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Abstract 
Ecological assessment is crucial for sustainable management of resources and human wellbeing. However, Assessing the 
ecological condition of a region is highly complex, as it is influenced by numerous factors and dynamic processes. In current 
study, a remote sensing based ecological framework is proposed to quantify the ecological status considering 10 indicators 
derived directly or indirectly from Landsat and SRTM DEM images, for Mahi Bajaj Sagar Dam catchment from year 2000 
to 2020. These 10 indicators are selected as ecological indicators defining the landscape, habitant, topography and 
Hydrological condition of the ecology. The Mahi Bajaj Sagar Dam catchment is very important in providing the ecosystem 
services for human wellbeing in Banswara district of Rajasthan. Each indicator was evaluated, normalised and spatially 
mapped using analytical hierarchy process (AHP), Principal Component Analysis (PCA) and geographical information system 
(GIS). Using the proposed framework, ecological maps were prepared and presented in 5 levels consisting of very poor, poor, 
average, good and very good ecological status, representing 49.94%, 26.68%, 0.01%, 6.77 and 16.60% for year 2000 and 
19.37%, 62.44%, 3.38%, 8.95% and 5.86%  for year 2020, of the study area, respectively.  It is identified that there is 
quantitively shift from very poor ecological areas to poor one from year 2000 to 2020 but 64.6% change in very good ecological 
conditions has been observed due to increase in anthropogenic activities. The proposed is feasible for evaluating long-term 
ecological change and quantification of ecological status. The proposed remote sensing based ecological framework integrates 
indicators using GIS, AHP and PCA  for ecological monitoring and assessment is useful for ecosystem services, environmental 
protection and proper planning of available resources for future needs and provide the alarming locations for further 
developments. 
Keywords: indicator, PCA, AHP, GIS, ecological assessment 
 
1. INTRODUCTION 
The rapid urbanization and industrialization have led to unmatched environmental degradation, threatening the 
foundation of ecological status and human well-being (2428; MEA, 2005). This environmental degradation 
resulting in reduced ecosystem services from the environment. Benefits obtained from ecosystem for human 
wellbeing are termed as ecosystem services (ES) (MEA, 2005). Monitoring and quantification of ecological status 
still a challenging area. Ecological status is crucial for understanding the relation between human encroachments 
and the ecosystem, and for framing effective policies for environmental sustainability (Liu et al., 2015). Ecological 
assessment helps in identifying the ecological status of any area in terms of indicators showing healthy or weak 
ecology, which are essential for policy makers and decision makers to frame policies for proper restoration of 
ecology and identify temporal change in ecology. (Singh et al,,2024; Wang et al., 2008; Tran et al., 2007; Adger, 
2002, Nguyen  et al., 2016).  
Traditional field-based methods for ecological assessment have limitations of spatial coverage, temporal analysis, 
and cost-effectiveness (Turner et al., 2003). Remote sensing technologies serve as a powerful tool for collecting 
data on ecological parameters over large areas and long periods of time (Kerr & Ostrovsky, 2003; Pettorelli et al., 
2014). Remote sensing-based ecological assessment involves the use of airborne or satellite images to evaluate the 
health and functioning of ecosystems, including vegetation cover, land use/land cover changes, and biodiversity 
(Skidmore et al., 2021). Recent studies have shown the application and effectiveness of remote sensing in 
monitoring ecological indicators such as vegetation productivity (Gao et al., 2020), water quality (Page et al., 
2019), and ecological health (Singh et al., 2024).  
Various researcher and authors have been developing indices or indicators like RSEI (Xu et al., 2019), RSBI 
(Singh et al., 2024), NDVI (Meneses-Tovar., 2011) and descriptive measures like vulnerability maps (Nguyen  et 
al., 2016), landscape matrix based, benefit transfer based  for ecological monitoring (Kuriqi et al., 2019; Trevisan 
et al., 2018; Moretti, 2007;Trevisan et al., 2016a ;Gustafsson and Parker, 1992). Still the precise and composite 
framework or index is missing to evaluate the ecological status considering the natural as well as man made 
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factors. In current study ecological conditions like landscape, habitant, topographic and hydrological are 
considered and quantified using Landsat imageries and available digital elevation model. 
 Current study proposed a remote sensing-based ecological framework for  ecological assessment for Mahi Bajaj 
Sagar Dam catchment located in Banswara district of Rajasthan, India. Ecological status has been monitored 
from year 2000 to 2020 to visualize the change over 2 decades. This study area is having a significant 
environmental concern due to its unique topography and climate. Singh et al., 2024 identified the 36.4% 
degradation in ecological status over the period of 2 decades based on RSBI index. To monitor and map the 
ecological status of the study area, an assessment framework consisting of 10 ecological indicators indicating 
Landscape, habitant, topographic and hydrological conditions is proposed. A variety of techniques are available 
to integrate the sub indicators into single indicator for quantifying the ecology. These techniques are ANN 
method, principal component analysis (PCA), analytical hierarchy process (AHP) and  fuzzy analytic hierarchy 
process (FAHP)method ( Park et al., 2004; Ying et al., 2007; Song et al., 2010; Li et al., 2009; Thanh and De 
Smedt, 2011).  In current study AHP is partly used to integrate the sub indicators at initial stage i.e level 1 stage, 
later on PCA is used for ecological assessment at level 2 stage.  
The proposed ecological assessment framework helps in identifying the ecological status and concern areas for 
decision makers and poly makers for restoration of ecology .This approach will give quick and precise status of 
ecology over a period to identify the change in ecological status also. So that decision-makers can obtain objective 
measurements and comparative context to support environmental decision-making and develop effective 
strategies for sustainable development in the Mahi Bajaj Sagar Dam catchment and this framework can be 
adopted for any type of areas. 
 
2. MATERIAL AND METHODS 
2.1. Study area 
Mahi Bajaj Sagar Dam, located in Banswara district of Rajasthan, is one of the largest reservoirs in the country, 
serves as major source for water supply, electricity generation and irrigation. Constructed on the Mahi River, the 
reservoir has a significant impact on the surrounding ecosystem and supports the livelihoods. Despite its 
importance, the reservoir faces various challenges, including sedimentation, water quality degradation, and 
climate change impacts. The Mahi Bajaj Sagar Dam catchment spread over 6149 sq. km area. This study aims to 
investigate the ecological status of study area to better understand the dynamics of the catchment services and 
provide insights for decision makers for sustainable management. 
 
 
 
 
 

 
Figure 1: The map of India showing Mahi Bajaj Sagar Dam catchment 
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2.2. Materials 
The primary and secondary/derived data used in study are shown in table 1. 
 

Table 1: Details of primary and secondary data 
Primary Data 
1. Remotely sensed, October 2020 Landsat 8 OLI U.S. Geological Survey (USGS). 
2. Remotely sensed, October 2020 Landsat 7 ETM+   
3. SRTM Digital elevation model (DEM) 
Secondary Data 
1. NDVI- Normalized Difference Vegetation Index Landsat images 
2. LST- Land Surface Temperature Landsat images 
3. NDBI- Normalized Difference Built-up Index Landsat images 
4. NDMI- Normalized Difference Moisture Index Landsat images 
5. LULC-Land Use Land Cover Landsat images 
7. Slope DEM 
8. Distance from Water Bodies LULC and Arc GIS 
9. Distance from Built areas LULC and Arc GIS 
10. Runoff coefficient LULC based with Drainage 

guidelines 
 
2.3. Methodology 
The remote sensing based ecological assessment framework is shown in figure 2. Methodology  deals with 
integration of multiple ecological indicators derived from both Landsat satellite data and Digital Elevation Model 
(DEM) sources. Key indicators from Landsat include LULC, NDVI, LST , distance from water bodies, distance 
from built-up areas, NDBI, NDMI, and runoff coefficient. From the DEM, slope and elevation data are 
incorporated. These parameters are systematically grouped into four major condition categories: landscape 
condition, habitant condition, hydrological condition, and topographic condition. The landscape condition is 
determined by land use/land cover and NDVI, while the habitant condition is influenced by LST, NDBI, 
proximity to water bodies, and built-up areas. Hydrological condition is evaluated using NDMI, and runoff 
coefficient, and topographic condition is assessed using slope and elevation. To ensure robust and comprehensive 
analysis, the indicators are first clubbed using the Analytic Hierarchy Process (AHP) at level 1 with internal 
weights as shown in table 2 maintaining consistency ration less than 5% to incorporate expert judgment and 
subjective weighting, and then further refined using Principal Component Analysis (PCA) at level 2 to objectively 
determine the ecological status. The combined results from these processes are then used to derive the overall 
ecological status, providing a scientifically sound and multi-dimensional evaluation of ecosystem health. 
 

 
Figure 2: The proposed ecological assessment framework 
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Table 2: Inter weights of indicators at level 1 for AHP process with dependency of indicators on ecology 

S.No. Factors Indicators Weights Dependency 
1. Landscape LULC 0.667 Directly 

NDVI 0.333 Directly 
2. Habitant LST 0.467 Indirectly 

NDBI 0.16 Indirectly 
Distance from water Body 0.095 Indirectly 
Distance from Built up 0.277 Directly 

3. Hydrological NDMI 0.5 Directly 
Runoff Coefficient 0.5 Indirectly 

4. Topography Elevation 0.6 Indirectly 
Slope 0.4 Indirectly 

 
Landscape condition 
Landscape plays a dominating role in safeguarding and protecting various diversities, human well being and 
improving the ecological quality. Natural pervious land cover act as  very good ecological indicator showing 
healthy ecosystem as compared to impervious land covers for ecological assessment. Impervious land cover such 
as built up, rocky lands increases surface runoff resulting in sedimentation, change in instream flow patterns and 
increase in temperatures.  Many researchers identifies that lower portion of impervious land cover significantly 
affect ecological health (Wang and Yin, 1997; King et al., 2011). Two ecological indicators were selected to 
quantify the landscape condition i.e  LULC and NDVI.  
Habitant Conditions 
The ecological status of habitats depends on the surrounding landscape and temperature. The potential for 
various living beings to migrate in catchments for search  of water and peace i.e. away from built up areas serve 
as an indicator of the habitat condition. Four ecological indicators were selected to quantify the habitant 
condition i.e  LST, NDBI, Distance from water bodies and distance from built area. 
Hydrological Conditions 
Hydrology deals with relationship between atmosphere and hydrological processes. Impact of hydrology on 
ecology is very vast, but in current study, NDMI and runoff potential based on LULC is used as hydrological 
indicator to to quantify the hydrological conditions.  
Topographic Conditions 
To assess the topographical characteristics of the area, both terrain elevation and slope angle were integrated 
using the Analytic Hierarchy Process (AHP). Slope angle serves as a reliable indicator for factors such as soil 
erosion, flooding risk, inundation, and construction management. Changes in elevation can greatly influence 
processes like evapotranspiration, transportation, soil properties, regional climate, and other factors that may 
contribute to environmental vulnerability. 
 
3. RESULTS AND DISCUSSION 
Based on the framework shown in methodology landscape condition, habitant condition, hydrological condition, 
and topographic condition were identified using AHP  at level 1 stage and finally integrated using PCA to 
monitor ecological status at level 2 stage.  Before using the indicators, all the indicators are normalized from 0 to 
1 showing the value 0 for poor ecological status and value 1 for good ecological status based on criteria discussed 
in Table 6 of  appendix section.  
3.1. Landscape condition 
The ecological assessment of landscape condition between the years 2000 and 2020 reveals notable shifts across 
all condition classes. In 2000, 25.99% of the landscape was categorized as "Very Poor," but this decreased 
significantly to 13.83% by 2020. Conversely, the proportion of the landscape in "Poor" condition rose sharply 
from 49.64% in 2000 to 68.10% in 2020, indicating a general decline in landscape quality. The "Average" 
condition class saw a modest increase, moving from 1.00% in 2000 to 3.25% in 2020. Areas classified as "Good" 
also increased, rising from 6.77% to 8.95% over the two decades. However, the percentage of landscape in "Very 
Good" condition dropped substantially, from 16.60% in 2000 to just 5.86% in 2020. These changes suggest that 
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while there has been some improvement in the most degraded areas, there has been an overall shift toward poorer 
landscape conditions, with a marked reduction in the extent of high-quality landscapes 
 

  
Figure 3: Landscape conditons of study area for the year 2000 and 2020 

 
Figure 4: Comparative analysis of ecological status for landscape condition from year 2000 to 2020 

 
3.2. Habitant Conditions 
Analysis of the habitat condition data over two decades reveals a notable shift toward improved ecological status 
in the study area. In 2000, 11.87% of the area was classified as "Poor," 85.76% as "Average," and 2.36% as "Good," 
with no areas in either the "Very Poor" or "Very Good" categories. By 2020, the proportion of "Poor" habitat 
decreased to 5.28%, while "Average" condition increased substantially to 92.31%, and "Good" remained nearly 
unchanged at 2.41%; "Very Poor" and "Very Good" categories continued to be absent1. The reduction in "Poor" 
areas and the increase in "Average" habitat suggest a general improvement in ecological conditions, likely due to 
better land management, conservation efforts, or natural regeneration processes. The stability in the "Good" 
category and continued absence of extreme classes indicate that while severe degradation has been avoided and 
moderate recovery achieved, significant gains toward high-quality habitats have yet to occur. 
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Figure 5: Habitant conditons of study area for the year 2000 and 2020 

 
Figure 6: Comparative analysis of ecological status for habitant condition from year 2000 to 2020 

 
3.3. Hydrological Condition 
The hydrological assessment of the Mahi Bajaj Sagar catchment, based on the ecological condition classes from 
2000 to 2020, reveals several notable trends. In 2000, the majority of the catchment (49.34%) was in "Average" 
hydrological condition, with 24.24% classified as "Good" and 25.43% as "Poor." Only 0.99% of the area was in 
"Very Poor" condition, and there were no areas rated as "Very Good." 
By 2020, the proportion of the catchment in "Average" condition remained almost unchanged at 48.93%. 
However, the area in "Good" condition increased significantly to 36.81%, indicating improvement in 
hydrological health in a substantial portion of the catchment. The percentage of the landscape in "Poor" 
condition decreased markedly to 11.11%, suggesting successful mitigation of some hydrological stressors. 
Conversely, the "Very Poor" category increased to 3.15%, indicating localized areas of worsening hydrological 
condition. The "Very Good" class remained absent in both years. 
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Overall, the hydrological assessment indicates a positive shift, with a decrease in "Poor" areas and an increase in 
"Good" condition, although some areas have deteriorated to "Very Poor." The persistence of a large proportion 
of the area in "Average" condition suggests ongoing challenges, but the overall trend points toward gradual 
improvement in hydrological health within the Mahi Bajaj Sagar catchment. 
 

  
Figure 7: Hydrological conditons of study area for the year 2000 and 2020 

 
Figure 8: Comparative analysis of ecological status for hydrological condition from year 2000 to 2020 

 
3.4. Topography 
The topographic condition assessment of the Mahi Bajaj Sagar catchment indicates a predominantly favorable 
landscape profile. According to the data, the majority of the catchment area falls under "Good" topographic 
condition, covering 54.73% of the region. "Average" conditions account for 35.05%, while "Very Good" 
conditions constitute 9.88%. Only a small fraction of the area is classified as "Poor" (0.32%) or "Very Poor" 
(0.01%). This distribution suggests that the catchment is largely characterized by stable and suitable topographic 
features, which are likely to support effective water movement, soil stability, and overall ecological health. The 
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minimal extent of "Poor" and "Very Poor" areas indicates limited topographic constraints, reducing risks such as 
erosion or waterlogging and favoring both ecological processes and land management within the catchment. 
 

 

 
 

 

Figure 9:  Topographic condition of study area with percentage assessment 
 

Table 3: Ecological status of each indicator for two decades after AHP integration 

  
Landscape 
condition Habitant condition 

Hydrological 
condition 

Topographic 
Conditions 

Class/LULC 2000 2020 2000 2020 2000 2020 
Very Poor 25.99% 13.83% 0.00% 0.00% 0.99% 3.15% 0.01% 
Poor 49.64% 68.10% 11.87% 5.28% 25.43% 11.11% 0.32% 
Average 1.00% 3.25% 85.76% 92.31% 49.34% 48.93% 35.05% 
Good 6.77% 8.95% 2.36% 2.41% 24.24% 36.81% 54.73% 
Very Good 16.60% 5.86% 0.00% 0.00% 0.00% 0.00% 9.88% 

 
The correlation matrix of indicators extracted from Landsat data reveals several important relationships among 
LST, NDBI, NDVI, and NDMI. LST shows a high positive correlation with NDBI (0.63), indicating that areas 
with more built-up surfaces tend to have higher temperatures. This is likely due to property of built up areas 
having concrete and asphalt structures, retains more heat than natural surfaces. LST is negatively correlated with 
both NDVI (-0.33) and NDMI (-0.59), which means that areas with more vegetation and higher moisture content 
are generally cooler; this can be attributed to the cooling effect of vegetation through shading and 
evapotranspiration, as well as the moderating influence of moisture. NDBI has a very high negative correlation 
with NDVI (-0.86) and an even stronger negative correlation with NDMI (-0.94), reflecting that urbanized, built-
up areas typically replace vegetated and moist surfaces, leading to drier and less green landscapes. The strong 
positive correlation between NDVI and NDMI (0.81) indicates that areas with more vegetation also tend to have 
higher moisture content, which is expected since healthy vegetation is often associated with better soil and surface 
moisture. These observed correlations are consistent with established urban ecological processes, where 
urbanization leads to a loss of vegetation and moisture, resulting in increased surface temperatures and altered 
local microclimates. 
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Table 4: Correlation of remote sensing based indicators for ecological assessment 
  NDBI NDMI NDVI LST 
NDBI 1       
NDMI -0.94 1     
NDVI -0.86 0.81 1   
LST 0.63 -0.59 -0.33 1 

 
3.5. Ecological Assessment 
The ecological assessment using Principal Component Analysis (PCA) for the years 2000 and 2020 integrates 
landscape, habitat, hydrological, and topographic conditions to provide a comprehensive view of ecosystem status 
in the study area. The first principal component (PC1) accounts for 58.25% of the total variance, indicating that 
the majority of ecological variability across these four dimensions is effectively captured by this single axis 
dominated by landscape and hydrological conditions, which represents a robust summary of overall ecological 
condition. 
In 2000, the assessment shows that nearly half of the area (49.94%) was in "Very Poor" ecological status, with 
26.68% classified as "Poor," 6.77% as "Good," and 16.60% as "Very Good." There were no areas in the "Average" 
category. By 2020, there is a marked shift: the "Very Poor" class drops significantly to 19.37%, while the "Poor" 
category rises sharply to 62.44%. The "Average" condition appears for the first time at 3.38%, and "Good" and 
"Very Good" categories decrease to 8.95% and 5.86%, respectively. 
This pattern suggests a substantial reduction in the most severely degraded areas, but also a pronounced 
expansion of areas with suboptimal ecological status ("Poor"). The decrease in "Very Good" and "Good" areas 
indicates that, while extreme degradation has lessened, high-quality habitats have also diminished over time. 
These trends may be attributed to factors such as intensified land use, ongoing anthropogenic pressures, partial 
ecological restoration, and shifts in water and habitat management practices. The emergence of the "Average" 
category in 2020 reflects some improvement and stabilization, likely due to targeted interventions or natural 
recovery processes, but the overall ecological quality remains a concern, with the majority of the area still falling 
into the "Poor" class. 
In summary, PCA proves to be a powerful tool for integrating diverse ecological indicators and tracking changes 
over time, providing actionable insights for ecosystem management and highlighting the need for continued 
restoration and protection efforts to improve ecological status across the landscape. 
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Figure 10: Ecological status of study area from year 2000 to 2020 

  
 

 
Figure 11: Comparative analysis of ecological status from year 2000 to 2020 

 
4. CONCLUSION 
The ecological assessment of the study area from year 2000 to  year 2020, considering landscape condition, 
habitat condition, hydrological condition, and topographic condition, demonstrates that Principal Component 
Analysis (PCA) is an effective and robust tool for integrated ecological evaluation. The PCA method efficiently 
synthesizes multiple ecological indicators into composite indices, capturing the complex interactions and overall 
trends in ecosystem health over time. The data reveal notable shifts in condition classes: for example, the 
landscape condition shows a decrease in "Very Poor" areas from 25.99% to 13.83%, while "Poor" areas increase, 
indicating changes in degradation and recovery patterns. Habitat condition remains largely stable in "Average" 
and "Poor" classes, with slight improvements in "Good" condition. Hydrological condition improves with a rise 
in "Good" condition from 24.24% to 36.81%, and topographic condition is predominantly stable, with over half 
the area in "Good" condition. 
Importantly, the ecological status derived from these multiple dimensions reflects these shifts, with the "Very 
Poor" ecological status decreasing from 49.94% to 19.37%, and the "Poor" status increasing to 62.44%, 
highlighting ongoing ecological pressures despite some improvements. This integrated ecological status metric, 
which PCA helps to derive, provides a clear, quantitative summary of ecosystem health that can guide 
management and restoration efforts. 
Overall, the proposed remote sensing-based method by incorporating GIS, AHP and PCA proves to be a valuable 
approach for ecological assessment in the catchment because it consolidates diverse environmental variables into 
meaningful components, enabling clear detection of spatial and temporal trends. The use of ecological status as 
a synthesized indicator further supports targeted decision-making by highlighting areas of concern and 
improvement. This comprehensive assessment underscores the dynamic nature of the catchment’s ecology and 
the importance of continuous monitoring using advanced multivariate techniques like PCA to inform sustainable 
ecosystem management. 
 
Appendix 
A-1. Preparation of LULC 
A supervised classification methodology incorporating the maximum likelihood classifier algorithm was 
employed to analyse multi-spectral satellite data spanning 2000–2020, enabling the identification of land use and 
land cover (LULC) patterns. Six primary LULC categories—forest, water bodies, agricultural land, shrubland, 
urban settlements, and barren/rocky terrain—were delineated across the study region. The spatiotemporal 
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changes in these categories over the 20-year period are visualized in Figure 12 and quantitatively detailed in Table 
5. 
 
To assess classification precision, 500 randomly sampled points were cross-verified against high-resolution Google 
Earth datasets. The analysis yielded overall accuracies of 82% (2000) and 88% (2020), with supporting Kappa 
coefficients demonstrating strong agreement between classification outputs and ground-truth references. These 
metrics underscore the methodological consistency and validity of the LULC mapping process. 
 

Table 5: Details of Land use land cover in the study area for the year 2000 and 2020 

S.No. Class 
Year 
2000 2020 

1. Forest 16.60% 5.86% 

2. 
Rocky 
Terrain 25.43% 11.17% 

3. 
Crop 
Land 49.64% 68.14% 

4. Shrubs 6.77% 8.95% 
5. Water 1.00% 3.15% 

6. 
Built 
Up 0.56% 2.73% 

 
 
 

 
 

Figure 12: Land use land cover map of study area  for the year 2000 and 2020. 
 
For ecological assessment, LULC classes are given weightage according ecosystem services. Based on LULC 
based ecosystem services as suggested by Costanza et al., 1997, weightage of each class is assigned as shown in 
table 6. 
 
A-2 NDBI-Normalized Difference Build-Up Index 
The NDBI is a popular remote sensing tool for detecting and mapping urban and built-up areas. It is calculated 
using the following equation (Zha et al., 2003): 

 
NDBI=(SWIR2−NIR)/(SWIR2+NIR) 

In this formula, SWIR2 represents the shortwave infrared band, and NIR stands for the near-infrared band. 
Built-up regions typically yield positive NDBI values, indicating the presence of buildings and urban 
infrastructure, while negative values are usually associated with non-urban features such as vegetation or water 
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bodies. This index is widely utilized for identifying human settlements and mapping urban development. Table 
6 shows the range of NDBI and its normalised values for ecological assessment. 
 

  
Figure 13: NDBI map of study area for the year 2000 and 2020 

A-3 NDMI-Normalized Difference Moisture Index 
The Normalized Difference Moisture Index (NDMI) is designed to assess variations in moisture content across 
different landscape features, particularly focusing on soils, rocks, and vegetation. NDMI is calculated using the 
following formula: 

 
NDMI=(NIR−SWIR)/(NIR+SWIR) 

where NIR stands for near-infrared and SWIR for short-wave infrared reflectance. NDMI values typically range 
from -1 to +1. Higher NDMI values (above 0.1) indicate areas with greater moisture content, while values 
approaching -1 signify low moisture levels. This index is widely used for monitoring vegetation water status, 
detecting drought conditions, and evaluating overall landscape moisture. Table 6 shows the range of NDMI and 
its normalised values for ecological assessment. 
 

  
Figure 14: NDMI map of study area for the year 2000 and 2020 
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A-4 NDVI-Normalized Difference Vegetation Index 
The Normalized Difference Vegetation Index (NDVI) is a widely used indicator for assessing the presence and 
health of vegetation using remote sensing data. NDVI is calculated with the formula: 
 

NDVI=(NIR−RED)/(NIR+RED) 
where NIR represents the reflectance in the near-infrared band and RED is the reflectance in the red band. NDVI 
values range from -1 to +1. Negative values typically indicate water or non-vegetated surfaces, values near zero 
correspond to bare soil or sparsely vegetated areas such as grasslands, and values approaching +1 signify dense, 
healthy vegetation. This index is a reliable tool for monitoring vegetation cover and evaluating plant vigor across 
various landscapes. Table 6 shows the range of NDMI and its normalised values for ecological assessment. 

  
Figure 15: NDVI map of study area for the year 2000 and 2020 

 
A-5 LST- Land Surface Temperature 
Land Surface Temperature (LST) is an important environmental metric used to evaluate heat levels on the Earth's 
surface. It captures the dynamic relationship among land, water, and atmospheric elements, and fluctuations in 
LST over time can indicate shifts in these interactions. Remote sensing—especially using thermal infrared data 
from satellites—has become a standard approach for measuring LST, making it possible to observe temperature 
patterns over vast and varied landscapes. 
The estimation of LST often employs the Single Channel (SC) algorithm, which relies on thermal bands captured 
in satellite images. This method generally involves transforming thermal band readings into radiance values and 
then computing the brightness temperature. The entire process can be efficiently executed with Python 
programming or Geographic Information System (GIS) tools, providing a streamlined and repeatable way to 
derive LST from satellite data. Table 6 presents the observed LST values along with their normalized counterparts, 
which are useful for ecological evaluations. 
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Figure 16: LST map of study area for the year 2000 and 2020 

 
A-6 Distance from residential areas 
This indicator reflects the extent of human development and urbanization patterns. Typically, residential zones 
can contribute to various forms of pollution, including household waste disposal and emissions from vehicle 
traffic. To assess this factor, buffer zones were established around residential areas and then using GIS interface 
distance of each pixel from residential areas is calculated on a grod of 30 x 30 m. Table 6 displays the range for 
this indicator along with its normalized values, which are used for ecological analysis. 
 

  
Figure 17:Distance from built up area map of study area for the year 2000 and 2020 

 
A-7 DEM  
A Digital Elevation Model (DEM) with a spatial resolution of 30 meters was employed in this study. The range 
of values for this indicator, as well as their normalized equivalents for ecological assessment, are presented in 
Table 6 
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Figure 18: DEM map of study area 

 
A-8 Slope angle 
Slope angle is a fundamental parameter in assessing ecological status, as it influences the region’s climatic 
conditions. In this study, slope angles were derived from the Digital Elevation Model (DEM), with values ranging 
from 0° to 52.17°. Table 6 provides both the range of slope angle values and their normalized forms, which are 
used for ecological evaluation. 
 

 
Figure 19: Slope map of study area created from DEM 

 
A-9 Distances from hydrological network 
This metric highlights regions with limited access to surface water, which are often linked to heightened 
ecological vulnerability. Dry areas are particularly prone to challenges such as desertification, landfill expansion, 
and wildfires. Table 6 outlines the range of distances from hydrological networks and their normalized values 
for ecological evaluation. 
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Figure 20: Distance from water bodies map of study area for the year 2000 and 2020 

A-10 Runoff Coefficient  
According to the CPHEEO guidelines for storm water drainage, the runoff coefficient is determined based on 
land use and land cover (LULC) characteristics. Table 6 presents the runoff coefficient values along with their 
normalized counterparts, which are used for ecological assessment. 

 
Table 6: Indicators with range, normalised values and  assigned weight for identification of ecological status 

S.No. Factors Sub Class/Range 
Value Obtained 
  Normalised Value 

Global 
Weights 

2000 2020 2000 2020 

1 Landscape 
LULC 

Water 0.45 0.45 0.45 0.45 

0.667 

Forest 1 1 1 1 
Rocky Terrain 0 0 0 0 
Crop Land 0.23 0.23 0.23 0.23 
Shrubs 0.69 0.69 0.69 0.69 
Built Up 0 0 0 0 

NDVI 
min -0.14 -0.18 0.42 0.4 

0.333 
max 0.45 0.73 0.728 0.86 

2 Habitant 

LST 
min 13.99 20.35 1 0.744 

0.467 
max 36.27 38.88 0 0 

NDBI 
min -0.29 -0.39 0.64 0.69 

0.364 
max 0.195 0.27 0.4 0.36 

Distance 
from water 

Body 

min 0 0 1 1 
0.095 

max 14961 4818.8 0 0.67 

Distance 
from Built 

up 

min 0 0 0 0 
0.277 

max 11928 4356.2 1 0.365 

3 Hydrological 

NDMI 
min -0.19 -0.27 0.4 0.36 

0.5 
max 0.29 0.39 0.64 0.69 

Runoff 
Coefficient 

Water 1 1 0 0 
0.5 Forest 0.175 0.175 0.825 0.825 

Rocky Terrain 0.8 0.8 0.2 0.2 
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Crop Land 0.35 0.35 0.65 0.65 
Shrubs 0.25 0.25 0.75 0.75 
Built Up 0.58 0.58 0.42 0.42 

4 Topography 
Elevation 

min 241 241 1 1 
0.6 

max 614 614 0 0 

Slope 
min 0 0 1 1 

0.4 
max 52.17 52.17 0 0 

• Normalized values 0 represent poor ecology and 1 represent good ecology. 
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