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Abstract 
In educational measurement and evaluation processes, the ability of different test forms to produce 
comparable scores is critical for obtaining fair and valid results. In this regard, the present study aims to 
comparatively examine test equating methods based on the Classical Test Theory (CTT) and the Item 
Response Theory (IRT), which are widely used in measurement applications, in terms of their error levels. 
Within this scope, using data generated through simulation, the methods of Linear Equating, Equipercentile 
Equating, Mean-Mean, Mean-Standard Deviation, Stocking-Lord, and Haebara were applied. Excel and R 
software were utilized for the analyses. In order to determine the amount of error between each raw score 
and its corresponding equated score, the Weighted Mean Squared Error (WMSE) criterion was used. These 
error values enabled a comparative evaluation of the accuracy levels of equating methods according to score 
ranges. The findings revealed that equating methods based on Item Response Theory produced lower error 
particularly at the extreme ends of the score distribution, whereas methods based on Classical Test Theory 
provided more consistent results at the mid-range. The study presents the error behaviors of test equating 
approaches through simulation-based comparisons and contributes to the theoretical discussions in the field 
of measurement. 
 
Key Words: Test Equating, Item Response Theory, Classical Test Theory, Weighted Mean Squared Error 
(WMSE), Simulation. 
 
Introduction 
In educational measurement and evaluation processes, the comparison and interpretation of test scores are 
of great importance. When different test forms are administered, test equating methods are needed in order 
to make a fair and valid assessment of candidates’ ability levels. Test equating enables the comparison of 
individuals’ scores by expressing the scores obtained from different test forms on a common scale (Kolen & 
Brennan, 2014). In this context, test equating methods are generally classified into two main categories: 
observed score equating and true score equating. In the observed score equating method, the goal is to place 
scores on a common scale based on the score distributions of a specific group. This approach includes 
methods such as Linear Equating and Equipercentile Equating developed within the framework of Classical 
Test Theory (CTT) (von Davier, 2008). On the other hand, in true score equating, the aim is for an individual 
to obtain the same true score on different test forms depending on their ability level. These methods include 
various models developed within the framework of Item Response Theory (IRT), such as Mean-Mean, Mean-
Standard Deviation, Stocking-Lord, and Haebara methods (Lord, 1980; Stocking & Lord, 1983). In true 
score equating, the true score is obtained by subtracting the error from the observed score, and its 
fundamental assumption is that individuals with the same ability level will have the same true score regardless 
of the test form they take (Lord, 1980). True score equating methods include both concurrent calibration 
(Lord, 1980) and separate calibration methods (Stocking & Lord, 1983). 
In CTT-based equating methods, summary statistics at the test level, such as means and standard deviations 
of test scores, are used. Therefore, CTT-based equating is typically carried out using linear or equipercentile 
methods. These methods operate based on the relationship between total test scores and do not model item 
characteristics directly (Kolen & Brennan, 2014). On the other hand, IRT-based equating methods perform 
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analyses by taking into account item characteristics such as discrimination (a), difficulty (b), and guessing (c). 
In these methods, the relationship between individuals’ ability levels and item responses is modeled 
probabilistically. IRT equating, especially with techniques such as Stocking-Lord and Haebara, allows 
different test forms to be expressed on a common scale through item parameters (Kim & Kolen, 2004; Lord, 
1980). Within the scope of the present study, the equating methods used in the test equating process are 
addressed within the framework of CTT- and IRT-based approaches. Linear Equating and Equipercentile 
Equating methods were examined based on CTT; and under IRT, widely used methods for obtaining equated 
scores such as Mean-Mean, Mean-Standard Deviation, Stocking-Lord, and Haebara were included. 
 
Equating Methods Based on Classical Test Theory (CTT) 
Within the scope of the present study, the CTT-based equating methods, namely Linear Equating and 
Equipercentile Equating, were initially calculated using Excel. 
 
Linear Equating 
This method allows for differences in difficulty between two forms to vary across the scale scores. It assumes 
that scores corresponding to the same standard scores are equivalent (Angoff, 1984). Linear Equating is based 
on the division of the difference of scores from their own means by their standard deviations. Its distinction 
from mean equating lies in the standard deviation value in the following equation (Kolen & Brennan, 2014). 

 
 
X: Scores obtained from the X test (old form) 
μ(X): Mean of the X test 
Y: Scores obtained from the Y test (new form) 
μ(Y): Mean of the Y test 
σ(X): Standard deviation of the X test 
σ(Y): Standard deviation of the Y test 
 
Equipercentile Equating 
In the equating function, if the distribution of scores from Form X, converted to the scale of Form Y, matches 
the distribution of scores from Form Y in the population, this constitutes an Equipercentile Equating 
function. This function is developed by identifying the scores from Form X that have the same percentile 
ranks as those in Form Y (Mutluer & Çakan, 2022). 
Equipercentile Equating is based on identifying the scores on the tests to be equated that fall at the same 
percentile rank (Crocker & Algina, 1986). In this method, if the transformation of raw scores from the tests 
to be equated corresponds to the same percentile rank within the same population, these scores are 
considered equivalent. 

 
ey(X): Symmetric equating function that converts a score from Form X to Form Y 
P(X): Percentile rank function for X 
yu*: The smallest integer with a cumulative percentile greater than Q* 
G(y): Discrete cumulative distribution of y 
 
Equating Methods Based on Item Response Theory (IRT) 
IRT-based equating enables meaningful comparison of test scores, particularly in cases where there are 
structural differences between test forms due to item parameters. In this regard, based on the item difficulty 
(b) and discrimination (a) parameters of the items included in different forms under the two-parameter 
logistic model, the aim is to express the scores that an individual would obtain from both forms on the same 
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scale. 
 
At the core of the theory lies a mathematical model that describes how individuals at different ability levels 
respond to an item measuring a given trait. These equating methods are typically applied through common 
items (anchor items) or common individuals included in the test forms. In this way, the measurement results 
from different test forms become comparable through linear or nonlinear transformations (Baker, 1992; 
Crocker & Algina, 1986). 
 
Baker (2001), Crocker and Algina (1986), Doğan and Tezbaşaran (2003), Embretson and Reise (2013), 
Hambleton and Swaminathan (2013), and Lord (1968) argued that using IRT is advantageous, as the 
examinee’s ability can be identified with less measurement error and the item parameters exhibit invariance 
across different samples drawn from the same population. 
 

 
Figure 1. IRT-Based Test Equating Methods 
 
As shown in Figure 1, IRT-based test equating methods are examined under two main categories: Moment 
Methods and Characteristic Curve Methods. Equating based on Moment Methods transforms scores using 
basic statistical values (mean, variance), while equating based on the Characteristic Curve Method performs 
more detailed transformations based on cumulative distribution functions by taking into account the entire 
structure of the score distribution. 
 
IRT-based equating methods are of great importance in ensuring fair and comparable evaluations of 
measurement instruments. Compared to CTT-based equating approaches, these methods offer greater 
flexibility and allow for more precise analysis at the item level (Hambleton, Swaminathan & Rogers, 1991; 
Kolen & Brennan, 2014). Especially in high-stakes testing and longitudinal studies, reliable equating 
processes have become an indispensable component. 
 
Mean-Mean (M-M) and Mean-Standard Deviation (M-S) Methods 
Both methods are used to compute scaling constants. In the M-M method defined by Loyd and Hoover 
(1980), the average of the item discrimination parameters obtained from common items is used to estimate 
the A and B equating constants. The coefficients for this method are calculated as follows: 

 

 

IRT-Based Test 
Equating Methods

Moment Methods

Mean-Mean 
Equating method

Mean-Standart 
Deviation Method

Characteristic 
Curve Methods

Stocking-Lord 
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μ(a₁): Discrimination parameter of Form I 
μ(aⱼ): Discrimination parameter of Form J 
μ(b₁): Difficulty parameter of Form I 
μ(bⱼ): Difficulty parameter of Form J 
A: Slope in the equating equation 
B: Intercept (constant) in the equating equation 
In the Mean-Mean (M-M) equating method, the scaling constant A is calculated first. This coefficient is 
obtained by dividing the average of the a parameters estimated from Form I by the average of the a parameters 
estimated from Form J. The A coefficient determined in this way is then used to calculate the second 
component of the equating process, the B constant. To calculate B, the product of the average b parameters 
from Form I and the A slope is subtracted from the average b parameters obtained from Form J. 
Using these two coefficients, the individual item parameters from Form I are transformed to the scale of 
Form J. The M-M method offers a simple and applicable transformation approach, especially when the 
number of common items is sufficient and item parameters are reliably estimated (Kolen & Brennan, 2014). 
In the Mean-Standard Deviation (M-S) method, defined by Marco (1977), the mean and standard deviation 
of the item difficulty parameters obtained from the common items are used to estimate the equating constants 
A and B. The equations used to estimate the A and B coefficients are provided below (Kolen & Brennan, 
2014; Loyd & Hoover, 1980): 

 

 
σ(bⱼ): Standard deviation of the difficulty parameters of Form J 
σ(bᵢ): Standard deviation of the difficulty parameters of Form I 
μ(bⱼ): Mean of the difficulty parameters of Form J 
μ(bᵢ): Mean of the difficulty parameters of Form I 
A: Slope in the equating equation 
B: Intercept (constant) in the equating equation 
In the M-S equating method, first, the scaling coefficient denoted as term A is calculated. The A term is 
obtained by dividing the standard deviation of the a parameter computed after applying Form I by the 
standard deviation of the a parameter calculated from Form J. The A term obtained through this equating 
method is then used in the second equation. To calculate the constant B, the result obtained by multiplying 
the mean of the b parameters in Form I by the slope value A is subtracted from the mean of the b parameters 
obtained from Form J. Thus, the constant B is also determined. 
Although the moment methods estimation is based on items with similar item characteristic curves but 
differing difficulty parameters, the mean-standard deviation method will be significantly affected due to 
differences in the b parameter estimations. The reason for this is that these methods do not consider all item 
parameter estimations simultaneously during scale transformation. 
Haebara and Stocking and Lord (SL) Methods 
Haebara Method: For a given ability level, the difference between item characteristic curves refers to the sum 
of the squared differences between the item characteristic curves for each item. The mathematical 
representation of this method is as follows: 

 
A = Slope in the equating equation 
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B = Intercept in the equating equation 
pij(θji; âJj, b̂Jj, ĉJj): Item characteristic curve 

pij (θji;
âIj

A
, Ab̂Ij + B, ĉIj): Estimated item characteristic curve 

Hdiff(θi): Sum of squared differences between the item characteristic curves for each item in the test at a 
given ability level θi 
 
The objective is to minimize the difference between the Item Characteristic Curves (ICCs) of the common 
items across the two test forms. 
 
Stocking and Lord (SL) Method: Unlike the Haebara method, the SL method uses the squared difference of 
the sums. Before squaring, it takes the sum of the item characteristic curves for each set of items. 

 
A = Slope in the equating equation 
B = Intercept in the equating equation 
pij(θji; âJj, b̂Jj, ĉJj):  Item characteristic curve 

pij (θji;
âIj

A
, Ab̂Ij + B, ĉIj): Estimated item characteristic curve 

SLdiff(θi): The squared difference between the total sums of item characteristic curves across the test for 
each ability level θi 
This method determines the scale equating coefficients (A and B) by minimizing the difference between the 
Test Characteristic Curves (TCC). In both item characteristic curve-based methods, the coefficients A and B, 
which minimize the resulting functions, can be estimated using the coefficients obtained from moment 
methods as initial values for the iteration process. 
Models developed based on IRT allow for more sensitive and individually oriented interpretation of 
measurement results in the field of test equating. Thanks to these features, they are more widely preferred 
compared to classical approaches (Kolen & Brennan, 2014). However, the applicability and equating accuracy 
of these methods are influenced by various factors, such as test length, the number of common items, group 
equivalence, and sample size. In particular, when equating is performed with a limited number of common 
items in non-equivalent groups, increased error rates necessitate a re-evaluation of the validity and reliability 
of these methods (Kim & Kolen, 2004). 
 
Error in Test Equating 
The standard error in test equating is the standard deviation of score similarities across repeated equating 
processes, and this error is divided into random and systematic components (Mutluer & Çakan, 2023). 
Random error arises from the estimation process of equating parameters and is generally expressed as the 
standard error of equating (Gök & Kelecioğlu, 2014). This error can be reduced by using a large sample and 
an appropriate equating design. Systematic error, on the other hand, occurs when the assumptions or 
conditions of equating are violated. There is no standard method for determining the amount of such error 
(Kolen & Brennan, 2014). 
Lehman and Bailey (1968) stated that simulation studies can be conducted with ease in cases where empirical 
research is not feasible or would be too costly. Similarly, Oh (2000) emphasized that the amount of data 
typically required for analysis can often only be obtained through simulation, which is why simulated data 
are frequently used in equating studies. This makes simulation an attractive alternative for exploring 
methodological questions and evaluating the performance of statistical techniques under controlled 
conditions. In Turkey, although the constructs assessed in large-scale and recurring exams (such as YKS, 
KPSS, and LGS) remain consistent, a new test—assumed to be parallel to previous versions—is administered 
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each year due to test security concerns. However, none of these test forms include common items linking 
them to previous years or to other forms. Given the difficulty in ensuring the equivalence of individuals who 
take the test in different years or retake the same test, implementing an equivalent-groups design becomes 
problematic. Moreover, the absence of common items in national exams makes it difficult to perform 
equating using the common-item design. Therefore, in this study, the performance of estimation methods 
based on CTT and IRT was compared through a simulation study. 
Within the scope of the present study, it is aimed to comparatively examine the test equating methods based 
on CTT and IRT in terms of error levels. In this context, methods including Linear Equating, Equipercentile 
Equating, Mean-Mean, Mean-Standard Deviation, Stocking-Lord, and Haebara were applied using data 
generated through simulation. 
 
Method 
 
Research Design 
The present study falls within the scope of fundamental research. Fundamental research is typically conducted 
to understand and explain the processes underlying a theory or hypothesis (Fraenkel, Wallen, & Hyun, 2012). 
In the context of this study, it was aimed to compare the Classical Test Theory (linear equating and 
equipercentile equating) and Item Response Theory true score equating methods (M-M, M-S, SL, and 
Haebara) based on equating errors, within a simulation design involving common items in nonequivalent 
groups. The primary objective of this study is to determine which method yields the lowest error rate and to 
contribute to theoretical research. 
Simulation studies are classified into two categories: deterministic and probabilistic simulation studies 
(Çörtük & Sinan, 2023). In deterministic simulations, all conditions are assumed to be fixed, whereas in 
probabilistic simulations, at least one condition is treated as a variable involving randomness (Cohen, 
Manion, & Morrison, 2007). Within this framework, the present study is characterized as a probabilistic 
simulation study in which at least one condition is randomly varied. 
 
Simulation Conditions 
The simulated data used in the study were generated using the freely accessible WinGen3 software developed 
by Han and Hambleton (2007). The conditions that were kept constant throughout the data generation 
process are presented in Table 1. 
 
Table 1. Conditions Held Constant 
Parameter Minimum Value Maximum Value 
a parameter 0.25 1.10 
b parameter -3 3 
Ability parameter -3 3 
Number of replications 20 – 
Number of options 2 – 
Number of factors 1 – 
Test length 20 – 
Internal anchor item 5 – 
Model 2PLM – 
In the present study, 20-item tests were employed, with each test form structured to include 5 common items. 
A common-item design for nonequivalent groups was adopted based on dichotomous simulation data, with 
the sample size for each group set at 1,000 participants. In order to enhance the generalizability of the 
simulation results, replications (iterations) were conducted. In IRT-based studies, Harwell, Stone, Hsu, and 
Kirisci (1996) suggested that 25 replications are sufficient, while Kolen and Brennan (2014) stated that 
between 20 and 100 replications are adequate. Accordingly, 20 replications were conducted for each sub-
condition in the current study. 
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A Monte Carlo simulation study was performed to identify the conditions under which the equating methods 
yield more accurate results. Item responses were generated based on dichotomous item responses using the 
two-parameter logistic model (2PL). Data analyses were conducted using the R software and Microsoft Excel. 
For IRT analyses in R, the "mirt", "stats4", and "lattice" packages were utilized—specifically for examining 
equating error and standard error effects. 
In nonequivalent groups, a common-item design is often preferred in situations where multiple test forms 
are administered on the same day to maintain test security (Tsai, 1997). Since this design is applied to 
nonequivalent groups, it is referred to as a nonequivalent groups with anchor test (NEAT) design (von Davier 
et al., 2004). In this context, each group receives only one form administered a single time (Kolen, 1988). 
The NEAT design is presented in Table 2. 
 
 
 
 
 
 
Table 2. Common-Item Design in Nonequivalent Groups 
 
Group Form1 Form2 Common Test 

X +  + 

Y  + + 

One of the test forms and a set of common items are administered to nonequivalent groups, and the equating 
process is carried out based on these common items. In this design, the common items should adequately 
represent the test, and they must be placed in the same position in both forms, as the location of the items 
can affect their difficulty (Kolen, 1988; Kolen & Brennan, 2004; Tsai, 1997). Based on the placement of the 
items within the test form, the anchor test can be classified as either internal anchor or external anchor 
(Kolen & Brennan, 2014). If the scores obtained from the anchor items are included in the individual's total 
test score, it is referred to as an internal anchor; if they are not included, it is considered an external anchor. 
In the external anchor design, the anchor items are administered as a separate test form, while in the internal 
anchor design, they are embedded within the test (Cook & Eignor, 1991; Kolen, 1988; Zhu, 1998). In the 
present study, the anchor items were embedded within the test forms and implemented based on the internal 
anchor design. 
 
Findings 
In the present study, among the true score equating methods, characteristic curve methods (Stocking-Lord 
and Haebara) and moment methods (Mean-Mean and Mean-Sigma) were examined, alongside observed score 
equating methods including linear and equipercentile equating. 
During the equating process, the Y test form was designated as the reference form, while the X form was the 
one to be equated. The sample size was determined to be 1000 individuals for each test form. In the study, 
the internal anchor item design was preferred as the common-item type, with anchor items comprising 25% 
of the total test items. 
 
Table 3. Frequency and Percentile Values of Form Y and Form X 
Score Frequency Percentile 
 Form Y Form X Form Y Form X 

0 0 0 0 0,0 
1 1 2 0,1 0,2 
2 5 15 0,5 1,5 
3 8 32 0,8 3,2 
4 33 42 3,3 4,2 
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5 41 87 4,1 8,7 
6 64 96 6,4 9,6 
7 90 96 9,0 9,6 
8 119 92 11,9 9,2 
9 112 104 11,2 10,4 
10 103 93 10,3 9,3 
11 91 78 9,1 7,8 
12 94 71 9,4 7,1 
13 71 55 7,1 5,5 
14 54 46 5,4 4,6 
15 42 29 4,2 2,9 
16 31 20 3,1 2,0 
17 21 20 2,1 2,0 
18 12 12 1,2 1,2 
19 4 6 0,4 0,6 
20 4 4 0,4 0,4 
Total 1000 1000 100 100 

 
The table above presents the frequency and percentile values of the scores for Form Y and Form X. Within 
the scope of equating, the number of individuals was determined as 1000 for each form. It is observed that 
the score distribution is concentrated around scores of 8, 9, and 10. 
 
Table 4. Descriptive Statistics for Form Y and Form X 
 Mean ss Skewness Kurtosis 
FormY 10,029 3,465 0,253 -0,335 
FormX 9,144 3,757 0,389 -0,327 
 
 
According to Table 4, since the skewness and kurtosis coefficients fall within the range of -1.5 to +1.5, it can 
be interpreted that the individuals to whom Form Y and Form X were administered are homogeneously 
distributed (Tabachnick and Fidell, 2013). Crocker and Algina (1986) stated that, in the common-item test 
design, for IRT true score equating methods, the common test and the total test must measure the same 
trait/ability, whereas such a requirement is not necessary for traditional equating methods such as linear and 
equipercentile equating. 
 
Table 5. Scores Obtained Through Linear and Equipercentile Equating Methods Corresponding to the i-th 
Raw Score on Form X 

X Form Raw Scores Linear Equating Equipercentile Equating 

1 2,518 1,500 
2 3,440 3,200 
3 4,362 5,875 
4 5,285 5,197 
5 6,207 6,634 
6 7,129 7,656 
7 8,052 8,389 
8 8,974 8,962 
9 9,896 9,866 
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10 10,818 10,854 
11 11,741 11,841 
12 12,663 12,622 
13 13,585 13,549 
14 14,507 14,500 
15 15,430 15,393 
16 16,532 16,145 
17 17,274 16,929 
18 18,197 17,833 
19 19,199 18,750 
20 20,041 20,000 

 
 
Overall, the scores obtained through the linear equating method yield higher or lower results than those 
derived from the equipercentile equating method within certain score intervals. This discrepancy stems from 
the underlying assumptions of the equating types. In the lower score range (e.g., between 2 and 6), the 
equipercentile equating method produced lower scores compared to linear equating. This is associated with 
the equipercentile method's ability to more sensitively reflect differences at the lower end of the distribution. 
In the mid-score range (7–15), the difference between the two methods gradually decreases, indicating that 
both methods produce more similar results within this range. At higher score levels (16 and above), the 
equated scores converge significantly, with the equipercentile method yielding lower scores in some instances 
and higher scores in others. These differences can be attributed to the assumption of a constant relationship 
across all points of the distribution in linear equating, whereas the equipercentile method establishes a more 
flexible relationship by matching percentiles to corresponding scores. 
To determine the equipercentile equivalent of a specific score on Form X, the score on Form Y that 
corresponds to the same percentile rank is identified. The fundamental assumption of this process is that 
individuals with the same level of achievement should occupy the same percentile rank across different test 
forms. For example, if an individual scores 65 on Form X and this corresponds to the 70th percentile, the 
equivalent score on the reference test form, Form Y, is the score that corresponds to the 70th percentile on 
that form. In this way, the achievement levels of individuals can be compared independently of the test form 
(Kolen & Brennan, 2014). 

 
 
Figure 2. Equating with Linear and Equipercentile Equating Methods 
 
When Figure 2 is examined, it can be observed how much the equated scores deviate from the raw scores. A 
linear relationship is evident between the equated and raw scores, and it is observed that greater deviations 
occur in lower scores when using the equipercentile equating method. 
 
Equating Methods Based on IRT 
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Within the scope of IRT, item characteristic curve methods (SL and Haebara) and moment methods (M-M 
and M-S), which are estimation approaches different from true score equating methods, were examined. 
 
Table 6. Item Difficulty and Discrimination Parameters for Form X and Form Y 
 
 FormX FormY 

 b Parameter a Parameter b Parameter a Parameter 
S1 -0,83 0,85 -0,85 0,62 
S2 -0,77 0,99 -0,77 0,91 

S3 -0,22 0,25 -0,22 0,43 

S4 0,02 1,15 0,02 0,92 

S5 0,21 0,61 0,21 0,55 

S6 -0,52 1,12 0,24 0,81 

S7 -0,40 0,35 -0,64 0,57 

S8 -0,75 0,66 0,22 1,10 

S9 0,14 0,71 0,66 0,94 

S10 -1,06 0,74 -0,64 0,54 

S11 0,38 0,50 0,00 1,00 

S12 0,38 1,71 -0,38 0,32 

S13 0,38 1,22 0,72 0,83 

S14 0,18 0,77 0,19 0,25 

S15 0,13 0,26 1,26 0,81 

S16 -0,30 0,91 1,13 0,88 

S17 0,46 0,69 -0,56 0,53 

S18 -0,51 0,87 -0,39 0,68 

S19 -0,81 0,45 -0,66 0,46 

S20 0,11 0,77 1,14 0,69 

 
The table above presents the item difficulty (b) and discrimination (a) parameters for Form X and Form Y. 
Items with highly similar difficulty values have been designated as anchor items, labeled as s1, s2, s3, s4, and 
s5.  
 
Table 7. Test Forms Equated Using IRT-Based Equating Methods 

Raw Scores M-M M-S SL Haebara 

1 1,35 1,17 1,20 1,50 
2 2,42 2,24 2,18 2,54 

3 3,49 3,33 3,28 3,58 
4 4,54 4,43 4,37 4,63 

5 5,59 5,52 5,50 5,68 

6 6,65 6,62 6,58 6,72 

7 7,70 7,71 7,60 7,75 

8 8,75 8,81 8,50 8,77 
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9 9,79 9,91 9,60 9,79 

10 10,82 10,99 10,70 10,79 
11 11,84 12,05 11,70 11,77 
12 12,84 13,09 12,60 12,75 

13 13,82 14,09 13,50 13,70 
14 14,77 15,07 14,61 14,63 
15 15,70 16,01 15,40 15,54 
16 16,59 16,91 16,40 16,44 
17 17,46 17,78 17,31 17,35 
18 18,36 18,57 18,22 18,26 

19 19,26 19,40 19,14 19,17 

20 20,18 20,29 20,09 20,10 

 
Table 7 demonstrates how different equating methods based on IRT may vary, particularly at low and 
moderate score levels. As raw scores increase, the equated scores obtained through all methods also increase, 
indicating that the transformation proceeds in a monotonic and meaningful manner. Although all methods 
fundamentally follow the same transformation trend, the differences among methods become especially 
apparent at low and moderate score ranges. Haebara positions individuals with low achievement levels 
somewhat more “advantageously” on the reference form. SL performs a more cautious equating, keeping low 
scores relatively lower. This reduces the risk of score inflation but may potentially underrepresent the abilities 
of some individuals. M-M and M–S are simpler and linear methods; however, as they do not take item 
characteristics into account, they are not recommended particularly in the presence of heterogeneous item 
structures. 
 

 
 
Figure 3. Equating with M-M, M–S, SL, and Haebara Methods 
Figure 3 clearly illustrates how the choice of equating method results in differences across various score 
ranges. The graphs show that the M-M method provides a linear transformation, meaning it converts raw 
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scores to the reference form scores with a constant increment. The M–S method behaves similarly to M-M at 
lower score levels, but becomes more "generous" at higher scores, producing relatively higher values in the 
reference form. The Stocking–Lord (SL) curve starts close to the raw scores but increases less steeply as scores 
rise, indicating a more balanced and controlled equating. The Haebara method, on the other hand, provides 
the highest equating values at lower score levels, distinguishing it from the others. 
 
Table 8. Comparison of Equating Errors between CTT and IRT Methods 
 

 CTT IRT 
Method Linear Equipercentile 

Equating 
M-M M-S SL Haebara 

Equating Error 0,0614 0,0823 0,0496 0,0672 0,0422 0,0428 

 
Table 8 presents a comparative summary of equating errors for different test equating methods based on 
Classical Test Theory (CTT) and Item Response Theory (IRT). The differences in equating errors arise from 
the conceptual frameworks of the methods. One such metric is the Weighted Mean Squared Error (WMSE). 
To determine the magnitude of error in the scores obtained through equating methods, each raw score and 
its corresponding equated score are compared using WMSE (Skaggs & Lissitz, 1986; Kelecioğlu, 1994; 
Şahhüseyinoğlu, 2005; Bozdağ & Kan, 2010). 
The equating accuracy of each method is assessed based on its error value; lower error implies higher accuracy 
and reliability. According to Table 7, IRT-based methods perform equating with lower errors compared to 
those based on CTT. Among these, the Stocking–Lord and Haebara methods stand out as preferred options 
in academic research and operational test equating applications. CTT-based methods, on the other hand, 
may be used when the data structure is simple, test forms are highly similar, or when IRT cannot be applied. 
 
Discussion and Conclusion  
As the result of this study it is seen that methods have different results in different methods. The present 
study aimed to compare equating methods developed based on CTT and IRT. Within this scope, the linear 
equating and equipercentile equating methods from CTT, and the M-M, M-S, SL and Haebara methods from 
IRT were employed. Overall, IRT-based equating methods yielded more reliable results compared to those 
based on CTT. Consistent with the literature, IRT-based methods offer higher accuracy, better parametric 
control, and minimize distortions at the score extremes (Kim & Kolen, 2006). 
Findings from the CTT framework revealed that the equipercentile equating method produced more sensitive 
results at the distributional extremes—particularly at lower score levels—than linear equating. Therefore, if 
score distributions deviate from normality or there are structural differences between test forms, the 
equipercentile method may be a more suitable choice. Among the IRT methods, Stocking–Lord and Haebara 
methods stood out in terms of graphical fit and lower error values. While CTT methods may be practical 
when the test forms are structurally similar, the sample sensitivity of the equipercentile method should be 
taken into account. 
When equating errors are examined, IRT-based methods—especially Stocking–Lord and Haebara—
demonstrated more accurate and stable equating. Based on these results, IRT methods are recommended for 
fair comparisons in education and for making valid decisions (Kolen & Brennan, 2014). The distinction 
between the Haebara and Stocking–Lord methods becomes particularly important when decisions focus on 
lower performance levels (e.g., failure thresholds). For high-stakes decisions based on high scores (e.g., 
scholarships, rankings), the M–S method may result in slightly inflated outcomes. For mid-range scores, all 
methods generally yield similar results. To determine the equating method according to the conditions taken 
into consideration in this study is significant. Due to the differences in the methods, the results do not show 
enough stability to prefer one method to the other and it can be said that there is no effective single method 
for every condition. 
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Recommendations 
This study is limited to simulation data, dichotomously scored item responses, and unidimensionality. Future 
research could investigate the effect of multidimensionality on test equating using both concurrent and 
separate calibration methods for polytomous and multidimensional tests. In the equating of mixed-format 
tests, concurrent and separate calibration approaches may be compared. Although simulation data provide 
researchers with the opportunity to study multiple factors simultaneously (Harris & Crouse, 1993), they may 
not fully reflect real testing conditions. Therefore, it would be beneficial to test all the conditions considered 
and recommended in this study using real data sets. 
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