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Abstract 
There have recently been more rapid advances in AI and deep learning. Some of these advances provide intelligent 
surveillance systems autonomously capable of monitoring and analyzing data in most cases in real time. In this paper, 
a Smart Surveillance System is now described employing several deep-learning-based smart algorithms, specifically 
InceptionNet and Gated Recurrent Units (GRUs), for very high accuracy in detecting and classifying suspicious 
activities. The architecture of the system consists of frontend and backend modules. The backend modules consist of 
dataset acquisition, splitting, preprocessing, and training using the smart algorithms mentioned above. The system's 
user interface is provided in the front for registration, login, and data input. The security authorization mechanisms 
will ensure that only entries from classified authorized personnel can access the system. After authentication, the input 
data are sent to the training model to generate pertinent insights. The results will be presented to the user; thus, timely 
decision-making will be reinforced in the security monitoring. It is the adopted integrated system, which promises to 
offer the most reliable, scalable, and efficient modern surveillance applications in vulnerable settings like public places, 
transport terminals, and private establishments. 
Keywords: Deep Learning, CNN, GRU, InceptionNet, Security, Real-time Monitoring, Computer Vision. 
 
1. INTRODUCTION  
All these changes have commanded the attention of cities across the world over a couple of years, which 
calls for the demand for intelligent and automated surveillance systems due to increased safety measures, 
crime prevention, and effective monitoring of critical facilities. Traditional systems, heavily relying on 
manual observation through closed-circuit television (CCTV) networks, are highly subject to human error 
and fatigue. Besides, inefficiency in handling vast amounts of video data in real-time is part of the 
challenges resulting from depending solely on human intervention. The fact that most city spaces expand 
as security challenges evolve has called for advanced technology that can facilitate proactive real-time 
threat detection and response. This subsequently led to a deep learning integration in surveillance and 
how visual data was interpreted and analyzed. 
Deep learning is one of the very good promises of artificial intelligence used among other branches in the 
area of computer vision. This includes image classification, object detection, and video analytics. Such 
models as, InceptionNet, Gated Recurrent Units (GRU), have shown an impressive ability of the model 
to extract complex features and identify them from large-scale visual datasets. One good example of 
approach using these models into an intelligent surveillance framework is for modeling a detection system 
not just capable of detecting an object, but even understanding the contextual input, tracking movement 
behavior, and anticipating potentially suspicious action. 
The complete smart surveillance system designed can swallow all these elements as it is built by integrating 
InceptionNet, and GRU to develop a backend model that has high accuracy in processing input video 
data. It is a modular architecture system which has two components-it's backend, which is responsible for 
training and inference using deep learning models, and the frontend, which acts as the user interface for 
the registration, authentication, data input, and result visualization. This bifurcation improves the 
robustness, maintainability, and scalability of the efficiency of real-time environments for data processing 
and user interaction. 
The backend pipeline is ipso facto conditioned by the structure of its well-organized workflow model of 
the different operational units including loading the dataset; partitioning into training and testing data; 
noise reduction and other normalizing preprocessing techniques narrowly less advanced neural 
architectures for model training. This is where multi-scale features are made use of, with the InceptionNet 
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model, in detecting the different objects at varying spatial resolutions recognized by CNN. For spatial 
pattern recognition as applied to identifying human poses, objects, or unusual activities in video frames; 
and GRU, a recurrent neural network based type, can loop all these into analyzing actions over time 
instead of isolated frames. In the meantime, as a frontend module, it is being developed to offer an 
interface that is secure yet user-friendly for end-users, such as surveillance operators or administrative 
personnel. It allows new users to register and existing users to log in using a credential-based 
authentication module. Once authenticated, users will have the capability of inputting data (for example, 
video streams or pictures) into the system. The backend will process this input and subsequently return 
such data in a meaningful way. Defined is the logout process where there is session management and data 
security, which is highly recommended for sensitive applications like surveillance in airports, government 
buildings, and corporate offices. While most traditional systems perform mere recording and storage, the 
design system intends to consider video inputs and perform some analysis on it as they come in order to 
afford real-time responses to threats. An example of such a reaction may be sending an alert to the 
operator on the occurrence of unauthorized access, unattended objects for some time, or anomalous 
behavior patterns. Such capabilities would end up adding greatly to situational awareness and decrease 
response time during emergencies.  Moreover, the proposed modularity of the framework makes it 
convertible to diverse datasets and deployment environments. The models would need fine-tuning or 
complete retraining when new data is now available, so the system becomes updated not just with the 
times, but also with evolving security challenges. Moreover, deep learning does not require significant 
manual engineering of features, and hence the system can learn directly from raw data and generalizes 
better as the environment varies. Therefore, the application of deep learning models into an intelligent 
surveillance framework is a revolutionary landmark in the field of security and monitoring. With the 
combination of CNN, GRU, and InceptionNet architectures, all organized within a structured backend, 
and by further supporting the system through a securely intuitive frontend, the system acts as a massively 
well-equipped intelligent surveillance object. It bridged the gap that conventional systems had by 
automating, analyzing in real-time, and carrying the prediction of future occurrences on the system, 
thereby putting it in the line for next-generation surveillance frameworks. 
This guide provides details to assist authors in preparing a paper for publication in JATIT so that there is 
a consistency among papers. These instructions give guidance on layout, style, illustrations and references 
and serve as a model for authors to emulate. Please follow these specifications closely as papers which do 
not meet the standards laid down, will not be published. 
2. Related Work 
Video surveillance, nowadays a large part of any modern security system, acts destinative in surveillance 
of public and private places to keep them safe. Many researchers have tried their luck to enhance the 
video surveillance systems through different learning techniques such as deep learning, Convolutional 
Neural Networks (CNN), Long Short-Term Memory (LSTM), and IOT. Below are some important 
contributions in the field concerning advancements in violence detection, anomaly detection, and 
surveillance optimization. Arshad et al. (2024) propose a smart surveillance system using CNNs which 
analyzes videos for events such as fire, abnormal activities, smart parking systems as well as detecting 
burglary. This approach works excellently to the limitations of after-investigation procedures by facilitating 
real-time detection, reducing all possible human effort in surveillance [1]. They further elaborated that in 
this perspective, Patel and Patel (2021) indicated how conventional CCTV cameras are enhanced by deep 
learning models and IoT, all using Raspberry Pi in their project for smart surveillance systems. Their 
system design detects fire and weapon, face masks on faces, and very significantly reacts to real-time 
situations like during the COVID-19 pandemic [2].  
Tiwari et al. (2023) detailed an automated violence detection model using hybrid CNN-LSTM 
architecture, achieving 98.63% accuracy. The proposed model establishes robustness in violence 
identification in video footage by demonstrating its competence by combining the features of CNNs with 
those of LSTMs for temporal sequence learning [3]. The same vein was explored by Akole et al. (2023) in 
which a real-time violent activity detection system was proposed using MobileNetV2 and LSTM. Their 
system achieved a success rate of 94%, efficiently classified real-time video streams for violent activity 
detection [4].  
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Further advancement in real-time violence detection has been done by Siddiqui et al. (2023) in which 
YOLO (You Only Look Once) was incorporated to give the object detection feature to the violence 
detection system they developed. The system also detects weapons in violent situations and thus triggers 
alarms for immediate intervention by security [5]. Akole et al. (2023) also build on MobileNetV2, which 
is characterized by very low latency and great accuracy, and uses it together with LSTM for detecting 
violence in videos. The proposed model has performed well on tailor-made datasets that are composed of 
violence videos sourced from social media like YouTube and is an ideal resource with rapid response to 
security threats [6].  Ullah et al. (2022) proposed a framework for violence detection in Industrial IoT-
based surveillance networks using a lightweight CNN model for object detection and ConvLSTM for 
video analysis. The framework enhances real-time detection but is a major reduction in the computational 
load, which suits resource-constrained IoT environments for such applications. The proposed framework 
thus improves over the classical means by 3.9% and thus is an efficient endeavor for industrial surveillance 
[7]. Discussing the anomaly detection in CCTV footage, Khanam and Roopa (2025) reported a deep 
learning model, which is based on MobileNetV2 and Bi-LSTM, providing performance of 94.43% in 
accuracy under varying illumination conditions as compared to best available models [8].  
Following on this line, Marwaha et al. (2023) presented a problem challenge that needs to address 
developing real-time CCTV camera surveillance systems that will be able to analyze several terabytes of 
video. Smart surveillance systems have generally incorporated the use of machine learning along with 
image processing techniques to detect activities taking place in such public areas in real time and alert the 
local authorities to prevent violent incidents from occurring [9]. Also, Ramya et al. (2023) proposed an 
EfficientDet-based weapon detection system, mainly concerning real-time security surveillance. The 
system proved to be of high precision and accuracy in detecting knives and pistols, as a requirement 
towards public safety in sensitive environments [10].  
Appavu and Babu (2023) sought further to demonstrate the effectiveness of even more CNNs in real-time 
violence detection while implementing their real-time violence detection system that was based on the 
Xception model. Their system applied the combination of CNN feature extraction and LSTM to interpret 
temporal sequences, achieving an impressive level of accuracy in violent event detection. Real-app app 
integration with that of authorities led to instant reporting, hence proving its feasibility during 
emergencies [11]. Meanwhile, Jain et al. (2023) developed a violence detection model consisting of a U-
Net combined with a MobileNetV2 for spatial feature extraction, which uses an LSTM for temporal 
analysis. Their approach achieved a performance of 94% while exploiting a real-life dataset and an 
effective resource utilization strategy [12]. With regard to crowd violence detection, Gkountakos et al. 
(2021) proposed a sociotechnical architecture based on 3D CNNs that encompasses the processing of 
video footage coming from several sources: the CCTV cameras and body-worn cameras. In applying deep 
neural networks to real-time analysis, the system detects footage related to violent happenings in crowded 
environments. It has been tested on the Violent Flows dataset, attesting to its boastful attributes 
concerning crowd violence detection [13]. Similarly, Ditsanthia et al. (2018) were concerned with violence 
detection in video representation learning in a deep CNN and LSTM context. Among their main 
contributions was the introduction of multiscale convolutional features as a concern with changes in 
video data and hence an improvement in detection accuracy in the bad-cinema environment [14].   
Following the works by Kumar et al., in 2024, on the MobileNetV2 and BiLSTM-based model, a 
remarkable accuracy of 98% can be claimed. His model has proved to efficiently detect violent acts from 
many types of raw videos, enhancing surveillance and law enforcement activities. This speaks of the 
promise of lightweight CNN architectures for real-time tasks in violence detection [15]. Aggarwal et al. 
(2024) further fine-tuned the method using MobileNetV2 and BiLSTM for violence detection on CCTV 
footage, reporting 96% accuracy. This method demonstrated the working capability of hybrid deep 
learning models for violence detection in myriad real-life situations [16]. 
The above studies testify to how much forward the surveillance systems have moved by highlighting the 
growing importance of deep learning and hybrid models in enhancing video analysis. The synergistic path 
along with CNNs, LSTMs, and other deep learning models just goes on to ensure the further accuracy, 
speed, and reliability of violence detection within real-time video footage so that the guarantee of security 
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isched towards public safety. The future of intelligent surveillance systems will heavily rely on the progress 
of the systems in cities, industrial corridors, and public spaces. 
3. System Design 
The recommended smart surveillance system is comprised essentially of two modules: the backend 
processing engine and the frontend user interface. These modules are purposely fashioned to interact in 
detection and monitoring of potential threats on a real-time basis. This modular architecture enhances 
flexibility, maintainability, and separation of concerns with the possibility of independently developing, 
testing, and deploying the respective components.  
The backend module takes care of all machine-learning and deep-learning functions. The operations 
begin by the loading of the curated dataset(s), consisting of surveillance images or sequences of video, 
most of which are then split into training and test sets. Preprocessing is carried out before training of 
models-batching by group resizing, normalization, filtering for noise, etc.-in order to enhance the 
reliability of feature extraction. The system employs a hybrid deep-learning architecture comprising 
InceptionNet, GRU, and CNN. InceptionNet captures multi-scale features, CNNs are used for spatial 
feature extraction, and GRUs model the temporal dynamics in the video streams. The training of these 
models is designed to identify suspicious behaviors or anomalous activity in the visual data and to assign 
the input with predictions of what the input is in real-time.  
The front end acts as an interface for the users and encompasses functionalities like user registration, 
secure login, and submission of requests for processing. After the user is granted access, the user can 
upload or stream surveillance data; in turn, these inputs are forwarded to the backend for further 
assessment. The visualized outputs for any detected activities are relayed in real-time through the interface. 
The system has session management capabilities like logout functionality that promote security and 
integrity in its operation. 
In its entire consideration, system design turns into a rich interactive space for intuitive human-machine 
interaction and deep-learning-intensive back-end deployment for smart cities, airports, or any area in high 
security. 
4. Dataset 
The Surveillance Camera Violent Dataset (SCVD), with its origins in Kaggle, provides the ground for 
developing and testing an intelligent surveillance system aimed at classifying normal and abnormal 
activities in surveillance videos. It works perfectly for a dataset that propagates deep learning models to 
classify activities that can potentially endanger human beings in different settings, like outdoor streets or 
indoor ambiance. A strong member of the SCVD is a collection of real-world surveillance video clips 
having diverse backgrounds, lighting, and motion dynamics, which serves as a good resource for training 
models against complex real-world scenarios. 
4.1 Data Set Analysis: 
The dataset is fairly balanced across its three categories: Normal, Violent, and Weaponized, having 872, 
970, and 832 video clips respectively. This almost equal distribution guarantees training of deep learning 
models on enough samples from each class, thereby reducing the bias towards any one specific class. The 
slight higher count of Violence clips (970) also makes the model more receptive toward aggressive human 
behaviors which are important in real time threat detection. To adjust, however, the training and 
validation should take care of maintaining the class balance to be able to avoid producing skewed 
predictions mainly during real-world implementations as regards imbalances. The composition indeed 
requires the generalization for the development of robust models for efficient application in smart 
surveillance. 

Category Video Count Interpretation 

Normal 872 Represents regular, non-threatening 
activities captured by surveillance 
cameras. 

Violence 970 The highest number of samples; 
ensures strong training for detecting 
aggressive acts. 
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4.2 Category Details 
4.2.1 Normal Activity (872 clips): This is the evidence of actual daily behaviors such as walking and 
conversing, with no alarming implications. It is a model basics for training on normal human movements 
as well as environments projected as safe. 
4.2.2 Violence Activity (970 clips): This collection of film contains scenes portraying aggressive action 
such as fighting, shoving, or some other violent encounters. Such clips are essential in building models 
to detect collective aggressive behavior for imminent indication of threats. 
4.2.3 Weaponized Activity (832 clips): This collection contains events describing associated weapons 
such as knives or firearms, although some clips demonstrate their used. Such video samples are critically 
important to determine the highly hazardous circumstance requiring remedial measures immediately. 
Balanced sample sizes among all categories assist in preventing bias among models and aid in 
generalization in regard to real confrontation situations. The videos do differ in length and complexity, 
but they give a plethora of features for model training. 
4.3 Data Curation and Preprocessing 
The SCVD was curated from open-access surveillance datasets and real-world footage from public and 
private security systems, ensuring broad applicability. For privacy and ethical issues, all personal identifiers 
were eliminated from the footage, and the non-sensitive footage was used. All the videos were manually 
labeled by security experts, followed by additional checks for the accuracy of annotation. Preprocessing of 
the videos included splitting the videos into frames using consistent temporal intervals in order to 
maintain temporal consistency. The frames were resized to a uniform resolution of128×128 pixels to limit 
computation but still be able to sufficiently represent salient visual features. The pixel values were 
normalized into a 0–1 range to hasten model convergence. Further data augmentation methods such as 
random rotation, brightness variations, and horizontal flipping were performed to diversify the dataset 
and fortify the model. 
4.4 Dataset Split and Limitations 
The above data set, therefore, was divided into three parts, being training set, validation set, and test set, 
having their respective distributions of categories within each biased sample to facilitate model training, 
optimal hyperparameter tuning, and performance evaluation without bias. However, although the 
strength of the dataset can be highlighted, it also has limitations when it comes to scenarios with extremely 
lit or really crowded spaces. Expansions of the future will consider more diverse real-world scenarios 
through which the accuracy and robustness of the system will be increased within a challenging 
environment. Overall, the SCVD serves as a good platform in making the smart surveillance systems 
capable of precise classification and proactive threat mitigation. 
5. Data Preprocessing 
The first step in preprocessing in the Smart Surveillance System is very important in transforming raw 
surveillance footage from the SmartCity CCTV Violence Detection Dataset into a standardized format 
for a hybrid deep-learning model that employs InceptionNetV3 for feature extraction and Gated 
Recurrent Units (GRUs) for temporal classification. This ensures that the video frames are formatted, 
normalized, and structured, thus satisfying the input requirements of the model, which are capable of 
performing actual classification of activities as Normal, Violence, etc. The steps in preprocessing would 
take care of variations in the resolutions of the videos, the length of the videos, and the color format so 
as to produce a fixed-length sequence of preprocessed frames for each video. Each preprocessing step is 
elaborated in the subsections that follow, including precise parameters and their significance as used in 
the system. 
 

Weaponized 832 Contains footage involving visible 
weapons; essential for high-alert 
identification. 
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5.1 Frame Extraction: 
Frame extraction starts the pipeline by pulling out individual frames from each of the videos via 
OpenCV's video capture feature. Each frame is a three-dimensional array with dimensions denoted in 
height × width × 3 in BGR color format, with the height and width being based on the video's resolution, 
e.g., 480x640 for the 480p. This process is repeated until reaching either the end of the video or a 
predetermined limit to avoid any associated resource management problems, such as memory leaks. 
Important parameters are 
• Max Frames: At first, this was flexible; it was then later capped to 20 frames to set a standardized value 
for the sequence length. 
• Purpose: Extrapolates a sequence of frames as a basis for further transformations. The output is a 
bunch of frames stored in their original resolution and BGR format, solving the variable-length video 
problem by initially collecting all frames, with later steps enforcing a fixed sequence. 
5.2 Center Square Cropping: 
To achieve a square aspect ratio, each frame is cropped to a square by selecting the central region. For a 
frame of shape (y, x, 3), the smaller dimension (min_dim = min(y, x)) determines the square’s size. The 
crop is centered using: 
• Start_x = (x // 2) - (min_dim // 2): Aligns the crop horizontally. 
• Start_y = (y // 2) - (min_dim // 2): Aligns the crop vertically. The cropped frame, of shape (min_dim, 
min_dim, 3), retains the central content. For a 480x640 frame, the output is a 480x480 frame. This step 
is essential because: 
• Purpose: A square aspect ratio facilitates resizing to 224x224, matching InceptionNetV3’s input 
requirements. 
• Parameter: min_dim adapts dynamically to the frame’s dimensions, avoiding distortion. The central 
crop prioritizes relevant surveillance content, though peripheral details may be excluded, which is 
acceptable given the focus on central activities. 
5.3 Resizing to 224x224 
The cropped square frame is resized to 224x224 pixels to align with InceptionNetV3’s input dimensions, 
producing a frame of shape (224, 224, 3) in BGR format. The resizing process uses bilinear interpolation 
for smooth scaling. Key aspects include: 
• IMG_SIZE = 224: Defines the target resolution. 
• Purpose: Standardizes frame size across videos, ensuring compatibility with the model. For a 480x480 
frame, resizing downscales to 224x224; for a 360x360 frame, it upscales. While downscaling may reduce 
fine details, InceptionNetV3’s robustness mitigates this impact. Upscaling smaller frames introduces 
minor artifacts, but the model’s generalization handles these effectively. 
5.4 RGB Conversion: 
Frames are converted from BGR to RGB color format to match InceptionNetV3’s expected input, 
achieved by reordering the color channels. A frame of shape (224, 224, 3) in BGR (Blue, Green, Red) 
becomes RGB (Red, Green, Blue). For a pixel with BGR values [50, 100, 150], the output is [150, 100, 
50]. This step is computationally lightweight and critical because: 
• Purpose: Ensures correct color interpretation, as InceptionNetV3 was trained on RGB images. 
• Parameter: The channel reordering is fixed, requiring no additional configuration. Incorrect color 
format would lead to erroneous feature extraction, making this conversion indispensable. 
5.5 Limiting to 20 Frames: 
The sequence length is capped at 20 frames (MAX_SEQ_LENGTH = 20) to standardize input for the 
GRU model. Videos with more than 20 frames have only the first 20 retained; those with fewer use 
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allavailable frames, with padding applied later. The output is an array of shape (num_frames, 224, 224, 
3), where num_frames <= 20. This step: 
• Purpose: Ensures a fixed-length sequence (None x 20 x 2048 after feature extraction) for temporal 
modeling. 
• Challenge: Selecting early frames may miss later events, but this suits short surveillance clips. Frame 
masks, of shape (num_samples, 20), indicate valid frames (1) versus padded ones (0), facilitating correct 
processing in the GRU. 
5.6 InceptionV3 Preprocessing: 
The final step normalizes frame pixel values to prepare them for InceptionNetV3 feature extraction. This 
process converts RGB values from [0, 255] to [-1, 1] using a scaling formula: (x / 255.0) * 2.0 - 1.0. For a 
pixel [255, 128, 0], the output is [1.0, 0.004, -1.0]. The output frame remains (224, 224, 3) with normalized 
values. This step: 
• Purpose: Aligns frames with InceptionNetV3’s ImageNet-trained weights, optimizing feature 
extraction. 
• Parameter: The normalization is fixed, ensuring consistency. The preprocessed frames are ready for 
feature extraction, producing a 2048-dimensional vector per frame. 
The preprocessing pipeline transforms raw SCVD videos into a sequence of up to 20 preprocessed frames, 
each 224x224x3 with normalized RGB values, yielding a feature tensor (None x 20 x 2048) and frame 
mask (None x 20) after feature extraction. Parameters include IMG_SIZE = 224, MAX_SEQ_LENGTH 
= 20, and NUM_FEATURES = 2048. This pipeline addresses variability in video length, resolution, and 
color format, ensuring robust input for the hybrid model.  
The standardized output supports effective spatial feature extraction and temporal classification, enabling 
accurate surveillance activity detection. 
 
6. METHODOLOGY 
The primary goal of the proposed smart surveillance system is to detect and classify real-time video footage 
events in three categories: normal, violent, and with a weapon. The proposed methodology relies on a 
hybrid deep learning architecture that distinguishes itself not just by accuracy but also handles cross-
domain generalization in various video conditions. The techniques harness the power of three deep 
learning architectures: namely InceptionNet and Gated Recurrent Units (GRUs). This supplementing 
effect from combining GRU with the CNN mentioned above allows the model to learn spatial and 
temporal features of the video frame sequences to capture minor points in the complex environment of 
surveillance. The work proceeds through the following phases: frame extraction, feature extraction, 
temporal sequence modeling, and classification. 
6.1 InceptionNet for Feature Extraction 
The intelligent surveillance uses the feature extraction from an individual video frame based on 
InceptionNet architecture and senses an abnormal activity detection system from the Surveillance Camera 
Violent Dataset (SCVD). This stands out as an efficient and effective architecture, especially in 
surveillance scenarios where visible indicators range widely in size, texture, and context in which 
InceptionNet does not use a single filter-size convolution for each layer but uses a set of parallel 
convolutions that derive multi-scale outputs making it possible to produce both coarse- and fine-grained 
features at once. This property is vital for capturing subtle changes in surveillance footage - a weapon or 
onset of violent behavior - under quite a few environments like streets, public space, indoor ones. 
rephrase and convert to prose like text. Make sure to change the copy to lower perplexity and high 
burstiness while remaining within the word count and HTML elements. You receive trained data until 
October 2023. 
6.1.1 Architecture and Multi-Scale Feature Extraction: 
The great Inception Modules of InceptionNet comprise its main body. Each of them has parallel types of 
convolution operations at various specification sizes; for example 1x1, 3x3, and 5x5. Such types of 
convolution can have two different connotations: One can be with respect to their dimension reduction 
potential by actually bringing a lesser number of dimensions--thus really shrinking down the output 
dimensionality into points in regards to spatial content--to save costs of computational complexity; 
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another can be that they serve as a bottleneck layer causing efficiency improvement. The 3x3 and 5x5 
convolutional features will then extract features across possibly different scales and dimensions, thereby 
identifying broad spatial patterns-like the general movement in a crowd-as well as finer granularity ones-
like the outline of a weapon. These architectures ensure further multi-scale processing so that the model 
keeps any possible flexibility to plug itself into what would be the broad scope of visual content in SCVD-
where light and background as well as motion change very much across clips. 
Thus, the Inception module optimizes its performance even more by including max-pooling operations 
with these convolutions. In that way, the max-pooling script keeps the most salient spatial information: 
the maximum value is chosen and saved within each pooling window, obviating a lot of overfitting as 
often occurs training on complex data such as the SCVD. Mix these two operations, and we can have 
InceptionNet toward the balance between processing cost and richness of features that makes it the right 
tool for the immediate applications of surveillance, where speed is essential and where high accuracy 
needs to be achieved. 
6.1.2 Preprocessing and Feature Extraction Pipeline: 
InceptionNet has the spatial features of all frames considered in every operational phase either extracted 
or computed within some form of hierarchical layers. Beginning from the stem module of convolution 
and pooling layers for initial feature extraction and downsampling, multiple Inception layers A, B, and C 
then perform similar operations of parallel convolution and pooling to realize the aforementioned 
outputs-all combined into one output through global averaging pooling, which reduces the spatial 
dimensions into a fixed-size feature vector. The final feature vector thus has a shape of None × 20 × 2048 
based on a sequence of 20 frames. The dimension "None" refers to the batch dimension, "20" refers to 
the number of frames, and "2048" indicates the feature embedding depth. They have a deep semantic 
representation capturing salient visual cues such as object shapes, movement trajectories, and context 
related to behaviors such as normal, violent, or weaponized activities. 
6.1.3  Integration with Temporal Modelling:  
More about Gated Recurrent Units (GRUs) and temporal modeling are also expected from a sequence 
of input feature vectors extracted by InceptionNet. This aspect is very important since one not only needs 
to understand the spatial aspect of events but also understand some temporal dynamics related to events, 
such as how a fight progresses or how a weapon is moved within the frame. In this case, we use the 2048-
dimensional feature embeddings per frame to be fed into the GRUs in order to learn motion processes 
and evolutions of events over a sequence of 20 frames. The strength of the recurrent GRU is that it retains 
a memory of previous frames, enabling the identification of sequential anomalies potentially lost to spatial 
analysis alone.  
 The GRU architecture consists of two layers; the first layer has 16 units (Shape None × 20 × 16) and the 
second has 8 units with a shape of None × 8, which is then followed by a dropout layer to avoid overfitting. 
We then connect to two dense layers, the first with 8 units and the second with 3 units, using softmax 
activation to deliver classification probabilities toward each of the Normal, Violence, and Weaponized 
classes. This hybrid model incorporating the spatial feature extraction of InceptionNet and the temporal 
processing of GRU ensures a well-rounded analysis of the surveillancefootage and thus increases the 
system performance in detecting and classifying threats in real time.  
The InceptionNet's role as a feature extractor, where it is free from binary frame-wise classification, thus 
allows the system to put efforts toward creating rich feature representations, nevertheless reusable in many 
cases. These representations will come in handy for surveillance technologies that are applied to the 
detection of abnormal events that may mean subtle spatial changes over the time. Classification is, 
therefore, left to the GRU and the dense layers—making this architecture flexible for easy retraining with 
new categories or new datasets with minimal retraining for the feature extraction component. Such 
modularity seriously reduces computational overhead-related concerns, thereby enhancing the portability 
of the system for deployment on resource-constraint devices.  
To sum up, InceptionNet's multi-scale feature extraction that supports efficient dimensionality reduction, 
integrated together with temporal modeling, constitutes a state-of-the-art resource for intelligent 
surveillance systems. The achievement of the projected threat signature through the resulting feature 
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vectors therefore further bolsters its solid foundation for any negation of threat levels by means of elevated 
situational awareness and threat countering throughout the array of application instances. 
6.2 GRU 
Intelligent surveillance systems use Gated Recurrent Units (GRUs) as major components for sequential 
processing of data derived from video frames in the Surveillance Camera Violent Dataset (SCVD). They 
are the latest variant of Recurrent Neural Networks (RNNs) intended for modeling temporal dependency 
across time steps and therefore, very useful for video analysis tasks for action recognition or anomaly 
detection. With GRUs, it becomes possible to capture the temporal characteristics of dynamic action 
patterns because, in surveillance scenarios, one frame cannot be interpreted without its precursors or 
successors. An isolated raised arm may appear innocuous, but when considered in the context of a 
sequence of frames, it could be indicative of a violent act or weapon use, highlighting the importance of 
temporality over mere visual interpretation. 
6.2.1 Addressing Long-Term Dependencies and Vanishing Gradients: 
The traditional RNNs suffered from vanishing gradient problems, which arise when the gradient values 
start to dwindle exponentially through the backpropagation process, making it extremely hard for the 
network to establish long-term dependencies required to learn from extended sequences. GRUs 
practically mitigate this issue using a simple yet effective architecture that consists of two main gates: the 
update gate and the reset gate. These gates control the flow of information, allowing the model to balance 
retaining previous context with incorporating new data. This capability allows GRUs to capture both 
short-term actions (like a sudden movement) and long-term behavioral patterns (like an ongoing fight), 
which are crucial for accurately recognizing actions in surveillance videos. 
6.2.2 Update Gate: 
The update gate 𝓏t determines the extent to which the previous hidden state ht−1 should be carried 
forward to the next time step, ensuring the retention of relevant temporal context. It is mathematically 
defined as: 

𝓏t = σ(W𝓏 ∙ [ht−1, xt] + bz) 
where: 
• 𝓏t ∈ [0,1] represents the update gate value at time step t, 
• ht−1 ∈ ℝd  is the hidden state from the previous time step, 
• xt ∈ ℝ2048 is the current input feature vector (derived from InceptionNet), 
• W𝓏 ∈ ℝd ×(d+2048) and bz ∈ ℝd  are the weight matrix and bias terms, respectively, 

• σ(x) =  
1

1+e−x  is the sigmoid activation function, 

• [ht−1, xt] denotes the concatenation of ht−1 and xt. 
The update gate value 𝓏t  governs the retention of past information. A value closer to 1 indicates greater 
retention of the past context, such as the progression of a violent event, while filtering out irrelevant 
noise. 
6.2.3 Reset Gate: 
The reset gate rt controls the degree to which the previous hidden state ht−1 is forgotten in order to 
prioritize new input data, thereby facilitating adaptability to changing dynamics. It is expressed as: 

rt = σ(Wr ∙ [ht−1, xt] + br) 
where: 
• rt ∈ [0,1] is the reset gate value, 
• The other variables are defined as above. 
A value of 0 in the reset gate signifies the complete discarding of the previous state, enabling the model 
to focus on the current inputs. This is crucial for detecting abrupt changes, such as the sudden appearance 
of a weapon. 
6.2.4 Hidden State Update 
The GRU computes a candidate hidden state h~t\tilde{h}_th~t influenced by the reset gate: 

h̅t = tanh(W ∙ [rt ⊙ ht−1xt] + b) 
where: 
• ht ∈ ℝd  is the candidate hidden state, 
• ⊙ denotes element-wise multiplication, 
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• tanh(x) =
ex−e−x

ex+e−x is the hyperbolic tangent activation function, which normalizes the output to 

the range [−1,1]. 
Finally, the hidden state ht is updated as a convex combination of the previous hidden state ht−1and the 
candidate state ht̃ governed by the update gate zt: 

ht = (1 − zt)⨀ht−1 + zt⨀ht̃ 
This equation ensures a dynamic balance between short-term memory (responsiveness to recent stimuli) 
and long-term memory (retention of meaningful patterns), which makes GRUs highly effective for 
modeling the temporal evolution of video sequences. 
7. GRU Architecture in the Surveillance System 
With feature vectors extracted by InceptionNet having the shape of (None, 20, 2048), where 20 is the 
number of frames per sequence and 2048 the dimensionality of feature embeddings, the GRU processes 
such feature vectors in the smart surveillance system. The GRU architecture is composed of two layers, 
followed by dropout and dense layers for classification: 
    • GRU Layer 1: This layer has 16 units and takes input of shape (None, 20, 2048) and returns an 
output of shape (None, 20,16) this layer captures the initial temporal pattern across the 20 frames. 
    • GRU Layer 2: This layer has 8 units and takes input from the first GRU layer, which produces 
the final hidden state of shape (None, 8). The GRU layer does not return sequences and summarizes 
temporal information into a single vector per sequence. 
    • Dropout: A dropout layer with a 0.5 rate is applied to impede overfitting, which is particularly 
important given the complexity of the SCVD dataset. 
    • Dense Layer 1: With 8 units and ReLU activation, this layer further processes the GRU output 
while reducing dimensionality and introducing non-linearity.  
    • Dense Layer 2: The last layer with three units and softmax activation gives class probabilities 
among the three: Normal, Violence, and Weaponized. 
The GRU processes the temporal sequence of InceptionNet-extracted features, enabling the model to 
learn video dynamics holistically rather than treating frames in isolation. For example, a suspicious 
movement in a single frame might be ambiguous, but when analyzed over multiple frames, the GRU can 
identify patterns indicative of a violent assault or weapon use. Being able to "remember" temporal context 
enables the GRU to increase the system's capabilities of context-aware prediction and an accurately 
improved detection outcome. 
In addition, GRUs are more computationally efficient than comparable recurrent architectures like 
LSTMs, which are burdened with more parameters because of the additional gates. This efficiency is vital 
for real-time surveillance applications, where processing speed is as important as accuracy. The GRU's 
ability to model complex temporal patterns in a memory-efficient manner enables the system to run well 
on platforms with limited resources, which can be as little as embedded surveillance hardware. 
7.1 Integration with InceptionNet 
InceptionNet together with GRU is a hybrid model that performs very well in both spatial and temporal 
aspects. InceptionNet created rich spatial feature embedding by capturing visual content of each frame, 
whilst GRU would model the temporal relationships that each frame has with one another. Thus, an 
apparatus could move beyond fixed image classification to dynamic context-sensitive analysis. It could, 
for example, tell between simply holding a knife (a static observation) and actively using it in a threatening 
manner (a temporal pattern), greatly improved security and operation efficiency.  
The final verdict would conclude that GRUs are important in smart surveillance systems, with long-term 
dependency processing; efficient gated mechanisms with InceptionNet ties in temporal dynamics of video 
sequences for accurate and quick predictions, thus improving detection and response to threats in real-
world surveillance situations. 
 
8. RESULTS 
The evaluation of the proposed smart surveillance system was performed by classifying the video frames 
into three classes: Normal, Violent, and Weaponized. The performance of the system was evaluated using 
standard performance metrics such as accuracy, precision, recall, and F1-score. These standard metrics 
provide an overview of the performance of the model in detecting and classifying activities in surveillance 
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videos. Other evaluations were conducted on real-time processing and the sur-vivability of the system in 
varied states of video conditions. The evaluation utilized the Surveillance Camera Violent Dataset 
(SCVD); the ensuing section describes test results and an analysis of the classification accuracy and 
computational efficiency of the system. 
8.1 Performance of the GRU Model 
Test results indicated that the GRU model performed quite well, but there were some misclassifications 
also. The model was generally quite reliable compared to the classification of violent and weaponized 
activities, failing to distinguish normal from violent behavior. The Normal class was accurately classified 
in 75 out of 88 frames; 12 frames were misclassified as Violence and 1 as Weaponized. For Violence, the 
model classified correctly 90 but misclassified 3 frames as Normal. The Weaponized category also 
performed well, with 71 frames classified correctly, but misclassified 10 as Violence and another 2 as 
Normal. 
The GRU results were promising regarding its ability to classify Violent and Weaponized actions, but it 
struggled to distinguish between Normal and Violent activities. Normal activity was classified correctly in 
75 of the 88 frames, with 12 frames misclassified as Violent and another as Weaponized. For Violence, 
the model classified correctly 90 frames but misclassified 3 such frames as Normal. The same went for the 
Weaponized category, which was handled well, with the model classifying correctly 71 frames but 
misclassifying 10 as Violence and 2 as Normal. 
Thus, it can be said that, although misclassification was there, the performance of the model on the whole 
was strong, scoring an accuracy of 88 percent. Evidently, this shows the capability of the model in 
detecting actions that are Violent and Weaponized but leaves room for improvement in reducing 
confusion in the Normal and Violent activities. 
As far as the confusion matrix plus classification report is concerned, they provided 88% of strong overall 
accuracy alongside Normal having the highest precision at 0.94, whereby Normal predictions rarely result 
in false positive outcomes. However, it is true that the recall for the Normal class is slightly lower-0.85-
means that more of the actual Normal cases were misclassified, mainly under the Violence category. The 
Weaponized category exhibited high precision, recall, and an F1-score of 0.89, showing that the model 
was successful in detecting those threatening actions namely with weapons while causing almost no false 
positives. The Violence category thus witnessed excellent recall, at 0.93, identifying most of the violent 
examples; however, this related to lower precision, at 0.80, whereby a few nonviolent examples were 
mistaken for Violence. 

 
 Class Precision Recall F1-Score Support 

Normal 0.94 0.85 0.89 88 
Violence 0.80 0.93 0.86 97 

Weaponized 0.93 0.86 0.89 83 

Accuracy 
  

0.88 268 
Macro Avg 0.89 0.88 0.88 268 

Weighted Avg 0.89 0.88 0.88 268 
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8.1.2 Training Performance and Overfitting 
The GRU was subjected to training through the epochs of 200. Training loss was continuously going 
down, which indicated the successful learning of the model from the training data. Validation loss, 
however, showed high fluctuations, especially after the 150th epoch, where the model became overfit to 
the training data. The validation loss and accuracy variation indicates that the model is becoming very 
specific to the training data and does not generalize well to unseen data, especially during validation. 
The high training accuracies versus the validation accuracy, which fluctuated, clearly indicate overfitting. 
Hence the model will likely falter with real-world data, particularly on rare or extreme cases. This symptom 
of overfitting can be dealt with by the use of regularization, dropout, and early stopping, thereby 
preventing the model from overvaluing particular patterns found in the training data. 

 
8.1.3 Evaluation of the Classification Performance 
The challenges posed in the training process notwithstanding, the model's final evaluation on the test set 
showed an overall accuracy of around 88%, with precision, recall, and F1-scores generally higher for the 
Violence and Weaponized categories than for Normal. The recall for the Violence class was quite good 
(0.93), while precision was decent (0.80), indicating that the model does well at identifying violent 
activities, albeit often in confounding situations. For the Weaponized class, precision was very good 
(0.93), and recall was noteworthy (0.86), which is indicative of the model's prowess at distinguishing 
threatening or weaponed actions from other classes with few negatives.  
The converse was true for the Normal class, whose recall was slightly lower (0.85), suggesting that some 
Normal frames were being wrongly classified either as Violent or Weaponized. This somehow aligns with 
the observation that the model paid more attention to distinguishing between Violent and Weaponized 
actions, which tend to be more apparent and easier to detect through surveillance videos. 
8.1.4 Model Enhancement through Data Augmentation 
Talk some techniques in data augmentation such-as random rotations; flips; brightness adjustments, etc. 
apart from normal conditions, for better performance of the model regarding these conditions. The 
above-mentioned methods increase the robustness of models against different types of variances in video 
frames such as lighting, occlusions, and viewing angles. It expands an already established training set 
artificially so that models would recognize Normal activities in the presence of many environments to 
minimize chances to misidentify Normal frames as Violence or Weaponized.  
Data augmentation safeguards against overfitting since it prevents learning highly specific rules that may 
not apply to real-world data. In addition, combining augmentation and regularization methods such as 
L2 and dropout will produce a rather versatile but better generalizing model with respect to unseen data. 
 
9. CONCLUSION 
The smart surveillance system proposed has proven very effective in detecting and classifying frames from 
videos into three categories that include Normal, Violent, and Weaponized. The performance of their 
system based on standard classification metrics, such as accuracy, precision, recall, and F1-score, indicated 
the strength of the system in detecting violence and weaponized actions. The model achieved 88% overall 
accuracy, signifying strong potential in detecting significant events occurring in surveillance footage. In 
particular, the GRU model performed best while identifying Violent and Weaponized frames, registering 
high recall values for the Violence category (0.93) and considerable precision for Weaponized (0.93), with 
both numbers suggesting effective detection of aggressive and threatening activities. 
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However, distinguishing between Normal and the other classes proved difficult for the model. The recall 
for the Normal class was somewhat lower (0.85), implying that a few Normal frames are misclassified as 
Violant or Weaponized. This misclassification seems to originate from something more detectable in 
aggressive behavior as opposed to Normal activities, which are subtler or more difficult to detect. Despite 
this, the precision for Normal was, however, quite high (0.94), meaning that normally we would get the 
right classification by the model whenever model classified something as Normal.  
The model showed quite a strong balance across the three classes and relatively high precision, recall, and 
F1 scores for the Violence and Weaponized classes. The confusion matrix classification report indicated 
that the capability of detecting Violence was best in case of the model compared with Weaponized; 
however, Normal activities still needed fine-tuning since a model would most likely misinterpret these 
frames as being violent or weaponized.  
An evaluation of the computation efficiency of the model confirmed that it had the capability of 
processing video frames in real-time and could thus facilitate surveillance applications. Despite 
experiencing some overfitting during the training, the GRU model was ably flexible and learned quite 
well the patterns in the data set to identify critical behaviors.  
To sum up, the smart surveillance system was, thus, effective in the detection of violent and weaponized 
activities and led to beneficial outcomes from real-time video analysis. Although further refinement is 
needed in classifying Normal behaviors, the model is quite promising to be put into practice for security 
systems. 
10. Future Enhancement 
The smart surveillance system proposed exhibits a good performance; still, several aspects call for 
deliberation for further enhancement towards its efficacy and applicability. One significant dimension of 
enhancement is increasing the capacity of the model to discriminate Normal behavior from Violent 
behavior. Presently, the subject model fails at such subtlety in Normal activities, very often misjudging 
those for Violent or Weaponized activities. Hence, it is pertinent to increase the diversity of the training 
data. A wider range of Normal activities should be introduced from various environments, lighting 
conditions, and viewing angles to help the model learn the subtlety in everyday activities and better 
accommodate them in the dissimilarity with violent acts. Furthermore, class rebalancing or data 
augmentation, such as rotation, flip, and brightness alteration, may help with increasing the robustness 
of the model against overfitting and adaptation to a variety of conditions found under surveillance.  
Regularization of the model is yet another area to consider for improvement. Overfitting has been an 
issue, particularly on the training data, as identified by fluctuations in validation accuracy and loss, during 
the training session. The introduction of regularization techniques such as dropout, L2 regularization, or 
early stopping would facilitate enhanced generalization over the unseen data, thus improving performance 
on rare or complex scenarios that are not well presented in the training dataset. Thus, the modeling would 
not concentrate  too much on particular patterns but look for generalized features that would be relevant 
in real-world surveillance.  
And truly, the next big enhancement would be on minimizing the computational overhead for real-time 
processing. Though the model has performed satisfactorily on accuracy, processing video frames in a 
timely manner at high resolution takes computational prowess. Optimization of speed and efficiency, 
thereby fast decision-making without compromise on accuracy, can be achieved through adoption of 
model pruning, quantization, and the use of lightweight models like MobileNet. Also, refinement of the 
architecture to accommodate edge cases like obstruction or extreme lighting changes would render the 
model more robust to varied surveillance scenarios.  
A final area worth exploring is the synergistic incorporation of multi-modal data (such as audio, motion 
sensors, and environmental inputs) to bestow additional context upon video surveillance, perhaps 
allowing activity classification more accurately in convoluted environments. Such enhancements would 
go far towards enacting the system with improvements in accuracy, efficiency, and reliability, thus 
rendering it a more robust and general-purpose solution for real-time surveillance across a variety of 
application domains. 
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