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Abstract

In this paper, the chromatic number of the middle graph, splitting graph, shadow graph, line graph, total graph, and the
subdivision graph of the fuzzy path By, is determined by using fuzzy colors based on the strength of an edge incident on a vertex.
Several important properties related to the fuzzy coloring of these graphs are established. Furthermore, an application of fuzzy
coloring of shadow graph of fuzzy path is given.
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1. INTRODUCTION
Graph coloring is an early and fascinating concept in graph theory. It plays a crucial role in resource
allocation and task scheduling, ensuring conflict-free schedules and optimal resource utilization [1]. Let
G = (V,o,u) be a fuzzy graph. Fuzzy coloring [2] is an assignment of basic or fuzzy colors to the vertices of
G, and it is a proper coloring,
(i) if two vertices are connected by a strong edge, then they either have different basic or fuzzy colors (if
necessary), or one vertex can have a basic color and the other can have a fuzzy color corresponding to
different basic color.
(i) if two vertices are connected by a weak edge, then they either have same or different fuzzy colors, or
one vertex can have a basic color and other can have a fuzzy color corresponding to the same basic
color.
The minimum number of colors (basic or fuzzy) needed for a proper fuzzy coloring of G is called the
chromatic number of G, is denoted by y£(G) . In 2005, Susana Munoz et al.[3] introduced the coloring of
fuzzy graphs and also proposed a method for coloring the vertices of fuzzy graphs with a crisp vertex set and
a fuzzy edge set (the type 1 fuzzy graphs). In 2006, Eslahchi and Onagh [4] introduced a similar graph
coloring technique for type-2 fuzzy graphs, characterized by fuzzy vertex and fuzzy edge sets, based on the
concept of strong adjacency between vertices. In 2015, a new concept of fuzzy coloring of fuzzy graphs
is proposed by Sovan Samanta et al. [5], using fuzzy colors based on the strength of an edge incident to a
vertex.

Furthermore, in 2024, we found the chromatic number of certain families of fuzzy graphs, such as
path, cycle, star, wheel, and complete graphs, using fuzzy colors based on the strength of an edge incident
to a vertex and also derived some properties on fuzzy coloring [2]. In this paper, we extend our research to
determine the chromatic number of the middle graph, splitting graph, shadow graph, line graph, total graph
and the subdivision graph of the fuzzy path B,, using fuzzy colors based on the strength of an edge incident
to a vertex.

This article is organized as follows: Section 1 provides an overview of fuzzy coloring of a fuzzy graph.
Some fundamental concepts in fuzzy graph theory that aid in the research have been reviewed in Section 2.
In Section 3, we determine the chromatic number of the middle graph, splitting graph, shadow graph, line
graph, total graph and the subdivision graph of the fuzzy path B,. In Section 4, an application of fuzzy
coloring of shadow graph of a fuzzy graph is given. Section 5 presents the final conclusions of this study.
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Glossary of Symbols Used
Symbol Meaning
G=(V,E) Crisp graph
G=,o,un Fuzzy graph
P, Fuzzy path
Cn, Fuzzy cycle
K, Complete fuzzy graph
M(G) Middle graph of a crisp graph G
M (G) Middle graph of a fuzzy graph G
S(G) Splitting graph of a crisp graph G
S (G) Splitting graph of a fuzzy graph G
D,(G) Shadow graph of a crisp graph G
D, f () Shadow graph of a fuzzy graph G
L(G) Line graph of a crisp graph G
Ly (G) Line graph of a fuzzy graph G
T(G) Total graph of a crisp graph G
T¢ (G) Total graph of a fuzzy graph G
sd(G) Subdivision graph of a crisp graph G
sdf(G) Subdivision graph of a fuzzy graph G
2. PRELIMINARIES

The definitions from the fuzzy graph theory and the fuzzy coloring, which aid in determining the chromatic
number of various fuzzy graphs, are reviewed in this section.
Definition 2.1.[6] A fuzzy graph G = (V, 0, ) is a pair of functions (o, L), whereo : V — [0,1] is
a fuzzy subset of a non-empty set V, and p: V = [0, 1] is a symmetric fuzzy relation on o, such that
the relation u(v;, v;) < o(v;) A o(v;) is satisfied for all v;, v; € V and (v, v;) EECV XV.
Here, 0 (v;) denote the degree of membership of the vertex v;, and u(v;, v;) denotes the degree of membership
of the edge relation €;; = (v;,v;) onV X V.
Note : In this paper, we denote a(v;) A o(v;) = min{o(v;),o(v;)} and
o(v;) Vo(vj) =max{o(v;),o(v))}.
Definition 2.2.[7] Let G = (V, g, 1) be a fuzzy graph with underlying crisp graph G*. A fuzzy path
P,in G is asequence of distinct vertices vg,Vq,...,Vy, such that p(v;_1,v;) > 0,1 <i <n. Here
n =1 is called the length of the path B,.
Definition 2.3. [7] A fuzzy path P, in which vy = v, and n = 3, then P, is called a fuzzy cycle C), of
length n.
Definition 2.4. [3] Let G = (V, 0, 1) be a fuzzy graph and an edge e = (vi, vj) € G is called strong if
%{a(vi) N o(vj)} < u(v;,vj) and it is called weak otherwise.
Definition 2.5.[3] Let G = (V,0,) be a fuzzy graph and the strength of an edge (vi, vj) € G is
denoted by,
#(UpVﬂ

1(viv;) = o(v) No(vy)
Definition 2.6.[8] A fuzzy graph G = (V, g, W) is called a strong fuzzy graph if each edge in G is a strong
edge.
Definition 2.7.[2] Let G = (V, g, W) be a fuzzy graph. Fuzzy coloring is an assignment of basic or fuzzy

colors to the vertices of a fuzzy graph G and it is proper,
(i) if two vertices are connected by a strong edge, then they either have different basic or fuzzy colors (if

1859



International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 18s, 2025
https://www.theaspd.com/ijes.php

necessary), or one vertex can have a basic color and the other can have a fuzzy color corresponding to
different basic color.
(ii) if two vertices are connected by a weak edge, then they either have same or different fuzzy colors, or one
vertex can have a basic color and other can have a fuzzy color corresponding to the same basic color.
Definition 2.8.[2] Let G = (V, g, W) be a fuzzy graph. Perfect fuzzy coloring (optimal fuzzy coloring) is
an assignment of minimum number of colors (basic or fuzzy) for a proper fuzzy coloring of G.
Definition 2.9.[2] Let G = (V, 0, ) be a fuzzy graph. The minimum number of colors (basic or fuzzy)
needed for a proper fuzzy coloring of G is called the chromatic number of G and is denoted by x £(G).
Lemma 2.1.[2] Let B, be a fuzzy path of length n. If all edges are weak in Py, then x r (Pp) = 1.
Lemma 2.2.[2] Let P, be a fuzzy path of length n. If all the edges are strong in Py, then xr(Pyp)= 2.
Theorem 2.1.[2] Let P, be a fuzzy path of length n. If atleast one edge is strong in Py, then
Xr(Pr) = 2.
Lemma 2.3.[2] Let Cy, be a fuzzy cycle of length n. If all edges are weak in Cy, then x r(Cp) = 1.
Lemma 2.4.[2] Let C,, be a fuzzy cycle of length n. If all the edges are strong in Cy, then
2 if nis even,
xr(Cn) = {3 if nisodd.
Theorem 2.2.[2] Let Cp be a fuzzy cycle of length n. If weak and strong edges are distributed in any sequence
in Cy,, then

n
3 if 0 number of strong and weak edges are alternatively

distributed in C,, where n(= 6)is even,
2 otherwise.

Xf(Cn) =

Theorem 2.3. [9] Let G1(V1, E;) and G (V5, E3) be two fuzzy graphs, the chromatic numbers of G; and G be
X5 (G1) and x5 (G3), respectively. If fuzzy graph G(V, E) is the union of two fuzzy graphs G, and G, then

the chromatic number of G satisfies max{)(f(Gl),)(f (Gz)} < xr(G) < xr(G1) + xr(G).

Theorem 2.4. [10] The complete graph K, has Hamiltonian decomposition for all n. i.e., Koyy1q =@ nCopniq
and KZTL = CZn @ nPl.

Proof. The result is trivially true forn = 1and n = 2. Let n = 2m + 1 = 3 be odd. Let the vertices of K,
be labeled Vg, V1, ) Vom.- Let C be the Hamilton cycle
Vo V1 V2 Vam V3 Vam—1 Va Vam—2 -+ Vm+3 Um Vma2 Vm+1 Vo and let o be the permutation
(Vo) (V1 V3 V3 ... Vyyp—1 Vam)- Then C,a(C),0%(C),c™ 1(C) is a Hamilton decomposition of K,,.
When n = 2m = 4 is even, let the vertices of K, be labeled vy, v1, V5, ..., Va;m—1. Let C be the Hamilton
cycle Vo V1 Vy Vam—1 V3 Vam—2 - Vm-1 Vm+2 VUm Vm+1Vo and o be the  permutation
(Vo) (V1 V3 V3 . Vam—2 Vam—1)- Then C,a(C),d?(C),c™ 2(C) are m — 1 edge disjoint Hamilton
cycles. The remaining edges Vg U, Vim—1 Vm+1 Vim—2 Vm+2s > V1 Vam—1 form a perfect matching.

Note (2] : i.e., Kopy1 =B nCypiq and Ky, = Copy @ NPy, where @ denotes edge disjoint union.

3. The Chromatic Number of Some Related Graphs of Fuzzy Path
In this section, we will find the chromatic number of the middle graph Mg (P,), splitting graph S¢(P,), shadow

graph D, ; (Pn), line graph L¢(Py,), total graph T¢(PB,) and the subdivision graph sd¢(B,) of the fuzzy path P,.

Theorem 3.1. x5 (G) = max {xf(G;) : 1< i < k}, where G =G UG, U ..UGrand G;,1 < i<k

are fuzzy graphs.
Proof. Proof follows from Theorem 2.3.

Corollary 3.1.1. x7(G) = max {x(G)): 1< i < k}, where G =G, D G, D ... D G and G;,1 <
i < k are edge disjoint fuzzy graphs.
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3.1. The Chromatic Number of M¢(P,,)
Definition 3.1. The middle graph M¢(G)(Viy, om, iy ) of a fuzzy graph G(V,0,u) is a fuzzy graph with
underlying crisp graph M(G)(Vyy, Ey), with the vertex set Vyy = V U V;; where V = {v; | v; € V} and
Vij={v; Vv (vi, vj) € E}and v(Mf(G)) =n+ 1+ n =2n+ 1 and the edge set

E, = {(vij,vi), (vij,vj) Viand j,

(vl-j, vrs) if the edges (vi, vj) and (v, vs) are adjacent in G.

Then, oy (v;)) = () if v, €V,0< i < n,
aM(vij) = ,u(vl-,vj) if (vi,vj) €EEV iandj,
Uy (vij, vrs) = ,u(vi, vj) A u(vy, vg) if the edges (vi, vj) and (v, v5) are adjacent in G,
and py (v, vij) = um (vj, vi;) = u(vi, vj) Yiand j.

Example 1. The middle graph of P5 is given in Figure 1.
v0(0.2) ©1(0.3) v2(0.4) v3(0.5)

02 .03 _ 04 _
)2

06(0.2) v1(0.3) v2(0.4) v3(0.5)

v01(0.2) v12(0.3) v93(0.4)

P;
M¢(P3)

Figure 1. Fuzzy path P3 and its middle graph M (Ps).

Remark 3.1.1. Let Py: vy ... V_1Vp be a fuzzy path of length n. Then M¢(P,) =@ (n — 1)C5 © 2P,
(by Theorem 2.4), where C3 is oriented as, C3 * V;j Viyq1j41 Vig1 Vi, 0 <i<n—2,1<j<nand
Py's are oriented as, Py: vg Vg1 & Pyt Vy_1n Un-

Lemma 3.1.1. Let P, be a fuzzy path of length n. Then M (B,) is a strong fuzzy graph.

Proof. Let B, : V1 ... Vy_1Vy be a fuzzy path of length n. By the definition of middle graph of a fuzzy
graph, we have

oy(W) =c()if v,eV,1<i<n,

aM(vij) = u(vi,vj)if (vi,vj) EEVi& ],

U (vij, vrs) = ,u(vl-, vj) A u(vy, vg) if the edges (v, v;) and (v, V) are adjacent in G,

and puy (vi, vij) = um (v, vi5) = u(vi,v;) Vi & .

Then each edges of Mg (P,) satisfies the condition of a strong edge (by definition 2.4).

Therefore, Mg (F,) is a strong fuzzy graph.

Theorem 3.1.1. If Mg (Py,) is a strong fuzzy graph, then (Mg (B,)) = 3.

Proof. Let P : Vg Vg ... V1 Vp be a fuzzy path of length n. Then My(P,) =@ (n — 1)C5 D 2P; (by
Remark 3.1.1) and by Lemma 3.1.1}, M¢(P,) is a strong fuzzy graph. Then by Lemma 2.4 we have,

X5 (C3) = 3 and by Lemma 2.2 we have, x¢(P;) = 2. Therefore by Corollary 3.1.1,

Xr(Mp(Pp)) = max{xr(C3), xr(P1)}
= max{3,2}
= 3.
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U Un—1

WAL

Vo1 U112 U923 (n—1)
Figure 2. Middle graph of the fuzzy path B,,.

3.2. The Chromatic Number of S¢(P,)
Definition 3.2. The splitting graph S¢(G) (Vs, 05, tis) of a fuzzy graph G (V, 0, ) is a fuzzy graph with underlying
crisp graph S(G)(Vs, Es), with the vertexset Vg = VUV’ where V = {v; | v; €V}and V' ={v;Vv; €V}
and the edge set
Eo = {(vi, v;) ifv; and v; are adjacent in G,
(v'i,v)) if v{ € V'and v; € V that are adjacent tov; € V.
Then, ag(v;) = a5(v)) = a(v;) forv; €V and v, € V',
us (i, vj) = u(vy, vj) if v; and v; are adjacent in'V,
and ps(vi,v;) = os(v}) Aos(v;) if vi € V'and v; € V that are adjacent to v; € V.

Example 2. The splitting graph of P3 is given in Figure 3.

00(0.2) v1(0.3) vy(0.4) v3(0.5)

0.2 0.3 0.4
—@ \ 4 & s
00(0.2) v1(0.3) v2(0.4) v3(0.5)

P;

S¢(P3)

Figure 3. Fuzzy path P5 and its splitting graph S¢ (Ps).

Remark 3.2.1. Let P,: vgVq ... Vy_1Vy, be a fuzzy path of length n.

Case 1: In B, if n is odd.

Then S¢(Papt1) = @ nCy @ Prpyq @ P,,m =1 (by Theorem 2.4), where C, is oriented as
C4: Vi Vigq Vigo Vigq Vi, fori = 0,2,4,..n — 3, Pyp4q is oriented as Pypiq: Vg Vq Vg Vg« Up_q Uy and P,
is oriented as Py: U, Vy_1Vy, -

Case 2 : In P, if n is even.
Then S¢(P2n) = @ nCy @ Pyp,n = 1 (by Theorem 2.4), where Cy is oriented as Cq: V; Viyq Viya Viyq Vi
fori =0,2,4,..n— 2 and P,, is oriented as P,,: U V1V3V3 ... Up_1Vp.

Lemma 3.2.1. Let B,: vgVq ... Vpy_1 Uy be a fuzzy path of length n. If all the edges are weak in P, then the edges
(Vi,i41),0 < i < n — 1 are weak in S¢(P,) and the edges (v{,v;41),0 <i <n—1and (v{,v;_1),1 <i <
n are strong in Sg(Fy).

Proof. Proof follows from the definition of splitting graph of a fuzzy graph and the definition of weak and
strong edges.
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Theorem 3.2.1. Let P,, be a fuzzy path of length n. If all the edges are weak in Py, then ¢ (Sg(Py)) = 2.
Proof. Let Py: voVy ... Vp_1Vy be a fuzzy path of length n. Then by Lemma 3.2.1, the edges (v;, v;41),0 <
i <n — 1 are weak in Sg(P,)and the edges (v{,v;41),0 < i <n—1and (v;,v;_1),1 < i < n are strong
in S¢(Fp).

Case 1:In B, if n is even.

Then Sg(Pyp,) = @ nCy @ Py, n = 1 (by Remark 3.2.1). Then by Theorem 2.2 we have, xr(Cy) = 2 and
by Lemma 2.2 we have, x s(P25,) = 2. Therefore by Corollary 3.1.1, x£(Sf (P2p)) = 2.

Case 2 : In B, if n is odd.

Then Sf(Pani1) = @ nCy @ Prpyq D Pp,n =1 (by Remark 3.2.1). Then by Theorem 2.2 we have,
X5 (Cy) = 2, by Lemma 2.2 we have, ¥ (Pzp+1) = 2 and by Theorem 2.1 we have, x;(P;) = 2.
Therefore by Corollary 3.1.1, x7(Sr(Pzn+1)) = 2.

l'() I'l !'... l'll

/4 /
u(/, 2! Uy Un—1 v

Figure 4. Splitting graph of the fuzzy path B, .
Note : In Py, if n = 1,S¢(P;) = Ps. = x¢(S¢(P1)) = 2.

Lemma 3.2.2. Let P, be a fuzzy path of length n. If all the edges are strong in By, then Sg(Py,) is a strong fuzzy
graph.
Proof. Proof follows from the definition of splitting graph of a fuzzy graph and the definition of strong edge.

Theorem 3.2.2. If S¢(P,) is a strong fuzzy graph, then x5 (S¢(P,)) = 2. (The proof will be similar as

above theorem).

Lemma 3.2.3. Let B,: vgVq ... Up—_1VUp be a fuzzy path of length n. If weak and strong edges are distributed in any
sequence in P, then the edges (V;,V;41),0 < i <n—1 are also weak and strong, which are distributed in any
sequence in Sg(P,) while the edges (v{,V;41),0 <i<n—1and (v,v;_1),1 < i < n are strong in Sp(P).
(The proof will be similar as above lemma).

Theorem 3.2.3. Let P, be a fuzzy path of length n. If weak and strong edges are distributed in any sequence in Py,
then x £ (Sf(P,)) = 2. (The proof will be similar as above theorem).

3.3. The Chromatic Number of D, P (P,
Definition 3.3. The shadow graph D, P (G)(VDZ: Op, “Dz) of a fuzzy graph G(V, o, ut) is a fuzzy graph with
underlying crisp graph D, (G)(Vp,, Ep,) is obtained by taking two copies of G namely G" and G"' with the
vertex set Vp, = V' U V" where V' = {v]{ Vv; € V} and V" = {v;’ V v; € V} and the edge set
i, v)), ', vj") if v; and vj are adjacent in G,

E, =

D2 (v, v’ if vi € V'and vj’ € V''that are adjacent to v;' € V"".
Then, op, ') = 0p,(v") = c(W)forveV,v' eV',v" e V",
tp, Wivj) = pp, W;'vj") = p(v;v)), for vi,vj € V',v;",v/' € V", v;,v; €V,
Kb, (U{Uj”) =a(]) A 0'(17;’) if vi € V'and v’ € V" that are adjacent to v;" € V"
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Example 3. The shadow graph of P3 is given in Figure 5.

w(0.2) v7(0.3) v2(04) v5(0.5)
02 03 _ 04

0.2 03 04

<u()(()_2) ('1(03) 1‘2(()—1) ‘17;;(().5)

'y

Py

Figure 5. Fuzzy path P5 and its shadow graph D, ; (P3).

Remark 3.3.1. Let P: VgV ... Vp—1Vpn be a fuzzy path of length n. Then D, (B,) =@ nC, (by Theorem

!

2.4), where C, is oriented as C4: V] Vi, q Vi V4, Vi, fori = 0,1,..,n— 1.

Lemma 3.3.1. Let P,: v Vq ... Vjy_1Vy, be a fuzzy path of length n. If all the edges are weak in Py, then the edges
W, v{41),0<i<n-—1and (v{,v{}1),0 <i<n-—1 are weak in D, ,(P,) and the edges (v, v41),0 <
i<n—1and (v{,v;L1),1 < i < narestrongin sz(Pn).

Proof. Proof follows from the definition of shadow graph of a fuzzy graph and the definition of weak and
strong edges.

Theorem 3.3.1. Let P, be a fuzzy path of length n. If all the edges are weak in Py, then  xf (sz (P) = 2.
Proof. Let B,: vy V1 ... Up_1V, be a fuzzy path of length n. Then D,, (B,) = nC, (by Remark 3.3.1) and
by Lemma 3.3.1, the edges (v{,v{41),0 <i<n—1and (v{’,v/41),0 < i <n—1 are weak in D, (Py)
and the edges (v{,v{}11),0 <i <n—1and (v;,v;_;),1 < i < narestrong in D (o). Then by Theorem
2.2, we have xf(C,) = 2. Therefore by Corollary 3.1.1, )(f(sz(Pn)) = 2.

! !

1"
Ug vy vy Un—1 Uy

Figure 6. Shadow graph of the fuzzy path P,.

Lemma 3.3.2. Let P, be a fuzzy path of length n. If all the edges are strong in P, then sz (P,) is a strong fuzzy
graph.
Proof. Proof follows from the definition of shadow graph of a fuzzy graph and the definition of strong edge.

Theorem 3.3.2. If sz(Pn) is a strong fuzzy graph, then (sz (P,)) = 2. (The proof will be similar as

above theorem).

Lemma 3.3.3. Let Py: Vg V1 ... Up—q Uy, be a fuzzy path of length n. If weak and strong edges are distributed in any
sequence in P, then the edges (v],v{41),0<i<n—1and (v{,v{51),0 <i<n—1 are weak and strong,
which are distributed in any sequence in sz (B,) while the edges (v{,v;11),0 <i<n—1land (v{,v;"_1),<i <

n are strong in Dy .(Py). (The proof will be similar as above lemma).
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Theorem 3.3.3. Let P, be a fuzzy path of length .. If weak and strong edges are distributed in any sequence in P,
then x 7 (Do ; (P,)) = 2. (The proof will be similar as above theorem).

3.4. The Chromatic Number of L¢(Py,)

Definition 3.4. The line graph Lg(G)(Vy, 0y, py,) of a fuzzy graph G(V, g, ) is a fuzzy graph with underlying
crisp graph L(G)(Vy, E), where the vertex set V, = {v;;V (vi, vj) € E}and edgeset E = {(vij, vrs) |
the edges (v;,v;) and (vy., vs) are adjacent in G}. Then, o,(v;j) = u(v,v;) if v;; €V, and
uL (Vij, rs) = u(vy, vj) A p(vr, v5) if the edges (v, v;) and (vr, v5) are adjacent in G.

Example 4. The line graph of Pj3 is given in Figure 7.

‘ : 0.3
0.2 0.3 0.4 —02 o -
———— & —e ‘ ; 3) Vo
00(0.2) v1(0.3) v2(0.4) v3(0.5) v01(0.2) v12(0.3) v23(0.4)

P3 Ly(Ps)
Figure 7. Fuzzy path P3 and its line graph Ly (P3).

Lemma 3.4.1. Let P, be a fuzzy path of length n. Then Lg (Py,)is a strong fuzzy graph.
Proof. Proof follows from the definition of line graph of a fuzzy graph and the definition of strong edge.

Theorem 3.4.1. If L (Py,) is a strong fuzzy graph, then x s (Lg(P,)) = 2.
Proof. Let Pn:vg Uy ...Vp_1Vy be a fuzzy path of length n. Since Lg(B,) = P,_4, by Lemma 2.2,
Xr(Lp(B)) = 2.

r——oe ————0—0
Vo1 V12 Un—2n—1 Up—1n

Figure 8. Line graph of the fuzzy path B,.

3.5. The Chromatic Number of T (Py,)

Definition 3.5. The total graph T¢(G)(Vr,or, ur) of a fuzzy graph G(V,o,p) is a fuzzy graph with
underlying crisp graph T(G)(Vr, E7), with the vertex set Vi =V U V;; where V = {v; | v; € V} and
Vii={v;; Vv (vi, vj) € E} and the edge set

(vi, vj) if v; and v; are adjacent in G,
ET = (vij,vi), (vij,vj) A iandj,
(vl-j, vrs) if the edges (vi, vj)and (v, vg)are adjacent in G.

Then, or(v;) = ao(vy) if v; €V,

O'T(Uij) = u(vi,vj) if (vi,vj) €EEViandj,

ur (v, vj) = u(v;, vj) if v; and v; are adjacent in G,

ur(Vij, vrs) = 1wy, vj) A u(vy, v) if the edges (v, vj) and (v, vs) are adjacent in G,
and pr(v;,vi;) = pr(vy,vij) = w(vi, v;)Viand j.
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Example 5. The total graph of P5 is given in Figure 9.

v9(0.2) v1(0.3) v2(0-4) 4;(0.5)
0.2 0.3 0.4

) s
Py 001(0.2) v12(0.3) v23(0.4)
Ts(Ps)
Figure 9. Fuzzy path P53 and its total graph T (Ps).

Remark 3.5.1. Let Py: Vg ... V1V be a fuzzy path of length n. Then T¢(B,) = P, @ Ls(B,) @ P,y
(by Theorem 2.4), where B, is oriented as PV Vy..Vp_1Vpn, Lg(P,) is oriented as
Lf(PTl): U01v12 . vn_ln and PZTL is Oriented as PZTL : 170 1701 VU1 V12 .. vn_ln vn .

Lemma 3.5.1. Let P, : Vg Vq ... Vjy_1 Up be a fuzzy path of length n. If all the edges are weak in P, then the edges
of By € Ts(P,) are weak and the edges of Ly (B,) € Ty (P,) and Ppy € Tr(B,) are strong.

Proof. Proof follows from the definition of total graph of a fuzzy graph and the definition of weak and strong
edges.

Theorem 3.5.1. Let P, be a fuzzy path of length n. If all the edges are weak in Py, then  xr(Tr(Pp)) = 2.
Proof. Let B, : Vg Vy ... Up_1Vy be a fuzzy path of length n. Then T¢(B,) = P, @ Lf(B,) @ P, (by Remark
3.5.1) and by Lemma 3.5.1, then the edges of B, are weak in T¢(P,)and the edges of L¢(P,) and P,y are
strong in T¢(P,). Then by Lemma 2.1 we have, x7(P,) = 2, by Theorem 3.4.1 we have, xf(Lf(P,)) = 2
and by Lemma 2.2 we have, x(P,,) = 2. Therefore by Corollary 3.1.1,

xr (Tr(P)) = max {xp (P, X p (L (P))s X p (Pan)
= max{2,2,2}
= 2.

Vo1 U12

Vo U1 Vo Un—1 Un
Figure 10. Total graph of the fuzzy path B,.

Lemma 3.5.2. Let P, be a fuzzy path of length n. If all the edges are strong in By, then Tz (P,) is a strong fuzzy
graph.
Proof. Proof follows from the definition of total graph of a fuzzy graph and the definition of strong edge.

Theorem 3.5.2. If Ty (P,) is a strong fuzzy graph, then x ¢ (T (P,)) = 3.

Proof. Let P, : Vg Vg ... Vy_q Uy be a fuzzy path of length n. Then T¢(B,) = B, @ Ls(P,) @ P,y (by Remark
3.5.1) and by Lemma 3.5.2, all edges are strong in T¢(B,). Then by Theorem 3.4.1 we have, ¢ (Lf(B,)) = 2 and
by Lemma 2.2 we have, x7(P,) = xf(Pzn) = 2. Then by Corollary 3.1.1,
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X5 (Tr(Pr)) = max{xy(Pn), Xy (Lr(Pn)), X5 (P2n)}
= max{2,2,2} + 1
= 3.
Lemma 3.5.3. Let B, @ Vg Vg ... Up_1Vp be a fuzzy path of length n. If weak and strong edges are distributed in any
sequence in Py, then the edges of B, € Tr(Py,) are weak and strong, which are distributed in any sequence in T (F,),

while the edges of Lg(P,) € Ty (P,) and Pyy, € T¢(Py,) are strong. (The proof will be similar as above lemma).

Theorem 3.5.3. Let Py, be a fuzzy path of length n. If weak and strong edges are distributed in any sequence in P,
then x 7 (Tr(P,)) = 2. (The proof will be similar as above theorem).

3.6. The Chromatic Number of sdy(P,)

Definition 3.6. The subdivision graph sd;(G)(Vsg, Osg, sq) of a fuzzy graph G(V, 0, ) is a fuzzy graph
with underlying crisp graph sd(G)(Vsq, Esq), with the vertex set Vsq =V U V;j, where V = {v; | v; € V}
and V;; = {v;; V (vi,vj) € E} and the edge set Egq = {(vij,vi), (vl-j,vj)v [ & j}. Then, 05q(v;j) =
u(vy, vp) if (vi,vj) EEVi& jand usd(vi,vij) = ,usd(vj,vij) = ,u(vi,vj) Vi&j.

Example 6. The subdivision graph of P5 is given in Figure 11.

—

0.2 0.3 0.4 0.2 0.2 _ 0.3 03 04 o 04

v(0.2) v4(0.3) {.2(6'4) ,,3('()_5) v9(0.2) v01(0.2) 1v1(().3)1'12(().3)1'-_)((].—1) v23(0.4) v3(0.5)

P sdy(Ps)
Figure 11. Fuzzy path P3 and its subdivision graph sd(Ps).

Lemma 3.6.1. Let P, be a fuzzy path of length n. Then sd¢(F,) is a strong fuzzy graph.
Proof. Proof follows from the definition of subdivision graph of a fuzzy graph and the definition of strong edge.

Theorem 3.6.1. If sdg(PBy,) is a strong fuzzy graph, then x s (sdf (P,)) = 2.
Proof. Let P, :vgVq .. Vp_q Uy be a fuzzy path of length n. Since sdf(P,) = Py, by Lemma 2.2,

Xr(sds(B)) = 2.

L — —— g > — — — -g—@
Yo Vo1 1 V12 U2 Un—1n Uy,

Figure 12. Subdivision graph of the fuzzy path B,.

4. Application

Smart cities depend on interconnected hubs to manage traffic, emergencies, and safety systems. However, during
emergency situations like power outages or natural disasters, maintaining reliable communication is a critical
challenge. This study applies shadow graph of a fuzzy graph to model conflict-free routing in an affected hub’s
communication network, ensuring uninterrupted connectivity. Furthermore, it determines the minimum
number of channels required for interference-free communication under such conditions.

Let G be a fuzzy graph that represents a communication network with vertices 4, B, C and D. Each vertex
corresponds to a smart communication hub located in a different district. The membership value of each vertex
indicates the operational reliability of the hubs in each district, which are 0.6, 0.4, 0.5 and 0.3, respectively. Two
vertices are connected if and only if there exists a direct communication link between them, and the membership
value of each edge reflects the reliability of the communication links. Let the edges (4, B), (B, (), (C,D)
represent the direct communication link between the smart hubs with membership values 0.4,0.3 and 0.2
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respectively. Moreover, all the edges are strong in G, representing the strong communication links between the
hubs.
Construct the shadow graph D, ; (G) of fuzzy graph G (by definition 3.3), then the edges

(A",B",(B',C"),(C',D") represent the direct communication links between the smart hubs, while the edges
(A",B"),(B",C'),(C",D") represent the direct communication link between the backup hubs. These edges
retain the same membership values as those of the corresponding edges in G. Additionally, the edges
(A',B",(B',C"),(C',D"),(B",A"),(C',B"),(D',C") represent the direct communication links between the
smart hubs and backup hubs, with membership values 0.4, 0.4, 0.3, 0.4, 0.4 and 0.3 (Figure 13). Since G is strong,
sz (@) is also strong (Corollary 3.3.2).

0.4 0.3 o—0:2 o
A(0.6) B(0.4) C(0.5) D(0.3)

G

Figure 13. Fuzzy graph G and its shadow graph D, P (@).

If a hub u fails due to a natural disaster, then the communication links between the failed hub u and its
neighbouring hubs v; become disrupted. As a result, the reliability of the communication links from u to its
neighbouring hubs v; is significantly reduced. Let D,, € [0,1] be the degradation factor, representing the
percentage decline in the reliability of the hub u. If the degradation factor satisfies

2@ A o(v)
u(u, v;)

D, > max{1-—

ey

then the reliability of each communication link from u to its neighbouring hubs v; will be reduced, and each
communication link will become weak with degraded membership values given by

Up (‘Ll,, vi) = (1 - Du).,u(u, vi)' (2)

If the degradation condition is not satisfied, then each communication link remains strong and functions
normally despite the natural disaster.

Suppose the reliability of a hub B" is degraded by 55% (i.e., Dg = 0.55) due to a natural disaster. As a
result, the communication link between A" and C' is disrupted, and its reliability will be significantly reduced.
Since, Dg satisfying (1), the edges (B’,A"), (B',A"),(B',C"), and (B’,C"") become weak, with membership
values 0.18,0.18,0.13, and 0.18, respectively (by (2)). Consequently, the communication links from the affected
hub to its neighbouring hubs fail. Therefore, in this scenario, it is necessary to restore the failed connection to
enable conflict-free communication between the hubs. To preserve the connectivity between A’ and C’, the
corresponding backup hub B"' should be utilized to ensure reliable and interference-free communication.
Subsequently, it is essential to allocate the minimum number of channels to maintain interference-free
communication between the hubs. For that, we implement perfect fuzzy coloring on D, ; (G) to determine the

minimum number of channels needed to maintain interference-free communication. The perfect fuzzy coloring
of Dy, is as follows:

Let G be the given fuzzy graph and D, ; be its shadow graph. First, consider the vertex A" and color it with an

arbitrary basic color, say (R, 1). As the edge (A', B") is weak, the coloring of the vertex B’ depends on the strength
of the edge (A, B"). i.e., the membership value of vertex B' is 1 — I(A’, B"). Then the vertex B’ will receive a

1868



International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 18s, 2025
https://www.theaspd.com/ijes.php

fuzzy color (R, 0.55). Similarly the vertex C’ will receive a fuzzy color (R, 0.67), the vertex A" will receive a fuzzy
color (R,0.55) and the vertex C"" will receive a fuzzy color (R, 0.55). Now consider the vertex B’ for coloring.
Since all the incident edges are strong, it will receive a basic color (B, 1). Similarly, the vertices B" and D"’ are
also will receive the basic color (B, 1). Thus, D, ; (G) is colored using two colors, namely Red and Blue.

B'(0.4)/(R,0.55) C'(0.5)/(R,0.67)
D'(0.3)/(B,1)

W04 o 03 .02 0.4 3
A(0.6) B(0.4) €(0.5) D(0.3) 0. L
A”(0.6)/(R, 0.55) D¥{9.9)/(B51)

B"(0.4)/(B,1) C"(0.5)/(R,0.55)
Dy, (G)
Figure 14. Fuzzy coloring of D, ; (G), when B’ fails.

Therefore, x7(D; ; (G)) = 2. i.e., only two distinct channels are required to achieve conflict-free routing and

ensure interference-free communication between the hubs.

Similarly, each fuzzy graph defined in this paper offers a versatile tool for analyzing and improving real-world
networks.

5. Conclusion

In this paper, we precisely defined the concepts of the middle graph, splitting graph, shadow graph, line
graph, total graph, and the subdivision graph of a fuzzy graph G. The chromatic numbers of the above-
mentioned graphs, derived from the fuzzy paths, are determined by using fuzzy coloring based on the
strength of the edges incident on each vertex.

Future work will focus on extending this analysis to the corresponding graphs of the fuzzy cycles and
determining their chromatic numbers.
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