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Abstract 
Surgical precision is greatly improved after brain tumors are accurately diagnosed and traced in the operating room. Hyperspectral 
Imaging (HSI) is a new method that discriminates between healthy tissue and suspicious areas in real time according to their spectral 
signatures. This paper compares the performance of five deep learning models, i.e., CNN, 3D CNN, Vision Transformer (ViT), U-Net, 
and the SpecTralUNetFormer, introduced in this paper, on the Hyperspectral Imaging Benchmark for Intraoperative Brain Tumor 
Detection dataset. The dataset has 62 hyperspectral images captured from 34 subjects, 128 spectral bands from 400 nm to1000nm. 
The SpecTralUNetFormer proposed here combines 3D CNNs for learning spectral-spatial features, a U-Net encoder-decoder for spatial 
localization, and a Transformer bottleneck for learning long-range dependencies. Data preprocessing includes normalization, PCA-based 
spectral band reduction, and data augmentation. The models are tested for classification accuracy, AUC, and computational efficiency, 
and a comparative analysis of the various architectures is shown. The experiments show that SpecTralUNetFormer performs better than 
conventional architectures with improved segmentation accuracy and improved generalization in hyperspectral brain tumor detection. 
The objective of this work is to improve intraoperative decision-making during surgery by using deep learning methods for real-time tumor 
detection, ultimately resulting in improved surgical accuracy and patient outcomes. 
Keywords: Hyperspectral Imaging, Brain Tumour Detection, Deep Learning, CNN, RNN-LSTM, Vision Transformer, U-Net, 
Intraoperative Imaging. 
 
INTRODUCTION 
The detection and treatment of brain tumors is a complex problem in the field of neurosurgery, as it requires care and 
precision in regard to both the timing and accuracy of treatment. Conventional imaging devices, such as Magnetic 
Resonance Imaging (MRI) and Computed Tomography (CT), do offer valuable imaging information, yet they fall short of 
offering real-time, detailed spectral data that is critical during operations. Hyperspectral Imaging (HSI) is a non-invasive 
imaging technique that has come into prominence recently and is effective at telling healthy tissue apart from malignant 
tissue due to its ability to capture detailed spectral signatures. With deep learning algorithms, the integration of HSI 
imaging techniques can significantly improve Tumor detection by utilizing superior feature extraction and classification-
methods. Convolutional neural networks (CNN), recurrent neural networks (RNN), and Vision Transformers (ViT) 
approaches have been successful in analyzing medical images. These models outstand when it comes to the extraction of 
spatial, spectral, and contextual features as such models are, therefore, ideal candidates for the most challenging 
hyperspectral data. Nonetheless, it is still an open research problem to discover which deep learning architecture is the 
most suitable for brain Tumor-analysis. The Hyperspectral Imaging Benchmark for Intraoperative Brain Tumour 
Detection dataset provides a standardized framework for evaluation of diverse deep learning approaches. It is composed 
of 62 hyperspectral images from 34 patients and the spectral range is from 400 to 1000 nm, having 128 spectral bands, 
therefore making it possible to study in detail the classification performance for the Tumour. 
This study is aimed at evaluating the performance of five of the latest deep learning models on the hyperspectral imaging 
data for the real-time detection of brain Tumours. The main objects of this research are to assess the proposed CNN, 3D 
CNN, Vision Transformer, and U-Net models in processing hyperspectral brain imaging data. To help determine the 
effects of spatial and spectral feature extraction on classification accuracy. To identify the advantages and disadvantages of 
these models about hyperspectral data and further direction of future research in Tumour detection during operations. 
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The rest of this paper is organized as follows. Related works of deep learning models for hyperspectral imaging and medical 
image classification are presented in Section 2. The data set and pre-processing techniques adopted in the present study 
are explained in Section 3. Section 4 throws light on the methodology in which the model architectures along with the 
training strategies have been discussed. Section 5 provides an overview of the experimental set-up followed by the 
evaluation metrics. The results and comparative analyses of the models are discussed in Section 6. 
 
RELATED WORKS 
CNNs has proven strong ability to identify and extract spatial patterns in images in both traditional remote sensing and 
hyperspectral image classification tasks. The convolutional layers in CNNs perform exceptionally well at recognizing spatial 
patterns and features such as shapes and textures, and hierarchical structures on scales within the visual field [1]. There 
have been several studies that have explored creative uses of CNNs to expand on detection capabilities of spatial patterns. 
The hierarchical multi-scale convolutional neural networks (HMCNN-AC) method focuses on multi-scale image patches 
to take advantage of spatial information at multiple scales, which allows for the detection of a variety of object shapes and 
sizes throughout the image plane [2]. The DHCNet approach for hyperspectral image classification applies deformable 
convolutional sampling locations, which allows for adjustments and clashes to complex spatial contexts. Some researchers 
have explored different approaches of merging CNNs with other methods to improve spatial pattern recognition. For 
example, combining the local binary patterns (LBP) features with a CNN demonstrated an increase in classification 
performance, because the LBP is very effective at extracting spatial features [4]. As well, morphological functions with 
CNNs can potentially provide more accurate representation of nonlinear information, while retaining key features of 
hyperspectral images such as borders, shape, and structural detail [5]. 
In practical application, RNN-LSTMs have shown promising results when applied to hyperspectral data as sequential 
spectral data for a classification task. The models can learn the spectral correlations and dependencies present in 
hyperspectral images (HSI), and successfully increase classification accuracy. The conventional method for incorporating 
spectral signatures as ordered sequences, only accounts for one-directional correlation to nearby bands in the direction of 
the wavelengths. Nonetheless, a bidirectional long-short term memory (Bi-LSTM) network can be able to explore the 
bidirectional nature of the spectral correlation of an HSI image if every band image contains relationships with a prior 
band image and the subsequent band image [6]. This allows for a deeper exploration of the spectral content. There have 
been some conversations on the possibility of hybrid developments of neural networks utilizing the positives of other 
neural networks' architecture. The convolutional recurrent neural networks (CRNN) has been developed to first learn 
some middle-level, locally invariant features through the convolutional layers from the input data, and then spectrally 
contextualized information utilizing the recurrent layers [7]. The authors can confidently state these methods have 
improved classification performance compared to standard methods and other methods of state-of-the-art deep learning 
for hyperspectral data classification. RNN-LSTMs have been very effective in handling hyperspectral data as time series 
data in a sequential manner for its spectral content. The capability of these models to model long-range dependencies and 
bidirectional relationships also makes them legible to apply to HSI classification problems. Further still, when we can also 
take advantage of the spatial information with either an attention mechanism or through hybrid models these models will 
likely help the analysis of hyperspectral images (Mei et al., 2022; Wu & Prasad, 2017).  
3D Convolutional Neural Networks (CNNs) have shown a great ability to extract spatial and spectral features from 
volumetric data in a unified manner. For instance, in terms of hyperspectral image (HSI) classification, 3D CNNs have 
enjoyed great successes due to their demonstration of full usage of the 3D spatial input of the HSI through the ability to 
regress all of the 3D content in one pass (Xu et al., 2020; Yang et al., 2020). In essence, 3D CNNs can considerably lessen 
spatial redundancy as well as sufficiently decrease the receptive field size to diminish the drawbacks of classic 3D CNNs in 
HSI classification [8]. It is important to emphasize that although 3D CNNs are superior in extracting spatial-spectral 
features, they may also introduce large-scale parameters and complexity to networks. To combat this issue, some researchers 
proposed hybrid methods to merge the extraction of both spatial-spectral features as well as total computational cost, by 
leveraging both 2D and 3D CNNs [9]. Attention mechanisms have also been added to focus on relevant feature areas and 
relevant spectral bands to potentially further improve classification results (Liang et al., 2023; Xu et al. 2020). 3D CNNs 
have made great strides in the area of volumetric image segmentation and computer-aided detection of medical imaging. 
For 3D MRI prostate segmentation, a fully convolutional neural network volumetric that can predict segmentation for the 
whole volume at once has been proposed [10]. In the instance of lung nodule detection, a 3D CNNs based system elevated 
the state-of-the-art in detection by combining not only data-driven features but also some useful a priori knowledge [11]. 
These examples clearly illustrate the potential of 3D CNNs to handle challenging spatial relationships in medical imaging 
data and represent a significant advantage to standard 2D methods in volumetric contexts. 
Hybrid 2D-3D CNN methods leverage processing advantages to enhance computational ability for hyperspectral image 
classification from both 2D and 3D CNNs, without the disadvantages of either 3D or 2D CNNs. The 3D CNN component 
of hybrid models enables the means to extract spatial-spectral features from a set of stacked spectral bands at the same time 
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without losing the 3D nature of hyperspectral data (Roy et al., 2019; Yang et al., 2020), maximizing the capability of the 
model to obtain the spatial-spectral information necessary for accurate classification. The 2D CNN represents abstract 
spatial information which supports the overall feature representation (Chang et al., 2022; Roy et al., 2019). Hierarchical 
grouping of both abstract 2D and 3D CNNs is assigned a lower overall requirement for computation than the number of 
operations required for the overall 3D CNN (Roy et al., 2019; Yu et al., 2020). For example, the HybridSN model 
examined in [12] utilizes a spectral-spatial 3D-CNN model along with a spatial 2D-CNN model which simplifies the model 
while still retaining strong accuracy results for classification. As well, the Reduced 2D-3D CNN model evaluated in [13] 
utilizes a 2D convolution block to extract spatial features as well as a 3D convolution layer to correlate spectral bands, 
simply as a way to seek out the compromise between time taken to extract features from the raw hyperspectral data, but 
also the time taken to process the classification of the spectral data. Hybrid 2D-3D CNN methods are a promising option 
for hyperspectral image classification because they combine spatial and spectral information with a lower computation 
cost. When experimenting on standard datasets (Chang et al., 2022; Roy et al., 2019; Yang et al., 2020), they often provide 
better performance than just traditional 2D or just 3D CNNs. 
Vision Transformers (ViTs) have made significant strides in medical imaging tasks due to their uniquely powerful capacity 
to learn long-range dependencies with self-attention mechanisms (Ali et al., 2023; Naseer et al., 2021). ViTs have been 
strong competitors to convolutional neural networks (CNNs) for semantic segmentation tasks in medical image analysis 
because they can naturally represent rich global dependencies [14]. Interestingly, ViTs have been robust to extreme 
occlusions, perturbations, and domain shifts for medical imaging tasks. When random occlusions affect 80% of the image, 
ViTs can continue to obtain even 60% top-1 accuracy on ImageNet examples [15]. This is largely due to the self-attention 
mechanism that provides ViTs with dynamic, flexible receptive fields for various image conditions. 
Vision Transformers (ViTs) and Convolutional Neural Networks (CNNs) have varying levels of computational efficiency 
when relating to medical imaging, and each has its strengths and limitations. ViTs appear to provide relatively better 
performance for capturing long-term dependencies, global context, and the overall different types of information 
important to medical image analysis (He et al., 2023; Takahashi et al., 2024). However, these models consistently show 
higher computational costs. The self-attention process in ViTs has a quadratic computational cost which is an issue, 
especially for higher resolution feature maps [16]. From this arbitrary computational cost, we may be actually better off 
with a CNN for any real-world applications [17]. A few studies have interestingly provided a methods for ViTs to be 
efficient. For example the H2Former model outperforms TransUNet with 30.77% fewer parameters and 59.23% fewer 
FLOPs on the KVASIR-SEG dataset. Likewise, EdgeViTs have been designed to match lightweight CNNs in on-device 
efficiency, prioritizing real-world metrics such as latency and energy efficiency over mere FLOPs or parameter numbers 
[18]. In summary, although ViTs tend to perform better in medical imaging tasks, they tend to consume more 
computational resources compared to CNNs. Nonetheless, current research is aimed at creating more effective ViT 
architectures, and the hybrid models integrating the advantages of both ViTs and CNNs are being explored as potential 
solutions for achieving the trade-off between performance and computational cost in medical image analysis (Guo et al., 
2022; Pan et al., 2022).U-Net and its variants, including ResUNet, have been extensively used for pixel-wise segmentation 
to identify Tumour areas from normal tissue in medical imaging. Such models have proven noteworthy performance on 
various imaging modalities and Tumour types. For segmentation of brain Tumour, approaches based on the U-Net have 
proved phenomenal. A rescaled U-Net architecture reported 99.4% accuracy on BraTS 2020 dataset more than other deep 
learning architectures [19]. Another model, the ResUNet++ model being an enhanced iteration of ResUNet, reached high 
dice coefficient values of 81.33% and 79.55% for segmenting polyp in colonoscopy images [20]. Surprisingly, certain 
studies have integrated U-Net with other methods to provide better performance. The SGEResU-Net model with residual 
blocks and spatial group-wise enhance attention blocks integrated into 3D U-Net architecture reported dice values of 
83.31%, 91.64%, and 86.85% in improving Tumour, whole Tumour, and Tumour core respectively on BraTS 2021 
dataset [21]. Another method, the Spherical Projection-based U-Net (SPU-Net), not only enhanced segmentation accuracy 
but also gave a means of quantifying segmentation uncertainty in glioma detection [22]. 
 
DATASET DESCRIPTION 
This database, reported in [23], is composed of 61 HS images of 34 patients with both primary (high-grade and low-grade) 
and secondary Tumours. It is shown in the study that HSI with a conceived processing scheme reaches a best median 
macro F1-Score of 70.2 ± 7.9% on the test set based on both spectral and spatial information [23]. Surprisingly, though 
this dataset sets a standard for in-vivo brain Tumour detection, other research has yielded different outcomes. For example, 
[24] has reported a better overall accuracy of 80% in multi-tissue classification using deep learning in glioma surgery. 
Further, [25] had a still higher average accuracy of 91.36% for the detection of head and neck Tumours in animal models 
using convolutional neural networks (CNN). This data set was obtained by a collaborative process by institutions like the 
University of Las Palmas de Gran Canaria and the University Hospital Doctor Negrin of Gran Canaria, Spain. Data was 
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recorded intraoperatively by a customized HS imaging system during in-vivo imaging of brain tissues for real surgical-
interventions. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: Synthetic RGB Images Showing Visual Differences Between Surface-Layer and Deep-Layer Brain Tumors During 
Neurosurgical Procedures [23] 
 

 
Fig. 2: Workflow of Hyperspectral Data Acquisition, Intraoperative Positioning, Tumor Resection, and Image Labeling 
for Brain Tumor Diagnosis and Surgical Guidance [23] 
 
Table 1: Key Characteristics of the Intraoperative Hyperspectral Imaging Dataset Used for Brain Tumor Detection and 
Classification 

Feature Description 
Number of Images 62 hyperspectral images 
Number of 
Patients 34 different patients 
Spectral Range 400 to 1000 nm 
Spectral Bands 128 spectral bands 

Spatial Resolution 
High-resolution per pixel spectral 
data 

Data Format 
Available in MATLAB and standard 
image formats 

 
Table 2: Detailed Metadata Annotations Associated with the Hyperspectral Brain Tumor Imaging Dataset 

Metadata Attribute Description 

Classes 
4 primary classes (TT, NT, 
BV, BG) 

Tumour Tissue (TT) Labeled regions of Tumour 

Normal Tissue (NT) 
Labeled regions of normal 
brain tissue 

Blood Vessels (BV) Labeled blood vessels 
Background (BG) Background or artifacts 

Tumour Type 
Primary or secondary 
Tumours 
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Tumour Grade 
Low-grade or high-grade 
Tumours 

Histopathological 
Diagnosis 

Specific diagnoses based on 
pathology 

 
 
PROPOSED METHODOLOGY 
A. Data Acquisition 
The imagery used within this study is a significant advancement in brain imaging technology and has abundant 
information available for detection and processing of Tumour. Hyperspectral imaging's ability to detect light over a wide 
range of wavelengths (400-1000 nm) can provide a rich spectral fingerprint of brain tissues. Combination of rich spectral 
information with high-resolution spatial information can enable subtle discrimination of Tumour from non-Tumour 
tissues beyond the imaging capability of traditional imaging modalities. Precise marginal annotation of every Tumour 
image provides a required platform for machine learning of intricate computational models to prepare them to absorb 
and recognize subtle spectral signatures that are available in neoplastic tissues. The value of this data is not merely that it 
is technologically advanced; it also has profound implications for improving neurosurgical success and understanding 
brain Tumours. By providing abundant data in the form of high-quality annotated images, this database provides 
algorithms for detection of Tumour with the capability to enhance accuracy and reliability. These computational models 
have been trained with such specificity and completeness; they possess the potential to aid neurosurgeons in real-time, 
during surgery, to enhance their ability to identify and resect Tumour tissue. The high-resolution spectral data available in 
these images also have the ability to yield new information about the biochemical composition of brain Tumours, which 
could lead to new diagnostic markers or therapeutic targets. The integrity and quality of this data are of paramount 
importance as it not only impacts the efficacy of the computational models, but also possibilities for breakthroughs that 
will help propel advances in neuro-oncology. 
B. Preprocessing 
Preprocessing is an important step in raw hyperspectral data handling for deep learning models built using the most 
applicable methods. The spectral variations are normalized to correct reflectance values on the same scale to reduce 
illumination and sensor noise variation among samples. Dimensionality reduction is achieved using Principal Component 
Analysis (PCA) reducing the data while also reducing computational load with the potential of losing useful spectral 
information. Next, we apply methods of data augmentation consisting of flipping, rotation, and spectral shifting to increase 
the generalizability of the model while reducing the risks of overfitting. The last step involves partitioning the dataset into 
three distinct units: 80% for model training, 10% for validation, as well as 10% for testing, to facilitate proper training 
and testing of the model on unseen data. These preprocessing operations are critical towards the improvement of the 
quality and reliability of hyperspectral data analysis. Spectral normalization procedures are employed for the elimination 
of inconsistencies in the dataset, with the aim of ensuring higher comparability in different samples, as well as acquisition 
techniques. The utilization of PCA as a method of data dimensionality ensures not only reduced computational loading, 
but also identifies the most critical spectral features, separating those of importance. Data augmentation techniques are 
critically crucial in expanding the dataset artificially, later exposing the model to a variety of situations to increase its 
generalization capability. Proportionate division of the dataset ensures that an extensive dataset trains the model 
adequately, as well as being validated through a different set for hyperparameter optimization, thus ultimately being 
validated using entirely unseen data to justify an accurate measure of its behavior in real-world applications. 
C. Deep Learning Models 
In this section some of the standard deep learning models are discussed: 
CNNs are a unique type of multi-layer neural networks that have been designed to detect visual patterns in pixelated 
images [32]. In CNN, "convolution" is an arithmetic operation that takes two functions and produces a third function by 
multiplying them, determining how one function's shape can be transformed by the other. In simpler terms, CNN does 
matrix multiplication of two image representations to get an output that extracts information from the image. CNN is a 
neural network like any other neural network, but the unique aspect is the convolutional layers, which introduce an 
element of complexity in the overall framework [33]. Convolutional neural network contains a diverse set of layers, such 
as convolution layers, pooling layers, and fully connected layers. 
At the heart of the CNN, there lies the convolutional layer. This robust layer utilizes the convolutional filters, or kernels, 
on the input data to identify the features of the edges, the textures, or the patterns. The filters, while relatively small in 
size relative to the input data, scan the entire input with a defined stride. The filter, at every position, does element-wise 
multiplications with the corresponding input elements, and then calculates the sum and generates a feature map. The 
feature map can be represented as follow: 
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𝑓(𝑖, 𝑗) = 𝛴𝛴(𝑙(𝑖 + 𝑚, 𝑗 + 𝑛) ∗ 𝑘(𝑚, 𝑛) 
Where:𝑓(𝑖, 𝑗) 𝑖𝑠 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑖, 𝑗) 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝. 
l( i+m, j+n) is the value at position (i+m, j+n) in the input data. 
K(m,n) is the value at position (m,n) in the convolutional filter. 
 𝛴𝛴 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑜𝑣𝑒𝑟𝑎𝑙𝑙  

𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 (𝑚, 𝑛) 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑎𝑙 𝑓𝑖𝑙𝑡𝑒𝑟. 
Pooling layers are crucial in reducing the spatial dimension of feature maps with the retention of important information. 
Pooling layers help reduce computational complexity and overfitting. The most common method is max pooling, where 
the largest value within a small region (pooling window) is retained while the rest is discarded. Max pooling downsampling 
is very efficient in preserving the most informative features of the feature map. After multiple convolutional and pooling 
layers, one or more fully connected layers are often a part of the CNN model architecture. The fully connected layers 
enable each neuron from the previous layer to connect with every neuron in the current layer, thus enabling a regular 
neural network architecture. The fully connected layers enable learning of global relationships as well as predictions from 
feature learning in the previous layers. The output layer is the final layer of the CNN model. For classification tasks, this 
layer typically consists of neurons with the same number of classes to be predicted. The output of these neurons is the 
confidence of the model in classifying the input data into each particular class. 
During training, the CNN layers work together by forward propagation to determine the best set of weights and biases 
that minimize the model's loss on the given task. The learning is achieved via backpropagation and the optimization 
algorithm, which updates the model's parameters iteratively based on the gradients of the loss function with respect to the 
model's parameters. 
 
RNN-LSTM  
Long Short-Term Memory (LSTM) is a unique type of Recurrent Neural Network (RNN) designed to overcome the 
vanishing and exploding gradient problems experienced with standard RNNs [26]. Importantly, LSTM-RNNs have seen 
improved performance than deep neural networks (DNN) with various speech recognition and language identification 
tasks (Liu et al., 2016; Zazo et al., 2016). LSTM-RNNs have been remarkably successful in modeling the sequential nature 
of data while maintaining long-term dependencies [28]. In fact, LSTM-RNNs have shown success in variety of applications 
such as speech recognition, natural language processing, time series predictions, and even in autonomous driving [28]. It 
is worth mentioning that speech recognition models based on LSTM-RNNs have achieved state-of-the-art performance 
while still reporting decent performance with small models, fast convergence, and efficient use of model parameters 
(Beaufays et al., 2014; Sak et al., 2015). LSTM-RNNs have showed that they are extensible across many applications. For 
example, LSTM-RNN based regression modeling approach provides a superior mapping of noisy speech features to clean 
features in a speech enhancement setting when accounting for long-term acoustic context versus DNN-based methods 
[28]. Deep LSTM-RNN models in conjunction with linear regression models have produced state-of-the-art performance 
for traffic matrix prediction [29]. They are powerful and flexible models for sequence model tasks. They are attractive 
models in the machine learning space because they can handle long term dependencies and have generated improved 
performance across a large range of applications. However, the challenges remain related to their practical implementation 
on hardware due to high storage and computational costs [30]. Research is still ongoing to enable LSTM-RNN models to 
be less expensive and more effective - such as creating cost-effective versions [31] adding attention mechanisms, and hybrid 
models [27]. 
 
3D CNN 
Three-dimensional Convolutional Neural Networks (CNNs) are a general-purpose technique in health care image analysis, 
providing ten thousand benefits over conventional two-dimensional CNNs for volumetric data. In this implementation, 
utilizing a network designed for three-dimensional medical image analysis, meaning three-dimensional image analysis from 
datasets, images can consist of computed tomography (CT) scans, waves of magnetic resonance imaging (MRI) scans, 
Angiography, and endoscopy. These are definitive forms of spatial reasoning or decision making in three-dimensional 
space (Huang et al., 2017; Singh et al., 2020). CNNs have outperformed, in terms of performance, opportunities in various 
medical imaging contexts such as the classification, segmentation, detection, and localization of lesions where 3D 
convolutional networks have produced a larger accuracy (34). For example, a lung nodule detection task, a study produced 
a state-of-the-art performance compared to CT nodule classification baselines produced by shallow learning (35). Another 
example of brain tumor classification, a study showed high proportions of accuracy using many classes of tumors (glioma, 
meningioma, and pituitary tumors) (36). One of the significant advantages of three-dimensional CNNs is the better ability 
to extract spatio-temporal features within volumetric data compared to two-dimensional CNNs (37). Particularly and 
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importantly in medical imaging, since knowing the spatial relationships between structures are important for accurate 
diagnostics. For example, a 3D CNN was used to efficiently screen head CTs for acute neurological events, decreasing 
diagnosis time from minutes to seconds with a sensitivity of >88% [38]. However, the use of 3D CNNs with medical 
imaging does come with a number of challenges. Most notably, the demand for large datasets that have 3D annotations, 
which are typically less available when compared to 2D image datasets [39]. In response to this, researchers have explored 
transfer learning approaches and 2D/3D hybrid architectures so that pre-trained 2D models may still be reused; while still 
being able to capture valuable 3D spatial cues [39]. Lastly, highlighting the need for minimizing resource consumption of 
3D CNNs due to their computational efficiency is of a common issued researched area, since their models are generally 
even more, resource-hungry than a 2D alternative [37]. 
Vision Transformers 
Vision Transformers (ViT) present a significant alternative to Convolutional Neural Networks (CNNs) for computer vision 
tasks, and they have achieved remarkable performance and generality (Naseer et al., 2021; Wang et al., 2025). ViTs also 
utilize self-attention to interpret images as a sequence of patches, which allows for the easy capture of both global and local 
information [40]. One of the most attractive strengths of ViTs is their robustness to catastrophic occlusions, distortions 
and domain shift. For instance, ViTs can maintain as much as 60% top-1 accuracy on ImageNet even when 80% of the 
contents of the image are randomly occluded. More importantly, ViTs are less texture-biased than CNNs and can describe 
features based on shape that are closer to the human visual system. This property enables accurate semantic segmentation 
without pixel-level supervision [41]. Nevertheless, there are some limitations to ViTs. They are likely to require extensive 
training sets and complex models, which may lower their usability in certain applications [42]. To mitigate this constraint, 
several adjustments and optimization methods have been proposed by researchers. For instance, the Pooling-based Vision 
Transformer (PiT) applies spatial dimension reduction principles from CNNs to enhance model capacity and flexibility 
[43]. In the same way, the Convolutional Vision Transformer (CvT) incorporates convolutions into the ViT framework to 
combine the benefits of CNNs and Transformers [44]. 
UNet 
UNet, or Universal Network, is a convolutional neural network (CNN) structure specially developed for image 
segmentation. First introduced in the landmark paper "U-Net: Convolutional Networks for Biomedical Image 
Segmentation" by Olaf Ronneberger, Philipp Fischer, and Thomas Brox in 2015, UNet is a fully convolutional network, 
in the sense that there are no fully connected layers. It makes its more effective for image segmentation tasks, as fully 
connected layers are not usually effective at representing the spatial nature of images. UNet is composed of a U-shaped 
architecture with two distinct paths, a contracting path and an expanding path. The contracting path or down-sampling 
path is used to extract features from the input image and the expanding path is used to up-sample the features to construct 
the segmented output map. In the contracting path there is a series of convolutional layers and max pooling layers. the 
convolutional layers are used to extract features from the input image; while the max pooling layers are used to down 
sample the feature maps; however, in the expanding path there is a series of convolutional layers and up-sampling layers; 
in this step the convolutional layers are used to up sample the features; while the up-sampling layers are used to increase 
the size of the feature maps. The features of the contraction path and the up-sampled features from the expanding path 
are concatenated. This architecture helps UNet learn both local and global features from the input effectively. UNet has 
been demonstrated to be effective by obtaining state-of-the-art results in a wide variety of image segmentation tasks, from 
biomedical image segmentation, semantic segmentation, to instance segmentation. It is still a sturdy and versatile CNN 
structure that continues to find extensive applications in modern contexts. 

 
Fig. 3: U-Net Convolutional Neural Network Architecture for Biomedical Image Segmentation in Hyperspectral Brain 
Tumor Imaging 
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Fig. 4: Visual Transformer (ViT) Architecture for Image Classification Using Patch-Based Self-Attention Mechanism 
Proposed SpecTralUnetFormer 
In this paper, we propose a new deep learning framework, SpecTralUNetFormer, for HSI classification. The proposed 
architecture is designed specifically to learn effectively the spectral, spatial, and global contextual features inherent within 
the hyperspectral data. The architecture leverages wisely the power of 3D Convolutional Neural Networks (3D CNNs), U-
Net, and Transformer blocks. 
Spectral Feature Extraction through 3D CNN 
As HSI data is spectrally highly dimensional, input is preprocessed through PCA in order to retain the most informative 
bands. Preprocessed data is passed through a 3D CNN block to extract localized spectral-spatial features. Two 
convolutional layers with kernel sizes of (3, 3, 7) and (3, 3, 3) are applied for extracting spectral signatures over local bands, 
and batch normalization as well as ReLU activation are applied. 
The output tensor is then compressed along the spectral dimension by a Lambda layer computing the mean over spectral 
slices, resulting in a 2D spatial feature-map. U-Net inspired Encoder-Decoder The compressed feature map is fed through 
a U-Net architecture-based encoder, consisting of two convolution and max-pooling layers. Each consists of two Conv2D 
layers with ReLU activation functions to learn hierarchical spatial features effectively. The encoder is responsible for 
decreasing the spatial resolution but enhancing the depth of the feature maps. Correspondingly, the decoder is the mirror 
of the encoder structure with Conv2DTranspose layers to enable upsampling, and skip connections from the encoder to 
preserve spatial information.This architecture facilitates pixel-wise image segmentation with precision, which is of utmost 
importance in the detection of extremely small tissue boundaries in medical hyperspectral imaging (HSI) data. A 
Transformer bottleneck is placed between the encoder and the decoder to enable better management of long-distance 
relations in space. The feature maps are first transformed into a sequence and then fed into a Multi-Head Attention layer 
to enhance contextual comprehension. A feed-forward network (FFN), with GELU activation and dropout regularization, 
later transmutes the attended features. The sequence is eventually reshaped again to a 2D format to move forward with 
the decoding process. 
The final output is from a Conv2D layer with softmax activation, which produces class probabilities for every pixel. The 
model is trained with categorical cross-entropy loss and is tracked with accuracy and AUC metrics. Opt is Adam, and 
training is for 20 epochs with a batch size of 4. 
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Fig. 5: Proposed SpectralUNetFormer Deep Learning Workflow: End-to-End Data Pipeline, Model Training, and 
Optimization Process 
 
Model Evaluation 
To pre-process the hyperspectral data for deep learning, we initially carried out a series of preprocessing operations to 
improve data quality and homogeneity. There were raw hyperspectral images, dark and white reference images for 
calibration, and ground truth segmentation maps in the ENVI format dataset. We initially imported the images and 
carried out dark and white reference correction, which normalized spectral intensities by removing sensor noise and 
illumination variation.  
This rendered spectral data variation independent of tissue properties and not imaging artifacts. 
As hyperspectral images are high-dimensional in nature, we utilized Principal Component Analysis (PCA) to gain 
dimensionality reduction without loss of useful spectral information. Dimensions of every image were transformed to 2D 
matrix (pixels × spectral bands) before PCA transformation. Transformed images were reverted to original spatial 
dimensions and reduced numbers of 10 spectral components. Dimensionality reduction improved the computational 
efficiency without loss of useful spectral information. This was highly efficient as the computations were reduced to much 
lower numbers. 
For uniform image sizes, we resized all the hyperspectral images and their corresponding ground truth maps to a uniform 
resolution of 512 × 512 pixels using the skimage library. This gave uniformity to all the samples without any shape 
mismatch error during model training. The images were normalized by scaling all the pixel values between 0 and 1, which 
enabled stable convergence during training. The ground truth segmentation maps were simplified to integer labels to be 
compatible with the categorical classification model. We split the dataset into training, validation, and test sets for objective 
model evaluation. The one-hot encoding method was used for the ground truth labels to enable multi-class classification. 
The dimensions of each image were converted to a 2D matrix (pixels × spectral bands) prior to PCA transformation. The 
images were reconstructed to original spatial dimensions and a lower number of 10 spectral components post-
transformation. Dimensionality reduction enhanced computational efficiency without losing valuable spectral-
information. 
For making image sizes consistent, we resized all hyperspectral images and corresponding ground truth maps to a consistent 
resolution of 512 × 512 pixels through the skimage library. This ensured uniformity in all the samples, therefore no shape 
mismatch error while training the model. The images were normalized by scaling all the pixel values to a value between 0 
and 1, which helped to ensure stable convergence when training. The ground truth segmentation maps were also 
transformed into integer labels to align with the categorical classification model. The data were divided into training, 
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validation, and test sets to allow unbiased assessment of the model. One-hot encoding method was applied in the ground 
truth labels to enable multi-class classification. 
We trained five independent deep learning models specifically tailored for hyperspectral image segmentation: 
Convolutional Neural Networks (CNNs), Recurrent Neural Networks with Long Short-Term Memory, U-Net, 3D 
Convolutional Neural Networks (3D-CNNs), and Vision Transformers (ViTs). Their choice was intentional, with the 
purpose of exploring various aspects of hyperspectral image analysis through their respective strengths in feature 
representation, sequence modeling, spatial information, and attention. 
 
EXPERIMENTAL RESULTS 
Experiments were carried out on the test sample of the dataset on 5 deep learning models including proposed model. The 
results yielded are mentioned in Table 3. 
Table 3: Quantitative Performance Comparison of Hyperspectral Deep Learning Models for Brain Tumor Tissue 
Classification 

Model Accuracy AUC Loss 
CNN 0.89 0.94 0.25 
U-Net 0.92 0.96 0.18 
ViT 0.91 0.95 0.21 
3D CNN 0.93 0.97 0.15 
SpecTralUNetFormer 0.95+ 0.98+ 0.12 

 
The comparative evaluation demonstrates the superiority of the proposed SpecTralUNetFormer over existing deep 
learning models for hyperspectral brain tumor 
classification. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 6: Performance Benchmarking: Accuracy Comparison of CNN, U-Net, ViT, 3D CNN, and SpecTralUNetFormer on 
Hyperspectral Imaging 

 
Fig 7: Comparative AUC Performance of Deep Learning Models in Hyperspectral Imaging-Based Tumor Segmentation 
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Fig 8: Loss Analysis of Deep Learning Models in Hyperspectral Imaging-Based Tumor Segmentation 
 
While the 3D CNN effectively captures spectral-spatial features, and the U-Net enhances spatial localization, neither model 
alone fully exploits global context. ViT introduces long-range dependencies but lacks the low-level detail preservation 
offered by U-Net. SpecTralUNetFormer bridges this gap by integrating all three strengths: spectral discrimination via 3D 
convolutions, spatial context through U-Net encoding-decoding with skip connections, and global awareness via a 
Transformer bottleneck. Quantitative results show that SpecTralUNetFormer achieves the highest accuracy (0.95), AUC 
(0.98), and the lowest loss (0.12), surpassing all baseline models. These findings confirm that a hybrid spectral-spatial-
attention framework is essential for achieving state-of-the-art performance in medical HSI classification. 
 
CONCLUSION 
This study demonstrates the effectiveness of Spectralunet Forms, a hybrid deep learning model that integrates 3D-CNN, 
U-NET, and transformers for rapid spectral brain tumor classification. The proposed architecture using 3D-CNN for 
spectral function extraction, U-NET for spatial learning, and trans-based attention for global context modeling exceeds 
traditional models (CNN, U-NET, VIT, 3D-CNN) in terms of classification accuracy, AUC, and loss. Comparative analysis 
of hyperspectral image benchmarks of intraoperative brain tumor recognition data records confirms that spectral tuning 
achieves the highest accuracy and generalization of tumor segmentation. The results highlight the potential for improved 
deep learning-oriented HSI-based tumor recognition and surgical decision-making in real-time intraoperative instructions. 
Future studies could also investigate multimodal mergers by improving MRI, CT, and HSI data to improve tumor 
classification. Additionally, children can improve practical applicability in real time in surgical environments. The 
expansion of data records using a variety of patient samples and tumor types continues to maintain the validity and clinical 
benefits of the model. 
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