps

src_10.0.0.18

Protocol_UDP

Importance (|weight]|)
Figure 4: Top 10 important features selected using RFE.

Figure 5 illustrates the amount of variance captured by each of the first five principal components after
applying PCA. The individual variance curve indicates that the first component contains the most
information. In contrast, the cumulative curve reveals that approximately 85% of the total data variance
is retained by combining the first five components. This confirms that PCA successfully reduced
dimensionality while maintaining most of the meaningful patterns, making the data more manageable

and improving model performance during training.
O PCA - Variance Explained

—e— Individual
0.8 —m— Cumulative

Explained Variance Ratio

1 2 3 4 5
Principal Component
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Figure 5: Explained variance ratio of the first five principal components using PCA.

4.3.3 RF Modeling

Figure 6 displays the progress of Bayesian Optimization over 25 iterations, focusing on cross-validated
accuracy. Throughout the tuning process, the model consistently achieved high accuracy, with values
ranging from 0.988 to 0.990, indicating stable performance. A temporary dip to 0.962 was observed at
iteration 10, followed by a quick recovery. The best accuracy recorded during the process was 0.990,
confirming that Bayesian Optimization effectively identified a well-balanced combination of
hyperparameters that enhanced model reliability and generalization.

[0 Bayesian Optimization Progress: Accuracy over lterations
0.990
0.985
0.980

0.975

0.970

Cross-Validated Accuracy

0.965

1 2 3 4 5 (5] 7 8 9 10 11 12z 13 14 15 16 17 18 19 20 21 22 23 24 25
lteration

Figure 6: Accuracy progression across iterations during Bayesian Optimization.

The confusion matrix in Figure 7 displays the classification performance of the Random Forest model.
Among the normal flows, 18,200 were correctly classified, with only 113 incorrectly predicted as
abnormal. Likewise, 11,294 abnormal flows were accurately identified, while just 22 were misclassified as
normal. These results reflect high model accuracy with minimal misclassifications, highlighting the
model's effectiveness in detecting flow behavior within the SDN framework.

Confusion Matrix Random Forest

17500

15000

12500

10000

Actual

— 7500

— 5000

— 2500

(0] 1
Predicted

Figure 7: Confusion matrix.

Figure 8 illustrates the variation in accuracy of the Random Forest model with the number of trees used.
The test accuracy remains consistently high, peaking around 75 to 100 trees, while the out-of-bag (OOB)
accuracy for training also improves steadily before stabilizing. Beyond 100 trees, further increases bring
only marginal gains. This result suggests that an optimal range of 75 to 100 trees balances model
performance and computational efficiency without risking overfitting.
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Figure 8: Accuracy trend of Random Forest with varying number of trees.

Figure 9 shows the ROC curve for the Random Forest model, highlighting its ability to distinguish
between normal and abnormal flows. The curve reaches the top-left corner, indicating a high true positive
rate with a very low false positive rate. The Area Under the Curve (AUC) is 1.00, indicating excellent
classification performance. This result confirms that the model is highly effective in identifying flow

behavior with near-perfect accuracy.
ROC Curve
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Figure 9: ROC curve with AUC indicating excellent classification performance.

4.3.4 Classification Table

The classification results, as illustrated in Figure 10, demonstrate the high effectiveness of the proposed
methodology in identifying SDN traffic patterns with remarkable accuracy. The model achieved a
precision and Fl-score of 100%, indicating that all predicted abnormal flows were correct and the model
maintained a perfect balance between precision and recall. With a recall rate of 99%, the system was able
to detect nearly all actual abnormal flows, missing only a small portion. Additionally, an overall accuracy
of 99.90% highlights the model's strong generalization performance across different traffic types. These
results confirm that the integration of feature engineering, Random Forest modeling, and Bayesian
hyperparameter tuning contributed significantly to the model's exceptional performance in the SDN
environment.
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Figure 10: Classification performance.

4.3.5 Controller Integration

Figure 11 illustrates the controller's real-time decisions for a sequence of network flows, based on
predictions made by the Random Forest model. Green dots represent flows permitted by the controller.
In contrast, red dots indicate those that were dropped. The model accurately distinguishes between
normal and abnormal traffic, enabling the controller to respond quickly and appropriately. This
consistent decision-making pattern reflects the effectiveness of integrating the trained model into the

SDN environment for intelligent traffic control.
[1 Controller Decisions Over Time (based on RF Predictions)
DROP { X J [ B @ ( X ] L] e o o 9 o o ©
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Figure 11: Controller actions over time based on Random Forest predictions.

4.3.6 ANOVA

Analysis of Variance (ANOVA) is a statistical method used to determine whether there are significant
differences between the means of multiple groups. Table 2 presents the ANOVA results for key
performance metrics: throughput, latency, and loss rate. The F-values 597.29 for throughput, 98.96 for
latency, and 18305.17 for loss rate indicate considerable variation between the tested scenarios. With all
p-values well below 0.05, the results confirm that the differences are statistically significant, highlighting
the effectiveness of the proposed SDN model.

Table 2: ANOVA Results for SDN Performance Metrics

Metric F-Value p-Value

Throughput 597.2928 4.1365e-131

Latency 98.9674 2.7040e-23

Loss Rate 18305.1665 0.0000e+00
4.3.7 KPI

Table 3 presents the Key Performance Indicators (KPIs) comparing the proposed Random Forest (RF)
Controller with the baseline approach. The RF Controller significantly outperforms the baseline,
achieving a much higher throughput of 1.07 trillion compared to 472 billion. It also records a lower
average latency of 325.87 seconds versus 351.85 seconds and completely eliminates packet loss, reducing
the loss rate to 0.00% from 38.19%. These results demonstrate the superior efficiency and reliability of
the proposed model.

Table 3: KPI Comparison Between RF Controller and Baseline

Metric RF Controller Baseline
Throughput 1,078,554,084,092 472,206,395,724
Avg. Latency (s) 325.87 351.85

Loss Rate (%) 0.00% 38.19%

4.4Comparative analysis

Table 4 presents a comparative analysis of various SDN-based traffic classification approaches. In
comparison, Serag et al. (2025) [28] implemented an SDN-based classification using several machine
learning models, where the XGBoost classifier attained a peak accuracy of 99.97% with an execution time
of 3.11 seconds. Salau and Beyene (2024) [29] utilized both supervised and unsupervised learning within
the SDN controller environment to classify DNS, Telnet, Ping, and Voice flows, reporting a 99.81%
accuracy with the Decision Tree algorithm under both offline and real-time conditions. Kumar et al.
(2022) [34] proposed a CNN-driven SDN load-balancer that achieved 98.94% training accuracy and
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99.22% validation accuracy, along with a low loss rate of 3.61%. The proposed model in this study, based
on a Random Forest (RF) classifier optimized through Bayesian tuning, achieved the highest accuracy of
99.99%, surpassing all existing methods.

Table 4: SDN Classification Accuracy Comparison

Authors Models Accuracy
Serag et al. (2025) [28] XGBoost 99.97%
Salau and Beyene (2024) [29] | Decision Tree 99.81%
Kumar et al. (2022) [34] Convolutional Neural Network (CNN) | 99.22%
Proposed Model Random Forest (Bayesian Optimized) | 99.99%

5. CONCLUSION AND FUTURE WORK

Enhancing the efficiency of Software-Defined Networks (SDNs) is necessary to meet the rising demands
of today's data-intensive applications. In this research, a machine learning-based approach was suggested
through the incorporation of a Bayesian-optimized Random Forest (RF) model within the SDN control
plane. The approach utilized strong data preprocessing, efficient feature selection via RFE and PCA, and
well-defined hyperparameter tuning to ensure reliable model performance. The real-time application of
the learned model enabled precise flow classification, intelligent traffic management, and informed
decision-making within the controller. Experimental findings showed that the model was able to
outperform baseline systems significantly, achieving 99.99% accuracy and eliminating packet loss
completely. Through ANOVA analysis, key performance improvements in throughput, latency, and loss
rate were found to be statistically significant, further supporting the practical value of the approach. This
research provides a solid foundation for incorporating intelligent decision-making into network
environments. Extensions for the future can involve evaluating the model across distributed SDN systems,
real-time anomaly detection, and scaling the system for encrypted or obfuscated traffic streams. Using
transformer-based or hybrid deep learning models can also enhance long-term prediction and improve
knowledge of traffic patterns. In addition, the use of explainable Al methods would make the internal
reasoning of the model more understandable to network administrators, enhancing trust and
manageability for practical deployments.
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