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Abstract 
In this paper, the chromatic number of the middle graph, splitting graph, shadow graph, line graph, total graph, and the 
subdivision graph of the fuzzy path 𝑃𝑛 is determined by using fuzzy colors based on the strength of an edge incident on a vertex. 
Several important properties related to the fuzzy coloring of these graphs are established. Furthermore, an application of fuzzy 
coloring of shadow graph of fuzzy path is given. 
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1. INTRODUCTION 
Graph coloring is an early and fascinating concept in graph theory. It plays a crucial role in resource 
allocation and task scheduling, ensuring conflict-free schedules and optimal resource utilization [1]. Let  
𝐺 = (𝑉, 𝜎, 𝜇) be a fuzzy graph. Fuzzy coloring [2] is an assignment of basic or fuzzy colors to the vertices of 
𝐺, and it is a proper coloring, 

(i) if two vertices are connected by a strong edge, then they either have different basic or fuzzy colors (if 
necessary), or one vertex can have a basic color and the other can have a fuzzy color corresponding to 
different basic color. 
(ii) if two vertices are connected by a weak edge, then they either have same or different fuzzy colors, or 
one vertex can have a basic color and other can have a fuzzy color corresponding to the same basic 
color. 

The minimum number of colors (basic or fuzzy) needed for a proper fuzzy coloring of G is called the 
chromatic number of 𝐺, is denoted by 𝜒𝑓(𝐺) . In 2005, Susana Munoz et al.[3] introduced the coloring of 
fuzzy graphs and also proposed a method for coloring the vertices of fuzzy graphs with a crisp vertex set and 
a fuzzy edge set (the type 1 fuzzy graphs). In 2006, Eslahchi and Onagh [4] introduced a similar graph 
coloring technique for type-2 fuzzy graphs, characterized by fuzzy vertex and fuzzy edge sets, based on the 
concept of strong adjacency between vertices. In 2015, a new concept of fuzzy coloring of fuzzy graphs 
is proposed by Sovan Samanta et al. [5], using fuzzy colors based on the strength of an edge incident to a 
vertex. 
 Furthermore, in 2024, we found the chromatic number of certain families of fuzzy graphs, such as 
path, cycle, star, wheel, and complete graphs, using fuzzy colors based on the strength of an edge incident 
to a vertex and also derived some properties on fuzzy coloring [2]. In this paper, we extend our research to 
determine the chromatic number of the middle graph, splitting graph, shadow graph, line graph, total  graph 
and the subdivision graph of the fuzzy path 𝑃𝑛, using fuzzy colors based on the strength of an edge incident 
to a vertex. 
 This article is organized as follows:  Section 1 provides an overview of fuzzy coloring of a fuzzy graph.  
Some fundamental concepts in fuzzy graph theory that aid in the research have been reviewed in Section 2. 
In Section 3, we determine the chromatic number of the middle graph, splitting graph, shadow graph, line 
graph, total graph and the subdivision graph of the fuzzy path 𝑃𝑛. In Section 4, an application of fuzzy 
coloring of shadow graph of a fuzzy graph is given. Section 5 presents the final conclusions of this study. 
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Glossary of Symbols Used 

Symbol Meaning 
𝐺 = (𝑉, 𝐸) Crisp graph 
𝐺 = (𝑉, 𝜎, 𝜇) Fuzzy graph 
𝑃𝑛 Fuzzy path 
𝐶𝑛 Fuzzy cycle 
𝐾𝑛 Complete fuzzy graph  
𝑀(𝐺) Middle graph of a crisp graph 𝐺 
𝑀𝑓(𝐺) Middle graph of a fuzzy graph 𝐺 
𝑆(𝐺) Splitting graph of a crisp graph 𝐺 
𝑆𝑓(𝐺) Splitting graph of a fuzzy graph 𝐺 
𝐷2(𝐺) Shadow graph of a crisp graph 𝐺 
𝐷2𝑓

(𝐺) Shadow graph of a fuzzy graph 𝐺 

𝐿(𝐺) Line graph of a crisp graph 𝐺 
𝐿𝑓(𝐺) Line graph of a fuzzy graph 𝐺 
𝑇(𝐺) Total graph of a crisp graph 𝐺 
𝑇𝑓(𝐺) Total graph of a fuzzy graph 𝐺 
𝑠𝑑(𝐺) Subdivision graph of a crisp graph 𝐺 
𝑠𝑑𝑓(𝐺) Subdivision graph of a fuzzy graph 𝐺 

 
 
2. PRELIMINARIES 
The definitions from the fuzzy graph theory and the fuzzy coloring, which aid in determining the chromatic 
number of various fuzzy graphs, are reviewed in this section. 
Definition 2.1.[6] A fuzzy graph 𝐺 = (𝑉, 𝜎, µ) is a pair of functions (𝜎, µ), where 𝜎 ∶  𝑉 →  [0, 1] is 
a fuzzy subset of a non-empty set V, and µ ∶  𝑉 →  [0, 1] is a symmetric fuzzy relation on 𝜎, such that 
the relation µ(𝑣𝑖 , 𝑣𝑗) ≤ 𝜎(𝑣𝑖) ∧ 𝜎(𝑣𝑗) is satisfied for all 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉 and  (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸 ⊂ 𝑉 × 𝑉 . 
Here, 𝜎(𝑣𝑖) denote the degree of membership of the vertex 𝑣𝑖, and µ(𝑣𝑖, 𝑣𝑗) denotes the degree of membership 
of the edge relation 𝑒𝑖𝑗 = (𝑣𝑖 , 𝑣𝑗) on 𝑉 ×  𝑉 . 
Note : In this paper, we denote 𝜎(𝑣𝑖) ∧ 𝜎(𝑣𝑗) = 𝑚𝑖𝑛{𝜎(𝑣𝑖), 𝜎(𝑣𝑗)} and          
𝜎(𝑣𝑖) ∨ 𝜎(𝑣𝑗) = 𝑚𝑎𝑥{𝜎(𝑣𝑖), 𝜎(𝑣𝑗)}. 
Definition 2.2.[7] Let 𝐺 = (𝑉, 𝜎, µ) be a fuzzy graph with underlying crisp graph 𝐺∗.    A  fuzzy path 
𝑃𝑛 in 𝐺 is a sequence of distinct vertices 𝑣0, 𝑣1, . . . , 𝑣𝑛 such that µ(𝑣𝑖−1, 𝑣𝑖) > 0, 1 ≤ 𝑖 ≤ 𝑛. Here 
𝑛 ≥ 1 is called the length of the path 𝑃𝑛. 
Definition 2.3. [7] A fuzzy path 𝑃𝑛 in which 𝑣0 = 𝑣𝑛 and 𝑛 ≥ 3, then 𝑃𝑛 is called a fuzzy cycle 𝐶𝑛 of 
length 𝑛. 
Definition 2.4. [3] Let 𝐺 = (𝑉, 𝜎, 𝜇) be a fuzzy graph and an edge  𝑒 = (𝑣𝑖 , 𝑣𝑗) ∈ 𝐺 is called strong if 
1

2
{𝜎(𝑣𝑖) ⋀ 𝜎(𝑣𝑗)} ≤ 𝜇(𝑣𝑖 , 𝑣𝑗) and it is called weak otherwise. 

Definition 2.5.[3] Let 𝐺 = (𝑉, 𝜎, µ) be a fuzzy graph and the strength of an edge (𝑣𝑖 , 𝑣𝑗) ∈ 𝐺 is 
denoted by, 

𝐼(𝑣𝑖, 𝑣𝑗) =
𝜇(𝑣𝑖, 𝑣𝑗)

𝜎(𝑣𝑖) ∧ 𝜎(𝑣𝑗)
. 

Definition 2.6.[8] A fuzzy graph 𝐺 = (𝑉, 𝜎, µ) is called a strong fuzzy graph if each edge in 𝐺 is a strong 
edge. 
Definition 2.7.[2] Let 𝐺 = (𝑉, 𝜎, µ) be a fuzzy graph. Fuzzy coloring is an assignment of basic or fuzzy 
colors to the vertices of a fuzzy graph 𝐺 and it is proper, 
(i)   if two vertices are connected by a strong edge, then they either have different basic or fuzzy colors (if 
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necessary), or one vertex can have a basic color and the other can have a fuzzy color corresponding to 
different basic color. 
(ii) if two vertices are connected by a weak edge, then they either have same or different fuzzy colors, or one 
vertex can have a basic color and other can have a fuzzy color corresponding to the same basic color. 

Definition 2.8.[2] Let 𝐺 = (𝑉, 𝜎, µ) be a fuzzy graph. Perfect fuzzy coloring (optimal fuzzy coloring) is 
an assignment of minimum number of colors (basic or fuzzy) for a proper fuzzy coloring of 𝐺. 
Definition 2.9.[2] Let 𝐺 = (𝑉, 𝜎, µ) be a fuzzy graph. The minimum number of colors (basic or fuzzy) 
needed for a proper fuzzy coloring of G is called the chromatic number of 𝐺 and is denoted by 𝜒𝑓(𝐺). 
Lemma 2.1.[2] Let 𝑃𝑛 be a fuzzy path of length 𝑛. If all edges are weak in 𝑃𝑛, then 𝜒𝑓(𝑃𝑛) = 1. 
Lemma 2.2.[2] Let 𝑃𝑛 be a fuzzy path of length 𝑛. If all the edges are strong in 𝑃𝑛, then  𝜒𝑓(𝑃𝑛)= 2. 
Theorem 2.1.[2] Let 𝑃𝑛 be a fuzzy path of length 𝑛. If atleast one edge is strong in 𝑃𝑛, then  
𝜒𝑓(𝑃𝑛) = 2. 
Lemma 2.3.[2] Let 𝐶𝑛 be a fuzzy cycle of length 𝑛. If all edges are weak in 𝐶𝑛, then 𝜒𝑓(𝐶𝑛) = 1. 
Lemma 2.4.[2] Let 𝐶𝑛 be a fuzzy cycle of length 𝑛. If all the edges are strong in 𝐶𝑛, then 

𝜒𝑓(𝐶𝑛) = {
2  𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛,
3  𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑.

 

Theorem 2.2.[ 2 ]  Let 𝐶𝑛 be a fuzzy cycle of length 𝑛. If weak and strong edges are distributed in any sequence 
in 𝐶𝑛, then 

𝜒𝑓(𝐶𝑛) = {
3    𝑖𝑓 

𝑛

2
 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑟𝑜𝑛𝑔 𝑎𝑛𝑑 𝑤𝑒𝑎𝑘 𝑒𝑑𝑔𝑒𝑠 𝑎𝑟𝑒 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑙𝑦

𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑖𝑛 𝐶𝑛, 𝑤ℎ𝑒𝑟𝑒 𝑛(≥ 6)𝑖𝑠 𝑒𝑣𝑒𝑛,                     
2   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                                                                          

 

 
Theorem 2.3. [9] Let 𝐺1(𝑉1, 𝐸1) and 𝐺2(𝑉2, 𝐸2) be two fuzzy graphs, the chromatic numbers of 𝐺1 and 𝐺2 be 
𝜒𝑓(𝐺1) and 𝜒𝑓(𝐺2), respectively. If fuzzy graph 𝐺(𝑉, 𝐸) is the union of two fuzzy graphs 𝐺1 and 𝐺2, then 
the chromatic number of 𝐺 satisfies 𝑚𝑎𝑥{𝜒𝑓(𝐺1), 𝜒𝑓(𝐺2)} ≤ 𝜒𝑓(𝐺) ≤ 𝜒𝑓(𝐺1) + 𝜒𝑓(𝐺2). 

Theorem 2.4. [10] The complete graph 𝐾𝑛 has Hamiltonian decomposition for all n. i.e., 𝐾2𝑛+1 =⊕ 𝑛𝐶2𝑛+1 
and 𝐾2𝑛 = 𝐶2n ⊕ 𝑛𝑃1. 

Proof. The result is trivially true for 𝑛 = 1 and 𝑛 = 2. Let 𝑛 = 2𝑚 + 1 ≥ 3 be odd. Let the vertices of 𝐾𝑛 
be labeled 𝑣0, 𝑣1, … , 𝑣2𝑚. Let 𝐶 be the Hamilton cycle 
𝑣0 𝑣1 𝑣2 𝑣2𝑚 𝑣3 𝑣2𝑚−1 𝑣4 𝑣2𝑚−2 … 𝑣𝑚+3 𝑣𝑚 𝑣𝑚+2 𝑣𝑚+1 𝑣0 and let 𝜎 be the permutation 
(𝑣0)(𝑣1 𝑣2 𝑣3 … 𝑣2𝑚−1 𝑣2𝑚). Then 𝐶, 𝜎(𝐶), 𝜎2(𝐶), 𝜎𝑚−1(𝐶) is a Hamilton decomposition of 𝐾𝑛. 
When 𝑛 = 2𝑚 ≥ 4 is even, let the vertices of 𝐾𝑛 be labeled 𝑣0, 𝑣1, 𝑣2, … , 𝑣2𝑚−1. Let 𝐶 be the Hamilton 
cycle 𝑣0 𝑣1 𝑣2 𝑣2𝑚−1 𝑣3 𝑣2𝑚−2 … 𝑣𝑚−1 𝑣𝑚+2 𝑣𝑚 𝑣𝑚+1𝑣0 and 𝜎 be the permutation 
(𝑣0)(𝑣1 𝑣2 𝑣3 … 𝑣2𝑚−2 𝑣2𝑚−1). Then 𝐶, 𝜎(𝐶), 𝜎2(𝐶), 𝜎𝑚−2(𝐶) are 𝑚 − 1 edge disjoint Hamilton 
cycles. The remaining edges 𝑣0 𝑣𝑚, 𝑣𝑚−1 𝑣𝑚+1, 𝑣𝑚−2 𝑣𝑚+2, … , 𝑣1 𝑣2𝑚−1 form a perfect matching. 

Note [2] : i.e., 𝐾2𝑛+1 =⊕ 𝑛𝐶2𝑛+1 and 𝐾2𝑛 = 𝐶2𝑛 ⊕ 𝑛𝑃1, where ⊕ denotes edge disjoint union. 
 
3. The Chromatic Number of Some Related Graphs of Fuzzy Path 
In this section, we will find the chromatic number of the middle graph 𝑀𝑓(𝑃𝑛), splitting graph 𝑆𝑓(𝑃𝑛), shadow 
graph 𝐷2𝑓

(𝑃𝑛), line graph 𝐿𝑓(𝑃𝑛), total graph 𝑇𝑓(𝑃𝑛) and the subdivision graph 𝑠𝑑𝑓(𝑃𝑛) of the fuzzy path 𝑃𝑛. 

 
Theorem 3.1. 𝜒𝑓(𝐺) ≥  𝑚𝑎𝑥 {𝜒𝑓(𝐺𝑖) ∶  1 ≤  𝑖 ≤  𝑘}, where 𝐺 = 𝐺1 ∪ 𝐺2 ∪ … ∪ 𝐺𝑘 and 𝐺𝑖 , 1 ≤ 𝑖 ≤ 𝑘 
are fuzzy graphs. 
Proof. Proof follows from Theorem 2.3. 
 
Corollary 3.1.1. 𝜒𝑓(𝐺) ≥  𝑚𝑎𝑥 {𝜒𝑓(𝐺𝑖) ∶  1 ≤  𝑖 ≤  𝑘}, where 𝐺 = 𝐺1 ⊕ 𝐺2 ⊕ … ⊕ 𝐺𝑘 and 𝐺𝑖 , 1 ≤

 𝑖 ≤  𝑘 are edge disjoint fuzzy graphs. 
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3.1. The Chromatic Number of 𝑴𝒇(𝑷𝒏) 
Definition 3.1. The middle graph 𝑀𝑓(𝐺)(𝑉𝑀, 𝜎𝑀 , 𝜇𝑀 ) of a fuzzy graph 𝐺(𝑉, 𝜎, 𝜇) is a fuzzy graph with 
underlying crisp graph 𝑀(𝐺)(𝑉𝑀, 𝐸𝑀), with the vertex set 𝑉𝑀 =  𝑉 ∪ 𝑉𝑖𝑗  where 𝑉 = {𝑣𝑖 ∣ 𝑣𝑖 ∈ 𝑉} and  
𝑉𝑖𝑗 = {𝑣𝑖𝑗  ∀ (𝑣𝑖, 𝑣𝑗) ∈ 𝐸} and 𝜈(𝑀𝑓(𝐺)) = 𝑛 + 1 + 𝑛 = 2𝑛 + 1 and the edge set 

𝐸𝑀 =  {
(𝑣𝑖𝑗 , 𝑣𝑖), (𝑣𝑖𝑗 , 𝑣𝑗)     ∀ 𝑖 𝑎𝑛𝑑 𝑗,                                                                                 

(𝑣𝑖𝑗 , 𝑣𝑟𝑠)                    𝑖𝑓 𝑡ℎ𝑒 𝑒𝑑𝑔𝑒𝑠 (𝑣𝑖 , 𝑣𝑗) 𝑎𝑛𝑑 (𝑣𝑟, 𝑣𝑠) 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑖𝑛 𝐺.
 

Then, 𝜎𝑀(𝑣𝑖) = 𝜎(𝑣𝑖) 𝑖𝑓 𝑣𝑖 ∈ 𝑉, 0 ≤  𝑖 ≤  𝑛, 
𝜎𝑀(𝑣𝑖𝑗) = 𝜇(𝑣𝑖, 𝑣𝑗) 𝑖𝑓 (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸 ∀  𝑖 𝑎𝑛𝑑 𝑗, 
𝜇𝑀(𝑣𝑖𝑗, 𝑣𝑟𝑠) = 𝜇(𝑣𝑖, 𝑣𝑗) ⋀ 𝜇(𝑣𝑟, 𝑣𝑠) if the edges (𝑣𝑖, 𝑣𝑗) and (𝑣𝑟, 𝑣𝑠) are adjacent in G, 
and 𝜇𝑀(𝑣𝑖, 𝑣𝑖𝑗) = 𝜇𝑀(𝑣𝑗, 𝑣𝑖𝑗) = 𝜇(𝑣𝑖 , 𝑣𝑗) ∀ 𝑖 𝑎𝑛𝑑  𝑗. 
 
Example 1. The middle graph of 𝑃3 is given in Figure 1. 
 

 
 

Figure 1. Fuzzy path 𝑃3 and its middle graph 𝑀𝑓(𝑃3). 
 

Remark 3.1.1. Let 𝑃𝑛: 𝑣0𝑣1 … 𝑣𝑛−1𝑣𝑛  be a fuzzy path of length 𝑛. Then 𝑀𝑓(𝑃𝑛) = ⊕ (𝑛 − 1)𝐶3 ⊕  2𝑃1 
(by Theorem 2.4), where 𝐶3 is oriented as, 𝐶3 ∶  𝑣𝑖𝑗 𝑣𝑖+1𝑗+1 𝑣𝑖+1 𝑣𝑖𝑗 , 0 ≤ 𝑖 ≤ 𝑛 − 2, 1 ≤ 𝑗 ≤ 𝑛 and  
𝑃1's are oriented as, 𝑃1: 𝑣0 𝑣01 &  𝑃1 ∶  𝑣𝑛−1𝑛 𝑣𝑛. 
 
Lemma 3.1.1. Let 𝑃𝑛 be a fuzzy path of length 𝑛. Then 𝑀𝑓(𝑃𝑛) is a strong fuzzy graph. 
Proof. Let 𝑃𝑛 ∶ 𝑣0𝑣1 … 𝑣𝑛−1𝑣𝑛  be a fuzzy path of length 𝑛. By the definition of middle graph  of a fuzzy 
graph,  we have 
𝜎𝑀(𝑣𝑖) = 𝜎(𝑣𝑖)𝑖𝑓 𝑣𝑖 ∈ 𝑉, 1 ≤ 𝑖 ≤ 𝑛, 
𝜎𝑀(𝑣𝑖𝑗) = 𝜇(𝑣𝑖 , 𝑣𝑗)𝑖𝑓 (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸 ∀ 𝑖 &  𝑗, 
𝜇𝑀(𝑣𝑖𝑗 , 𝑣𝑟𝑠) = 𝜇(𝑣𝑖 , 𝑣𝑗) ⋀ 𝜇(𝑣𝑟, 𝑣𝑠) if the edges  (𝑣𝑖 , 𝑣𝑗) and (𝑣𝑟, 𝑣𝑠) are adjacent in 𝐺, 
and 𝜇𝑀(𝑣𝑖 , 𝑣𝑖𝑗) = 𝜇𝑀(𝑣𝑗 , 𝑣𝑖𝑗) = 𝜇(𝑣𝑖 , 𝑣𝑗) ∀ 𝑖 &  𝑗. 
Then each edges of 𝑀𝑓(𝑃𝑛) satisfies the condition of a strong edge (by definition 2.4).           
Therefore, 𝑀𝑓(𝑃𝑛) is a strong fuzzy graph. 
 
Theorem 3.1.1. If 𝑀𝑓(𝑃𝑛) is a strong fuzzy graph, then 𝜒𝑓(𝑀𝑓(𝑃𝑛)) = 3. 
Proof. Let 𝑃𝑛 ∶ 𝑣0 𝑣1 … 𝑣𝑛−1 𝑣𝑛 be a fuzzy path of length 𝑛. Then 𝑀𝑓(𝑃𝑛) = ⊕ (𝑛 − 1)𝐶3 ⊕ 2𝑃1 (by 
Remark 3.1.1) and by Lemma 3.1.1}, 𝑀𝑓(𝑃𝑛) is a strong fuzzy graph. Then by Lemma 2.4 we have,  
𝜒𝑓(𝐶3) = 3 and by Lemma 2.2 we have, 𝜒𝑓(𝑃1) = 2. Therefore by Corollary 3.1.1, 
 
     𝜒𝑓(𝑀𝑓(𝑃𝑛)) = 𝑚𝑎𝑥{𝜒𝑓(𝐶3), 𝜒𝑓(𝑃1)}   

 = max{3,2}      
  =  3. 
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Figure 2. Middle graph of the fuzzy path 𝑃𝑛. 
 

3.2. The Chromatic Number of 𝑺𝒇(𝑷𝒏) 
Definition 3.2. The splitting graph 𝑆𝑓(𝐺)(𝑉𝑆, 𝜎𝑆, 𝜇𝑆) of a fuzzy graph 𝐺(𝑉, 𝜎, 𝜇 ) is a fuzzy graph with underlying 
crisp graph 𝑆(𝐺)(𝑉𝑆, 𝐸𝑆), with the vertex set 𝑉𝑆 =  𝑉 ∪ 𝑉′  where  𝑉 =  {𝑣𝑖 ∣ 𝑣𝑖 ∈ 𝑉} and  𝑉′ = {𝑣𝑖

′ ∀ 𝑣𝑖 ∈ 𝑉} 
and the edge set 

𝐸𝑆 =  {
(𝑣𝑖 , 𝑣𝑗)            𝑖𝑓𝑣𝑖  𝑎𝑛𝑑 𝑣𝑗 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑖𝑛 𝐺,                                          

(𝑣′𝑖 , 𝑣𝑗)           𝑖𝑓 𝑣𝑖
′ ∈ 𝑉′𝑎𝑛𝑑 𝑣𝑗 ∈ 𝑉 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑣𝑖 ∈ 𝑉.     

 

Then,  𝜎𝑆(𝑣𝑖) = 𝜎𝑆(𝑣𝑖
′) = 𝜎(𝑣𝑖) 𝑓𝑜𝑟 𝑣𝑖 ∈ 𝑉 𝑎𝑛𝑑 𝑣𝑖

′ ∈ 𝑉′, 
  𝜇𝑆(𝑣𝑖, 𝑣𝑗) = 𝜇(𝑣𝑖, 𝑣𝑗) 𝑖𝑓 𝑣𝑖 𝑎𝑛𝑑 𝑣𝑗 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑖𝑛 𝑉, 
and 𝜇𝑆(𝑣𝑖

′, 𝑣𝑗) = 𝜎𝑆(𝑣𝑖
′) ∧ 𝜎𝑆(𝑣𝑗) 𝑖𝑓 𝑣𝑖

′ ∈ 𝑉′𝑎𝑛𝑑 𝑣𝑗 ∈ 𝑉 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑣𝑖 ∈ 𝑉. 
 
Example 2. The splitting graph of 𝑃3 is given in Figure 3. 
 

 
 
Figure 3. Fuzzy path 𝑃3 and its splitting graph 𝑆𝑓(𝑃3). 

 
Remark 3.2.1. Let 𝑃𝑛: 𝑣0𝑣1 … 𝑣𝑛−1𝑣𝑛  be a fuzzy path of length 𝑛. 
Case 1 : In 𝑃𝑛, if 𝑛 is odd. 
Then 𝑆𝑓(𝑃2𝑛+1) = ⊕ 𝑛𝐶4 ⊕ 𝑃2𝑛+1 ⊕ 𝑃2, 𝑛 ≥ 1 (by Theorem 2.4), where 𝐶4 is oriented as 
𝐶4: 𝑣𝑖  𝑣𝑖+1 𝑣𝑖+2 𝑣𝑖+1

′  𝑣𝑖 , for 𝑖 = 0, 2, 4, … 𝑛 − 3, 𝑃2𝑛+1 is oriented as 𝑃2𝑛+1: 𝑣0
′  𝑣1 𝑣2

′  𝑣3 … 𝑣𝑛−1
′ 𝑣𝑛 and 𝑃2 

is oriented as 𝑃2: 𝑣𝑛𝑣𝑛−1𝑣𝑛
′  . 

 
Case 2 : In 𝑃𝑛, if 𝑛 is even. 
Then 𝑆𝑓(𝑃2𝑛) = ⊕ 𝑛𝐶4 ⊕ 𝑃2𝑛, 𝑛 ≥ 1 (by Theorem 2.4), where 𝐶4 is oriented as 𝐶4: 𝑣𝑖  𝑣𝑖+1 𝑣𝑖+2 𝑣𝑖+1

′  𝑣𝑖 , 
for 𝑖 = 0, 2, 4, … 𝑛 − 2 and 𝑃2𝑛 is oriented as 𝑃2𝑛: 𝑣0

′  𝑣1𝑣2
′ 𝑣3 … 𝑣𝑛−1𝑣𝑛

′ . 
 
Lemma 3.2.1. Let 𝑃𝑛: 𝑣0𝑣1 … 𝑣𝑛−1𝑣𝑛 be a fuzzy path of length n. If all the edges are weak in 𝑃𝑛, then the edges 
(𝑣𝑖 , 𝑣𝑖+1), 0 ≤ 𝑖 ≤ 𝑛 − 1 are weak in 𝑆𝑓(𝑃𝑛) and the edges (𝑣𝑖

′, 𝑣𝑖+1), 0 ≤ 𝑖 ≤ 𝑛 − 1 and (𝑣𝑖
′, 𝑣𝑖−1), 1 ≤ 𝑖 ≤

𝑛 are strong in 𝑆𝑓(𝑃𝑛). 
Proof. Proof follows from the definition of splitting graph of a fuzzy graph and the definition of weak and 
strong edges. 
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Theorem 3.2.1. Let 𝑃𝑛 be a fuzzy path of length n. If all the edges are weak in 𝑃𝑛, then 𝜒𝑓(𝑆𝑓(𝑃𝑛)) = 2. 
Proof. Let 𝑃𝑛: 𝑣0𝑣1 … 𝑣𝑛−1𝑣𝑛 be a fuzzy path of length n. Then by Lemma 3.2.1, the edges (𝑣𝑖 , 𝑣𝑖+1), 0 ≤
𝑖 ≤ 𝑛 − 1 are weak in 𝑆𝑓(𝑃𝑛)and the edges (𝑣𝑖

′, 𝑣𝑖+1), 0 ≤ 𝑖 ≤ 𝑛 − 1 and (𝑣𝑖
′, 𝑣𝑖−1), 1 ≤ 𝑖 ≤ 𝑛 are strong 

in 𝑆𝑓(𝑃𝑛). 
Case 1 : In 𝑃𝑛, if 𝑛 is even. 
Then 𝑆𝑓(𝑃2𝑛) = ⊕ 𝑛𝐶4 ⊕ 𝑃2𝑛, 𝑛 ≥ 1 (by Remark 3.2.1). Then by Theorem 2.2 we have, 𝜒𝑓(𝐶4) = 2 and 
by Lemma 2.2 we have, 𝜒𝑓(𝑃2𝑛) = 2. Therefore by Corollary 3.1.1, 𝜒𝑓(𝑆𝑓(𝑃2𝑛)) = 2. 
 
Case 2 : In 𝑃𝑛, if 𝑛 is odd. 
Then 𝑆𝑓(𝑃2𝑛+1) = ⊕ 𝑛𝐶4 ⊕ 𝑃2𝑛+1 ⊕ 𝑃2, 𝑛 ≥ 1 (by Remark 3.2.1). Then by Theorem 2.2 we have, 
𝜒𝑓(𝐶4) = 2, by Lemma 2.2 we have, 𝜒𝑓(𝑃2𝑛+1) = 2 and by Theorem 2.1 we have,  𝜒𝑓(𝑃2) = 2.        
Therefore by Corollary  3.1.1, 𝜒𝑓(𝑆𝑓(𝑃2𝑛+1)) = 2. 
 

 
 

Figure 4. Splitting graph of the fuzzy path 𝑃𝑛 . 
 
Note : In 𝑃𝑛, if 𝑛 = 1, 𝑆𝑓(𝑃1) = 𝑃3. ∴ 𝜒𝑓(𝑆𝑓(𝑃1)) = 2. 
 
Lemma 3.2.2. Let 𝑃𝑛 be a fuzzy path of length 𝑛. If all the edges are strong in 𝑃𝑛, then 𝑆𝑓(𝑃𝑛) is a strong fuzzy 
graph. 
Proof. Proof follows from the definition of splitting graph of a fuzzy graph and the definition of strong edge. 
 
Theorem 3.2.2.  If 𝑆𝑓(𝑃𝑛) is a strong fuzzy graph, then 𝜒𝑓(𝑆𝑓(𝑃𝑛)) = 2. (The proof will be similar as 
above theorem). 
 
Lemma 3.2.3. Let 𝑃𝑛: 𝑣0𝑣1 … 𝑣𝑛−1𝑣𝑛 be a fuzzy path of length 𝑛. If weak and strong edges are distributed in any 
sequence in 𝑃𝑛, then the edges (𝑣𝑖 , 𝑣𝑖+1), 0 ≤ 𝑖 ≤ 𝑛 − 1 are also weak and strong, which are distributed in any 
sequence in 𝑆𝑓(𝑃𝑛) while the edges (𝑣𝑖

′, 𝑣𝑖+1), 0 ≤ 𝑖 ≤ 𝑛 − 1 and (𝑣𝑖
′, 𝑣𝑖−1), 1 ≤ 𝑖 ≤ 𝑛 are strong in 𝑆𝑓(𝑃𝑛). 

(The proof will be similar as above lemma). 
 
Theorem 3.2.3.  Let 𝑃𝑛 be a fuzzy path of length 𝑛. If weak and strong edges are distributed in any sequence in 𝑃𝑛, 
then 𝜒𝑓(𝑆𝑓(𝑃𝑛)) = 2. (The proof will be similar as above theorem). 
 
3.3. The Chromatic Number of 𝑫𝟐𝒇

(𝑷𝒏) 

Definition 3.3. The shadow graph 𝐷 2 𝑓  
(𝐺)(𝑉𝐷2

, 𝜎𝐷2
, 𝜇𝐷2

) of a fuzzy graph 𝐺(𝑉, 𝜎, 𝜇) is a fuzzy graph with 

underlying crisp graph 𝐷2(𝐺)(𝑉𝐷2
, 𝐸𝐷2

) is obtained by taking two copies of 𝐺 namely 𝐺′ and 𝐺′′ with the 
vertex set 𝑉𝐷2

= 𝑉′ ∪ 𝑉′′ where 𝑉′ = {𝑣𝑖
′ ∀ 𝑣𝑖 ∈ 𝑉} and 𝑉′′ = {𝑣𝑖

′′ ∀ 𝑣𝑖 ∈ 𝑉} and the edge set 

𝐸𝐷2
=  {

(𝑣𝑖
′, 𝑣𝑗

′), (𝑣𝑖
′′, 𝑣𝑗

′′)      𝑖𝑓 𝑣𝑖  𝑎𝑛𝑑 𝑣𝑗 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑖𝑛 𝐺,                                          

(𝑣𝑖
′, 𝑣𝑗

′′)                      𝑖𝑓 𝑣𝑖
′ ∈ 𝑉′𝑎𝑛𝑑 𝑣𝑗

′′ ∈ 𝑉′′𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑣𝑖
′′ ∈ 𝑉′′.

 

Then, 𝜎𝐷2
(𝑣′) = 𝜎𝐷2

(𝑣′′) = 𝜎(𝑣)𝑓𝑜𝑟 𝑣 ∈ 𝑉, 𝑣′ ∈ 𝑉′, 𝑣′′ ∈ 𝑉′′, 
𝜇𝐷2

(𝑣𝑖
′𝑣𝑗

′) = 𝜇𝐷2
(𝑣𝑖

′′𝑣𝑗
′′) = 𝜇(𝑣𝑖𝑣𝑗), for 𝑣𝑖

′, 𝑣𝑗
′ ∈ 𝑉′, 𝑣𝑖

′′, 𝑣𝑗
′′ ∈ 𝑉′′, 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉, 

𝜇𝐷2
(𝑣𝑖

′𝑣𝑗
′′) = 𝜎(𝑣𝑖

′) ∧ 𝜎(𝑣𝑗
′′) 𝑖𝑓 𝑣𝑖

′ ∈ 𝑉′𝑎𝑛𝑑 𝑣𝑗
′′ ∈ 𝑉′′ that are adjacent to 𝑣𝑖

′′ ∈ 𝑉′′. 
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Example 3. The shadow graph of 𝑃3 is given in Figure 5. 
 

 
 
Figure 5. Fuzzy path 𝑃3 and its shadow graph 𝐷2𝑓

(𝑃3). 

 
Remark 3.3.1. Let 𝑃𝑛: 𝑣0𝑣1 … 𝑣𝑛−1𝑣𝑛  be a fuzzy path of length 𝑛. Then 𝐷2𝑓

(𝑃𝑛) =⊕ 𝑛𝐶4  (by Theorem 

2.4), where 𝐶4 is oriented as 𝐶4: 𝑣𝑖
′ 𝑣𝑖+1

′  𝑣𝑖
′′ 𝑣𝑖+1

′′  𝑣𝑖
′, for 𝑖 =  0, 1, … , 𝑛 − 1. 

 
Lemma 3.3.1. Let 𝑃𝑛: 𝑣0 𝑣1 … 𝑣𝑛−1𝑣𝑛 be a fuzzy path of length 𝑛. If all the edges are weak in 𝑃𝑛, then the edges 
(𝑣𝑖

′, 𝑣𝑖+1
′ ), 0 ≤ 𝑖 ≤ 𝑛 − 1 and (𝑣𝑖

′′, 𝑣𝑖+1
′′ ), 0 ≤ 𝑖 ≤ 𝑛 − 1 are weak in 𝐷2𝑓

(𝑃𝑛) and the edges (𝑣𝑖
′, 𝑣𝑖+1

′′ ), 0 ≤

𝑖 ≤ 𝑛 − 1 and (𝑣𝑖
′, 𝑣𝑖−1

′′ ), 1 ≤ 𝑖 ≤ 𝑛 are strong in 𝐷2𝑓
(𝑃𝑛). 

Proof. Proof follows from the definition of shadow graph of a fuzzy graph and the definition of weak and 
strong edges. 
 
Theorem 3.3.1. Let 𝑃𝑛 be a fuzzy path of length 𝑛. If all the edges are weak in 𝑃𝑛, then  𝜒𝑓(𝐷2𝑓

(𝑃𝑛) = 2. 

Proof. Let 𝑃𝑛: 𝑣0 𝑣1 … 𝑣𝑛−1𝑣𝑛  be a fuzzy path of length 𝑛. Then 𝐷2𝑓
(𝑃𝑛) =⊕ 𝑛𝐶4 (by Remark 3.3.1) and 

by Lemma 3.3.1, the edges (𝑣𝑖
′, 𝑣𝑖+1

′ ), 0 ≤ 𝑖 ≤ 𝑛 − 1 and (𝑣𝑖
′′, 𝑣𝑖+1

′′ ), 0 ≤ 𝑖 ≤ 𝑛 − 1 are weak in 𝐷2𝑓
(𝑃𝑛) 

and the edges (𝑣𝑖
′, 𝑣𝑖+1

′′ ), 0 ≤ 𝑖 ≤ 𝑛 − 1 and (𝑣𝑖
′, 𝑣𝑖−1

′′ ), 1 ≤ 𝑖 ≤ 𝑛 are strong in 𝐷2𝑓
(𝑃𝑛). Then by Theorem 

2.2, we have 𝜒𝑓(𝐶4) = 2. Therefore by Corollary 3.1.1, 𝜒𝑓(𝐷2𝑓
(𝑃𝑛)) = 2. 

 

 
 
Figure 6. Shadow graph of the fuzzy path 𝑃𝑛. 
 

Lemma 3.3.2. Let 𝑃𝑛 be a fuzzy path of length 𝑛. If all the edges are strong in 𝑃𝑛, then 𝐷2𝑓
(𝑃𝑛) is a strong fuzzy 

graph. 
Proof. Proof follows from the definition of shadow graph of a fuzzy graph and the definition of strong edge. 
 
Theorem 3.3.2. If 𝐷2𝑓

(𝑃𝑛) is a strong fuzzy graph, then 𝜒𝑓(𝐷2𝑓
(𝑃𝑛)) = 2. (The proof will be similar as 

above theorem). 
 
Lemma 3.3.3. Let 𝑃𝑛: 𝑣0 𝑣1 … 𝑣𝑛−1 𝑣𝑛 be a fuzzy path of length 𝑛. If weak and strong edges are distributed in any 
sequence in 𝑃𝑛, then the edges (𝑣𝑖

′, 𝑣𝑖+1
′ ), 0 ≤ 𝑖 ≤ 𝑛 − 1 and (𝑣𝑖

′′, 𝑣𝑖+1
′′ ), 0 ≤ 𝑖 ≤ 𝑛 − 1 are weak and strong, 

which are distributed in any sequence in 𝐷2𝑓
(𝑃𝑛) while the edges (𝑣𝑖

′, 𝑣𝑖+1
′′ ), 0 ≤ 𝑖 ≤ 𝑛 − 1 and (𝑣𝑖

′, 𝑣𝑖−1
′′ ), ≤ 𝑖 ≤

𝑛 are strong in 𝐷2𝑓
(𝑃𝑛). (The proof will be similar as above lemma). 
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Theorem 3.3.3.  Let 𝑃𝑛 be a fuzzy path of length 𝑛. If weak and strong edges are distributed in any sequence in 𝑃𝑛, 
then 𝜒𝑓(𝐷2𝑓

(𝑃𝑛)) = 2. (The proof will be similar as above theorem). 

 
3.4. The Chromatic Number of 𝑳𝒇(𝑷𝒏) 
Definition 3.4. The line graph 𝐿𝑓(𝐺)(𝑉𝐿, 𝜎𝐿, 𝜇𝐿) of a fuzzy graph 𝐺(𝑉, 𝜎, 𝜇) is a fuzzy graph with underlying 
crisp graph 𝐿(𝐺)(𝑉𝐿, 𝐸𝐿), where the vertex set 𝑉𝐿 = {𝑣𝑖𝑗∀ (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸} and edge set  𝐸𝐿 = {(𝑣𝑖𝑗 , 𝑣𝑟𝑠) ∣

𝑡ℎ𝑒 𝑒𝑑𝑔𝑒𝑠 (𝑣𝑖 , 𝑣𝑗) 𝑎𝑛𝑑 (𝑣𝑟, 𝑣𝑠) 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑖𝑛 𝐺}. Then, 𝜎𝐿(𝑣𝑖𝑗) = 𝜇(𝑣𝑖 , 𝑣𝑗) if 𝑣𝑖𝑗 ∈ 𝑉𝐿 and 
𝜇𝐿(𝑣𝑖𝑗 , 𝑣𝑟𝑠) = 𝜇(𝑣𝑖 , 𝑣𝑗) ∧ 𝜇(𝑣𝑟, 𝑣𝑠) if the edges (𝑣𝑖 , 𝑣𝑗) and (𝑣𝑟, 𝑣𝑠) are adjacent in 𝐺. 
 
Example 4. The line graph of 𝑃3 is given in Figure 7. 
 

 
 
         Figure 7. Fuzzy path 𝑃3 and its line graph 𝐿𝑓(𝑃3). 
 

Lemma 3.4.1. Let 𝑃𝑛 be a fuzzy path of length 𝑛. Then 𝐿𝑓(𝑃𝑛)is a strong fuzzy graph. 
Proof. Proof follows from the definition of line graph of a fuzzy graph and the definition of strong edge. 
 
Theorem 3.4.1. If 𝐿𝑓(𝑃𝑛) is a strong fuzzy graph, then 𝜒𝑓(𝐿𝑓(𝑃𝑛)) = 2. 
Proof. Let 𝑃𝑛: 𝑣0 𝑣1 … 𝑣𝑛−1𝑣𝑛 be a fuzzy path of length 𝑛. Since 𝐿𝑓(𝑃𝑛) ≅ 𝑃𝑛−1, by Lemma 2.2, 
𝜒𝑓(𝐿𝑓(𝑃𝑛)) = 2. 
 

 
      
     Figure 8. Line graph of the fuzzy path 𝑃𝑛. 
 
3.5. The Chromatic Number of 𝑻𝒇(𝑷𝒏) 
Definition 3.5. The total graph 𝑇𝑓(𝐺)(𝑉𝑇, 𝜎𝑇, 𝜇𝑇) of a fuzzy graph 𝐺(𝑉, 𝜎, 𝜇) is a fuzzy graph with 
underlying crisp graph 𝑇(𝐺)(𝑉𝑇, 𝐸𝑇), with the vertex set  𝑉𝑇 = 𝑉 ∪ 𝑉𝑖𝑗 where 𝑉 = {𝑣𝑖 ∣ 𝑣𝑖 ∈ 𝑉} and  
𝑉𝑖𝑗 =  {𝑣𝑖𝑗 ∀ (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸} and the edge set 
 

𝐸𝑇 = {

(𝑣𝑖, 𝑣𝑗)                          𝑖𝑓 𝑣𝑖 𝑎𝑛𝑑 𝑣𝑗  𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑖𝑛 𝐺,                                      

(𝑣𝑖𝑗 , 𝑣𝑖), (𝑣𝑖𝑗 , 𝑣𝑗)         ∀  𝑖 𝑎𝑛𝑑 𝑗,                                                                               

(𝑣𝑖𝑗 , 𝑣𝑟𝑠)                        𝑖𝑓 𝑡ℎ𝑒 𝑒𝑑𝑔𝑒𝑠 (𝑣𝑖 , 𝑣𝑗)𝑎𝑛𝑑 (𝑣𝑟, 𝑣𝑠)𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑖𝑛 𝐺.

 

 
Then, 𝜎𝑇(𝑣𝑖) = 𝜎(𝑣𝑖) 𝑖𝑓 𝑣𝑖 ∈ 𝑉, 
𝜎𝑇(𝑣𝑖𝑗) = 𝜇(𝑣𝑖, 𝑣𝑗) 𝑖𝑓 (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸 ∀ 𝑖 𝑎𝑛𝑑 𝑗, 
𝜇𝑇(𝑣𝑖 , 𝑣𝑗) = 𝜇(𝑣𝑖 , 𝑣𝑗) 𝑖𝑓 𝑣𝑖  𝑎𝑛𝑑 𝑣𝑗 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑖𝑛 𝐺, 
𝜇𝑇(𝑣𝑖𝑗 , 𝑣𝑟𝑠) = 𝜇(𝑣𝑖, 𝑣𝑗) ∧ 𝜇(𝑣𝑟, 𝑣𝑠) if the edges  (𝑣𝑖 , 𝑣𝑗) and (𝑣𝑟, 𝑣𝑠) are adjacent in G, 
and 𝜇𝑇(𝑣𝑖 , 𝑣𝑖𝑗) = 𝜇𝑇(𝑣𝑗, 𝑣𝑖𝑗) = 𝜇(𝑣𝑖 , 𝑣𝑗)∀ 𝑖 𝑎𝑛𝑑 𝑗. 
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Example 5. The total graph of 𝑃3 is given in Figure 9. 
 

 
     
    Figure 9. Fuzzy path 𝑃3 and its total graph 𝑇𝑓(𝑃3). 
 
Remark 3.5.1. Let 𝑃𝑛: 𝑣0𝑣1 … 𝑣𝑛−1𝑣𝑛  be a fuzzy path of length 𝑛.  Then 𝑇𝑓(𝑃𝑛) = 𝑃𝑛 ⊕ 𝐿𝑓(𝑃𝑛) ⊕ 𝑃2𝑛 
(by Theorem 2.4), where 𝑃𝑛 is oriented as 𝑃𝑛: 𝑣0 𝑣1 … 𝑣𝑛−1 𝑣𝑛, 𝐿𝑓(𝑃𝑛) is oriented as 
𝐿𝑓(𝑃𝑛): 𝑣01𝑣12 … 𝑣𝑛−1𝑛 and 𝑃2𝑛 is oriented as 𝑃2𝑛 ∶ 𝑣0 𝑣01 𝑣1 𝑣12 … 𝑣𝑛−1𝑛 𝑣𝑛 . 
 
Lemma 3.5.1. Let 𝑃𝑛 ∶  𝑣0 𝑣1 … 𝑣𝑛−1 𝑣𝑛 be a fuzzy path of length 𝑛. If all the edges are weak in 𝑃𝑛, then the edges 
of 𝑃𝑛 ∈  𝑇𝑓(𝑃𝑛) are weak and the edges of 𝐿𝑓(𝑃𝑛) ∈ 𝑇𝑓(𝑃𝑛) and 𝑃2𝑛 ∈ 𝑇𝑓(𝑃𝑛) are strong. 
Proof. Proof follows from the definition of total graph of a fuzzy graph and the definition of weak and strong 
edges. 
 
Theorem 3.5.1. Let 𝑃𝑛 be a fuzzy path of length 𝑛. If all the edges are weak in 𝑃𝑛, then  𝜒𝑓(𝑇𝑓(𝑃𝑛)) =  2. 
Proof. Let 𝑃𝑛 ∶  𝑣0 𝑣1 … 𝑣𝑛−1𝑣𝑛 be a fuzzy path of length 𝑛. Then 𝑇𝑓(𝑃𝑛) = 𝑃𝑛 ⊕ 𝐿𝑓(𝑃𝑛) ⊕ 𝑃2𝑛  (by Remark 
3.5.1) and by Lemma 3.5.1, then the edges of 𝑃𝑛 are weak in 𝑇𝑓(𝑃𝑛)and the edges of 𝐿𝑓(𝑃𝑛) and 𝑃2𝑛 are 
strong in 𝑇𝑓(𝑃𝑛). Then by Lemma 2.1 we have, 𝜒𝑓(𝑃𝑛) = 2, by Theorem 3.4.1 we have, 𝜒𝑓(𝐿𝑓(𝑃𝑛)) =  2 
and by Lemma 2.2 we have, 𝜒𝑓(𝑃2𝑛) = 2. Therefore by Corollary 3.1.1, 

 

     𝜒𝑓 (𝑇𝑓(𝑃𝑛)) = max {𝜒𝑓(𝑃𝑛), 𝜒𝑓(𝐿𝑓(𝑃𝑛)), 𝜒𝑓(𝑃2𝑛)  

       =  𝑚𝑎𝑥{2,2,2}     
       =  2. 
 

 
      
     Figure 10. Total graph of the fuzzy path  𝑃𝑛. 
 
Lemma 3.5.2. Let 𝑃𝑛 be a fuzzy path of length 𝑛. If all the edges are strong in 𝑃𝑛, then 𝑇𝑓(𝑃𝑛) is a strong fuzzy 
graph. 
Proof. Proof follows from the definition of total  graph of a fuzzy graph and the definition of strong edge. 
 
Theorem 3.5.2.  If  𝑇𝑓(𝑃𝑛) is a strong fuzzy graph, then 𝜒𝑓(𝑇𝑓(𝑃𝑛)) = 3. 
Proof. Let 𝑃𝑛 ∶ 𝑣0 𝑣1 … 𝑣𝑛−1 𝑣𝑛 be a fuzzy path of length 𝑛. Then 𝑇𝑓(𝑃𝑛) = 𝑃𝑛 ⊕ 𝐿𝑓(𝑃𝑛) ⊕ 𝑃2𝑛 (by Remark 
3.5.1) and by Lemma 3.5.2, all edges are strong in 𝑇𝑓(𝑃𝑛). Then by Theorem 3.4.1 we have, 𝜒𝑓(𝐿𝑓(𝑃𝑛)) = 2 and 
by Lemma 2.2 we have, 𝜒𝑓(𝑃𝑛) = 𝜒𝑓(𝑃2𝑛) = 2. Then by Corollary 3.1.1, 
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𝜒𝑓(𝑇𝑓(𝑃𝑛)) = 𝑚𝑎𝑥{𝜒𝑓(𝑃𝑛), 𝜒𝑓(𝐿𝑓(𝑃𝑛)), 𝜒𝑓(𝑃2𝑛)} 
                                                         =  𝑚𝑎𝑥{2,2,2} + 1      
               =  3. 
Lemma 3.5.3. Let 𝑃𝑛 ∶  𝑣0 𝑣1 … 𝑣𝑛−1𝑣𝑛 be a fuzzy path of length 𝑛. If weak and strong edges are distributed in any 
sequence in 𝑃𝑛, then the edges of 𝑃𝑛 ∈ 𝑇𝑓(𝑃𝑛) are weak and strong, which are distributed in any sequence in 𝑇𝑓(𝑃𝑛), 
while the edges of 𝐿𝑓(𝑃𝑛) ∈ 𝑇𝑓(𝑃𝑛) and 𝑃2𝑛 ∈ 𝑇𝑓(𝑃𝑛) are strong. (The proof will be similar as above lemma). 
 
Theorem 3.5.3. Let 𝑃𝑛 be a fuzzy path of length 𝑛. If weak and strong edges are distributed in any sequence in 𝑃𝑛, 
then 𝜒𝑓(𝑇𝑓(𝑃𝑛)) = 2. (The proof will be similar as above theorem). 
 
3.6.  The Chromatic Number of 𝒔𝒅𝒇(𝑷𝒏) 
Definition 3.6. The subdivision graph 𝑠𝑑𝑓(𝐺)(𝑉𝑠𝑑 , 𝜎𝑠𝑑 , 𝜇𝑠𝑑) of a fuzzy graph 𝐺(𝑉, 𝜎, 𝜇) is a fuzzy graph 
with underlying crisp graph 𝑠𝑑(𝐺)(𝑉𝑠𝑑 , 𝐸𝑠𝑑), with the vertex set 𝑉𝑠𝑑 = 𝑉 ∪ 𝑉𝑖𝑗, where 𝑉 = {𝑣𝑖 ∣ 𝑣𝑖 ∈ 𝑉} 
and 𝑉𝑖𝑗 = {𝑣𝑖𝑗 ∀ (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸} and the edge set 𝐸𝑠𝑑 = {(𝑣𝑖𝑗 , 𝑣𝑖), (𝑣𝑖𝑗 , 𝑣𝑗)∀ 𝑖 &  𝑗}. Then, 𝜎𝑠𝑑(𝑣𝑖𝑗) =

𝜇(𝑣𝑖 , 𝑣𝑗) if (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸 ∀ 𝑖 &  𝑗 and 𝜇𝑠𝑑(𝑣𝑖 , 𝑣𝑖𝑗) = 𝜇𝑠𝑑(𝑣𝑗 , 𝑣𝑖𝑗) = 𝜇(𝑣𝑖 , 𝑣𝑗) ∀ 𝑖 &  𝑗. 
 
Example 6. The subdivision graph of 𝑃3 is given in Figure 11. 
 

 
     
    Figure 11. Fuzzy path 𝑃3 and its subdivision graph 𝑠𝑑𝑓(𝑃3). 
 
Lemma 3.6.1. Let 𝑃𝑛 be a fuzzy path of length 𝑛. Then 𝑠𝑑𝑓(𝑃𝑛) is a strong fuzzy graph. 
Proof. Proof follows from the definition of subdivision graph of a fuzzy graph and the definition of strong edge. 
 
Theorem 3.6.1.  If 𝑠𝑑𝑓(𝑃𝑛) is a strong fuzzy graph, then 𝜒𝑓(𝑠𝑑𝑓(𝑃𝑛)) = 2. 
Proof. Let 𝑃𝑛 ∶ 𝑣0 𝑣1 … 𝑣𝑛−1 𝑣𝑛 be a fuzzy path of length 𝑛. Since 𝑠𝑑𝑓(𝑃𝑛) ≅  𝑃2𝑛, by Lemma 2.2, 
𝜒𝑓(𝑠𝑑𝑓(𝑃𝑛)) = 2. 
 

 
      
     Figure 12. Subdivision graph of the fuzzy path 𝑃𝑛. 
 
4. Application 
Smart cities depend on interconnected hubs to manage traffic, emergencies, and safety systems. However, during 
emergency situations like power outages or natural disasters, maintaining reliable communication is a critical 
challenge. This study applies shadow graph of a fuzzy graph to model conflict-free routing in an affected hub’s 
communication network, ensuring uninterrupted connectivity. Furthermore, it determines the minimum 
number of channels required for interference-free communication under such conditions. 
 
Let 𝐺 be a fuzzy graph that represents a communication network with vertices 𝐴, 𝐵, 𝐶 and 𝐷. Each vertex 
corresponds to a smart communication hub located in a different district. The membership value of each vertex 
indicates the operational reliability of the hubs in each district, which are 0.6, 0.4, 0.5 and 0.3, respectively. Two 
vertices are connected if and only if there exists a direct communication link between them, and the membership 
value of each edge reflects the reliability of the communication links. Let the edges (𝐴, 𝐵), (𝐵, 𝐶), (𝐶, 𝐷) 
represent the direct communication link between the smart hubs with membership values 0.4, 0.3 and 0.2 
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respectively. Moreover, all the edges are strong in 𝐺, representing the strong communication links between the 
hubs. 
 Construct the shadow graph 𝐷2𝑓

(𝐺) of fuzzy graph 𝐺 (by definition 3.3), then the edges 

(𝐴′, 𝐵′), (𝐵′, 𝐶′), (𝐶′, 𝐷′) represent the direct communication links between the smart hubs, while the edges 
(𝐴′′, 𝐵′′), (𝐵′′, 𝐶′′), (𝐶′′, 𝐷′′) represent the direct communication link between the backup hubs. These edges 
retain the same membership values as those of the corresponding edges in 𝐺. Additionally, the edges 
(𝐴′, 𝐵′′), (𝐵′, 𝐶′′), (𝐶′, 𝐷′′), (𝐵′, 𝐴′′), (𝐶′, 𝐵′′), (𝐷′, 𝐶′′) represent the direct communication links between the 
smart hubs and backup hubs, with membership values 0.4, 0.4, 0.3, 0.4, 0.4 and 0.3 (Figure 13). Since 𝐺 is strong, 
𝐷2𝑓

(𝐺) is also strong (Corollary 3.3.2). 

 

 
 
Figure 13. Fuzzy graph 𝐺  and its shadow graph 𝐷2𝑓

(𝐺). 

 
If a hub 𝑢 fails due to a natural disaster, then the communication links between the failed hub 𝑢 and its 
neighbouring hubs 𝑣𝑖 become disrupted. As a result, the reliability of the communication links from 𝑢 to its 
neighbouring hubs 𝑣𝑖 is significantly reduced. Let 𝐷𝑢 ∈ [0,1] be the degradation factor, representing the 
percentage decline in the reliability of the hub 𝑢. If the degradation factor satisfies 
 

𝐷𝑢 >  𝑚𝑎𝑥 {1 −

1
2

(𝜎(𝑢) ⋀  𝜎(𝑣𝑖))

𝜇(𝑢, 𝑣𝑖)
},                                                         (1) 

 
then the reliability of each communication link from 𝑢 to its neighbouring hubs 𝑣𝑖 will be reduced, and each 
communication link will become weak with degraded membership values given by 
 

𝜇𝐷(𝑢, 𝑣𝑖) =  (1 − 𝐷𝑢). 𝜇(𝑢, 𝑣𝑖).                                                                (2) 
 
If the degradation condition is not satisfied, then each communication link remains strong and functions 
normally despite the natural disaster.        

Suppose the reliability of a hub 𝐵′ is degraded by 55% (𝑖. 𝑒. , 𝐷𝐵
′ = 0.55) due to a natural disaster. As a 

result, the communication link between 𝐴′ and 𝐶′ is disrupted, and its reliability will be significantly reduced. 
Since, 𝐷𝐵

′  satisfying (1), the edges (𝐵′, 𝐴′), (𝐵′, 𝐴′′), (𝐵′, 𝐶′), and (𝐵′, 𝐶′′) become weak, with membership 
values 0.18, 0.18, 0.13, and 0.18, respectively (by (2)). Consequently, the communication links from the affected 
hub to its neighbouring hubs fail. Therefore, in this scenario, it is necessary to restore the failed connection to 
enable conflict-free communication between the hubs. To preserve the connectivity between 𝐴′ and 𝐶′, the 
corresponding backup hub 𝐵′′ should be utilized to ensure reliable and interference-free communication. 
Subsequently, it is essential to allocate the minimum number of channels to maintain interference-free 
communication between the hubs. For that, we implement perfect fuzzy coloring on 𝐷2𝑓

(𝐺) to determine the 

minimum number of channels needed to maintain interference-free communication. The perfect fuzzy coloring 
of 𝐷2𝑓

 is as follows: 

 
Let 𝐺 be the given fuzzy graph and 𝐷2𝑓

 be its shadow graph. First, consider the vertex 𝐴′ and color it with an 

arbitrary basic color, say (𝑅, 1). As the edge (𝐴′, 𝐵′) is weak, the coloring of the vertex 𝐵′ depends on the strength 
of the edge (𝐴′, 𝐵′). i.e., the membership value of vertex 𝐵′ is 1 − 𝐼(𝐴′, 𝐵′). Then the vertex 𝐵′ will receive a 
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fuzzy color (𝑅, 0.55). Similarly the vertex 𝐶′ will receive a fuzzy color (𝑅, 0.67), the vertex 𝐴′′ will receive a fuzzy 
color (𝑅, 0.55) and the vertex 𝐶′′ will receive a fuzzy color (𝑅, 0.55). Now consider the vertex 𝐵′ for coloring. 
Since all the incident edges are strong, it will receive a basic color (𝐵, 1). Similarly, the vertices 𝐵′′ and 𝐷′′ are 
also will receive the basic color (𝐵, 1). Thus, 𝐷2𝑓

(𝐺) is colored using two colors, namely Red and Blue. 

 

 
   
        Figure 14. Fuzzy coloring of 𝐷2𝑓

(𝐺), when 𝐵′ fails. 

 
Therefore, 𝜒𝑓(𝐷2𝑓

(𝐺)) = 2. i.e., only two distinct channels are required to achieve conflict-free routing and 

ensure interference-free communication between the hubs. 
 
Similarly, each fuzzy graph defined in this paper offers a versatile tool for analyzing and improving real-world 
networks. 
 
5. Conclusion 
In this paper, we precisely defined the concepts of the middle graph, splitting graph, shadow graph, line 
graph, total graph, and the subdivision graph of a fuzzy graph 𝐺. The chromatic numbers of the above-
mentioned graphs, derived from the fuzzy paths, are determined by using fuzzy coloring based on the 
strength of the edges incident on each vertex. 
Future work will focus on extending this analysis to the corresponding graphs of the fuzzy cycles and 
determining their chromatic numbers. 
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