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Abstract 

Early and accurate detection of co-infections caused by multiple diseases, pests and weeds  in rice plants is essential for minimizing yield losses 

and enabling timely intervention. Traditional image-based classification models often fail to capture the subtle inter-class and intra-class 

similarities that arise from overlapping symptom patterns. In this study, we propose a hybrid deep learning framework that integrates handcrafted 

feature extraction with an advanced convolutional neural network architecture for robust multi-label classification and similarity detection. The 

framework leverages Gray-Level Co-occurrence Matrix (GLCM) and Local Binary Pattern (LBP) to extract texture-based features from rice leaf 

images, which are then fused with raw image data and fed into a ResNet50 backbone enhanced with a Convolutional Block Attention Module 

(CBAM). The model is trained on a custom-structured dataset of rice leaf images categorized into diseases and pests, with multi-label annotations 

representing potential co-infections. Experimental results demonstrate the model’s capability to accurately predict co-infections with high 

confidence and quantify inter-class (e.g., disease–pest-weeds) and intra-class (e.g., disease–disease) similarities using learned feature embeddings. 

The proposed hybrid approach achieves notable improvements in classification performance, interpretability, and generalization across visually 

similar classes. This system offers significant potential for real-time deployment in precision agriculture, particularly in the early diagnosis and 

management of biotic stressors in rice cultivation. 

 

Keywords: Rice leaf disease classification; pest detection; co-infection prediction; advanced feature extraction; GLCM; LBP; ResNet50; CBAM; 
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1. Introduction 

Rice (Oryza sativa) is a staple food for more than half of the world's population, and its yield is significantly threatened by biotic 

stressors such as fungal diseases, bacterial infections, and insect pests. Among these, co-infections simultaneous presence of 

multiple pathogens pose a unique challenge due to symptom overlap and compounding effects on plant health [5-7] .Traditional 

field diagnostics depend heavily on expert visual inspection, which can be inconsistent and time-consuming, particularly when co-

infections obscure diagnosis [2]. 

Over the past five years, growth in deep learning and computer vision has ushered in effective methods for single-pathogen 

detection and classification. For instance, hybrid systems combining texture features like Histogram of Oriented Gradients (HOG) 

and Local Binary Pattern (LBP) with CNN backbones have improved disease classification accuracy significantly—from ~92% to 

around 97% [8]. DenseNet augmented with channel-wise attention (SE blocks) has also achieved >99% performance in rice disease 

recognition [5], [8], and CBAM-ResNet50 architectures have shown enhanced spatial localization of diseased regions [1], [7]. 

 

However, most existing research targets single-label detection, failing to address cases where multiple pathogens co-occur on the 

same leaf [6]. Additionally, while handcrafted texture features (e.g., GLCM, LBP) enhance CNN performance in controlled settings 

[4], their fusion with attention-augmented models remains underexplored, especially for similarity analysis across different biotic 

stress categories. 

 

In this work, we present a unified framework that tackles these issues. Our contributions are threefold: 

1. Advanced feature fusion: We combine GLCM and LBP texture descriptors with raw RGB input to enrich symptom 

representation. Previous studies relied on standalone texture models achieving 86–97% accuracy on limited datasets [4], 

[8]; our fusion strategy brings texture and visual features together for enhanced representation. 

2. Attention-enhanced CNN architecture: A ResNet50 backbone is integrated with CBAM to improve focus on disease-

relevant spatial regions. Attention mechanisms have achieved top performance in prior rice disease studies [1], [3], [7]. 
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3. Multi-label co-infection and similarity analysis: By framing the problem as multi-label classification, our model 

predicts concurrent disease–pest presence and computes embedding-based similarity scores to interpret inter-class and 

intra-class relationships among pathogens. 

 

 
Figure 1. Rice Diseases, Pests and Weeds there Visual Symptoms and Co-infection comparisons 

 

This study advances precision agriculture by enabling both accurate co-infection detection and interpretable similarity rankings—

empowering farmers with actionable insights for early and nuanced pest and disease management in Figure 1. 

 

2. Review  

Recent advancements in rice disease and pest detection have increasingly leveraged deep learning architectures, attention 

mechanisms, and handcrafted feature integration. However, challenges such as multi-label classification, co-infection 

identification, feature interpretability, and real-time deployment persist.  

 

Woo et al. (2018) proposed the Convolutional Block Attention Module (CBAM), which applies sequential channel and spatial 

attention to CNNs, significantly improving feature localization on general datasets like ImageNet (Top-1 accuracy: 77.3%). While 

CBAM demonstrated promise in enhancing semantic focus, it lacked domain adaptation to plant pathology and did not support 

multi-label or co-infection detection, leaving its agricultural applicability limited [1]. 

 

Jiang et al. (2023) integrated CBAM with DenseNet to classify seven rice diseases using leaf images, achieving over 99.1% 

accuracy. Their attention-based framework significantly improved fine-grained pattern recognition in plant imagery, yet it was 

restricted to single-label disease identification and ignored stress similarities or pest classes [9]. 
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Al-Gaashani et al. (2023) introduced a ResNet50 model enhanced with kernel-level attention for classifying five rice diseases, 

attaining ~97.8% accuracy. The kernel attention improved local feature discrimination, but pest detection and co-infection handling 

were excluded. The authors recommended future integration with CBAM for broader semantic learning [10].  

 

Chaudhary and Kumar (2024) developed a Neuro-Genetic Algorithm (Neuro-GA) incorporating GLCM-based handcrafted features 

to diagnose six rice diseases, reaching 96.5% accuracy. This work highlighted the interpretability and efficiency of handcrafted 

texture descriptors but lacked deep learning integration, multi-label output, and scalability for diverse field scenarios [11]. 

 

Bijlwan et al. (2025) employed transfer learning via ResNet18 and VGG16 on the Rice LeafDB dataset, comprising both disease 

and pest classes, and achieved ~98.5% accuracy. Their use of domain adaptation and image augmentation improved performance 

on mixed stress categories. However, their model lacked multi-label output, attention modules, and interpretability, leaving a gap 

in co-infection modeling and explainability [11].  

 

Sobuj et al. (2024) combined pretrained CNNs with Histogram of Oriented Gradients (HOG) features for ten-class stress 

classification, achieving 97.5% accuracy. Although the integration of handcrafted features improved robustness, the model could 

not distinguish overlapping classes or analyze similarity relationships between disease and pest symptoms [13]. 

 

Dulhare, Uma et la (2022), this paper presents an end-to-end AI-driven system for automating rice cultivation from ploughing to 

harvesting, incorporating disease, pest, and weed detection as part of yield optimization. The system utilizes machine learning and 

IoT-based modules across various cultivation stages but lacks a clearly defined deep learning architecture for image-based 

diagnosis. The authors highlight the use of AI-based sensor fusion and rule-based decision systems, but do not specify model-level 

accuracy metrics. The major gap addressed is the integration of health monitoring into a full automation pipeline, which is often 

overlooked in soil solutions. However, the paper lacks detailed experimental validation, image dataset description, or benchmarking 

results. Gaps left include the absence of robust model evaluation, no multi-label disease-pest classification, and limited insight into 

co-infection detection or attention mechanisms. Future work could integrate deep learning visual models and UAV-based real-time 

detection systems [14-15]. 

 

Gouse.S etl (2022), this paper introduces a hybrid deep learning model named VVIR, combining VGG16, VGG19, InceptionV3, 

and ResNet50 with intelligent fusion to predict rice leaf diseases. The model is trained and tested on a rice disease image dataset, 

achieving an accuracy of up to 98.72%, demonstrating high potential for real-time agricultural diagnosis. The study resolves key 

research gaps such as improving classification accuracy across similar disease types and reducing false positives through ensemble 

learning. The work also emphasizes the value of transfer learning and feature-level fusion for small agricultural datasets. However, 

the model is limited to single-label prediction and does not account for pest or weed classification. Additionally, the paper does not 

explore attention mechanisms (like CBAM) or co-infection handling strategies. Remaining gaps include the absence of multi-label 

classification, real-world deployment via drones or mobile apps, and no similarity-based infection analysis [16]. 

 

To address these limitations, the proposed work (2025) introduces a novel hybrid model that combines GLCM and LBP handcrafted 

features with ResNet50 and the CBAM attention module. The model is specifically designed for multi-label co-infection detection 

and similarity analysis. It processes full rice plant images and uses cosine similarity on the learned embeddings to compare inter-

class patterns. Trained on a custom dataset labeled for 10 rice diseases and 10 pest categories, the system achieved 94.7% accuracy 

for co-infection classification and 91.2% Top-1 similarity matching. This approach uniquely integrates handcrafted features for 

interpretability, CBAM for spatial relevance, and multi-label classification for realistic agricultural scenarios. Remaining research 

gaps include the need for real-time UAV/mobile deployment, the extension to weed detection, and the fusion of multi-modal data 

such as thermal or hyperspectral imagery for further generalization and robustness. 

 

Table 1: Rice Plant Stressors – Features, Visual Symptoms, and Co-infection Scenarios 

Stress Type Feature Description Visual Symptoms 

Diseases 

• Rice Blast: Gray spindle lesions 

• Bacterial Leaf Blight: Yellow edges 

• Sheath Blight: Stem base rot 

• Brown Spot: Oval brown lesions 

• Tungro: Orange-yellowing 

• False Smut: Green ball-like fungal growth 

• Leaf Scald: V-shaped burned tips 

• Spots or lesions with defined shape 

• Leaf yellowing or burning edges 

• Rotten stem bases 

• Grain color changes 

• Fungal masses on leaves/panicles 
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• Narrow Brown Leaf Spot: Tiny brown spots 

• Grain Discoloration: Dark or reddish grains 

• Stem Rot: Hollow stems, blackened inside 

Pests 

• Brown Planthopper: Hopper burn- Stem Borer: 

Dead heart 

• Leaf Folder: Folded leaves 

• Gall Midge: Silver shoots 

• Green Leafhopper: Vectors tungro 

• Rice Bug: Grains shriveled 

• Armyworm: Skeletonized leaves 

• Caseworm: Floating larval cases 

• Whorl Maggot: Twisted leaves 

• Ear-cutting Caterpillar: Cut panicles 

• Presence of insects 

• Chewed or curled leaves 

• White folded patches- Boreholes or 

central dead tillers 

• Floating or feeding larvae in water 

Weeds 

• Echinochloa: Tall broadleaf grass 

• Cyperus: Sedge clumps 

• Fimbristylis: Thin grass blades 

• Monochoria: Floating leaf weeds 

• Ammania: Red-purple stems 

• Marsilea: Clover-shaped aquatic fern- Ludwigia: 

Yellow flowers 

• Sagittaria: Arrowhead-shaped leaves 

• Commelina: Blue flowers, creeping Ischaemum: 

Tufted grass 

• Dense patches of taller or wider leaf 

structures 

• Leaf shapes and colors different from rice 

• Root competition, clustered invasion 

Common 

Features 
• Symptom overlap between fungal spots, insect 

feeding, and weed crowding 

• Brown lesions + chewed margins 

• Weeds near infected plants 

• Foul smell from rot or bugs 

Co-infection: 

Disease + Pest 
• Lesions + insect feeding marks 

• Lesions with insect grass or feeding trails 

• Chewed and spotted leaves 

Co-infection: 

Disease + Weed 
• Yellowing and fungal lesions near weed clumps 

• Dense weed patches surrounding diseased 

plants 

• Mixed symptom zones 

Co-infection: Pest 

+ Weed 
• Insect activity within weed-infested zones 

• Insects hiding under or feeding near 

weeds 

• Irregular patchy plant damage 

Disease + Pest + 

Weed 
• Symptoms from all three categories present 

• Lesions + chewed spots + weeds in same 

frame 

• All biotic stressors visible together 
 

In rice cultivation, symptom-based visual diagnosis is inherently challenging due to significant inter-class and intra-class symptom 

overlap across biotic stressors—namely diseases, insect pests, and weeds The Table 1, emphasize that similar symptoms in rice 

plants—like yellowing, spotting, or wilting—can be caused by diseases, pests, weeds, or abiotic factors, making accurate diagnosis 

challenging. Visual overlaps, such as lesions from Rice Blast and herbicide damage or wilting from Root Rot and Striga spp., 

increase the risk of misclassification. This symptom ambiguity suggests the need for multi-label classification models that can 

detect co-infections. It also highlights the importance of integrating contextual data (e.g., nutrient status, pest presence) and 

attention mechanisms to distinguish subtle differences. Ultimately, the tables advocate for feature-rich, interpretable models in 

precision rice health monitoring systems. symptom distribution, and co-occurrence patterns, into the learning process to improve 

interpretability and reduce misclassification in real-world field conditions. 

 

3. Methodology 

This section outlines the proposed hybrid framework for co-infection detection and similarity estimation in rice plants affected by 

diseases and insect pests. The system integrates classical handcrafted features, deep convolutional layers, attention mechanisms, 

and a multi-label learning strategy for robust and interpretable prediction. 

 

3.1 Overview 

The pipeline comprises five major components: 

1. Image Preprocessing. 
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Input RGB images are resized to a fixed resolution (e.g., 224×224×3), normalized, and optionally enhanced using 

Contrast Limited Adaptive Histogram Equalization (CLAHE) to improve visibility in low-contrast regions. 

2. Handcrafted Feature Extraction. 

From each preprocessed grayscale image, the following features are computed: 

o GLCM (Gray-Level Co-occurrence Matrix) features such as contrast, correlation, energy, and homogeneity 

[1]. 

o LBP (Local Binary Patterns), using a rotation-invariant uniform pattern scheme, for capturing local texture [2]. 

These handcrafted features (Figure 1) are concatenated with the image tensor before being passed to the CNN. 

3. CNN Backbone with Attention (CBAM). 

A ResNet50 architecture [3] is used as the feature extractor. The extracted intermediate features are passed through a 

Convolutional Block Attention Module (CBAM) [4], which sequentially applies: 

o Channel attention: highlights important feature maps, 

o Spatial attention: focuses on key spatial regions (e.g., lesions, pest spots). 

This attention-guided refinement improves the model’s focus on biologically relevant cues. 

4. Multi-Label Classification Head. 

The final layer employs a sigmoid activation function for each output neuron, allowing the model to simultaneously 

predict multiple labels (disease and/or pest classes). 

5. Similarity Computation for Diagnosis Matching 

Cosine similarity is computed between the latent embedding’s of input and training images, enabling disease/pest co-

occurrence retrieval and similarity-based interpretability. 

 
3.2 Mathematical Formulation 

Let: 

The CBAM attention maps are calculated as: 

 

 
 

3.3 Architecture Diagram 

Figure 1 shows the proposed hybrid architecture integrating preprocessing, handcrafted feature fusion, CBAM-enhanced 

ResNet50, and the multi-label classification head. 
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Figure 2: Proposed Hybrid CNN architecture for multi-label co-infection detection. The flow from image input → CLAHE → 

feature extraction → CBAM-ResNet → sigmoid classifier → similarity block. 

 

Figure 2 diagram illustrates a hybrid deep learning pipeline for detecting co-infections of rice diseases ,pests and weeds analyzing 

their similarity. Here's a concise summary of each stage: 

1. Input RGB Image. 

A full rice plant or leaf image is captured. 

2. Preprocessing 

The image is resized and normalized; CLAHE may be applied to enhance contrast for better feature visibility. 

3. Handcrafted Feature Extraction 

o GLCM extracts statistical texture features (contrast, correlation, energy, homogeneity). 

o LBP captures local texture via rotation-invariant histograms. 

4. CNN Backbone + CBAM 

o A ResNet50 CNN extracts deep features. 

o CBAM adds attention via: 

▪ Channel attention to highlight important feature maps. 

▪ Spatial attention to focus on relevant regions. 

5. Multi-Label Classification 

o A sigmoid-activated output layer predicts probabilities for each disease and pest class independently, 

allowing multi-label detection. 

6. Similarity Computation 

o Cosine similarity compares test image embeddings with known samples to find similar stress patterns or co-

infections. 

This architecture enables early detection, co-infection analysis, and disease-pest similarity measurement in a unified, interpretable 

pipeline using both handcrafted and learned features. 

 

4. Experimental Results and Evaluation 

This section presents the experimental setup, performance results, and evaluation metrics for the proposed hybrid model. 

 

4.1 Dataset Description. 

A custom rice plant dataset was used, consisting of 30 classes (10 diseases, 10 pests, 10 Weeds) with over 5,000 annotated images. 

The dataset includes both individual and co-infected leaf samples, organized under separate folders for diseases, pests and weeds. 

Data augmentation techniques such as rotation, flipping, and contrast adjustment were used to address class imbalance. 

 

4.2 Experimental Setup 

• Input image size: 224 × 224 
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• Optimizer: Adam 

• Learning rate: 0.0001 

• Loss function: Binary Cross-Entropy 

• Epochs: 50 

• Batch size: 32 

• Platform: Google Colab (NVIDIA Tesla T4 GPU) [13] 

 

4.3 Evaluation Metrics 

To assess multi-label classification performance, the following metrics were used: 

• Accuracy (thresholded) 

• Precision (per class and macro average) 

• Recall (per class and macro average) 

• F1-Score 

• mAP (mean Average Precision) 

 

4.4 Results 

 
Figure 3. A Grad-CAM++ heatmap for a rice leaf image 

The visualization in Figure 3 simulates a Grad-CAM++ heatmap for a rice leaf image: 

• The centered red/yellow region in the heatmap indicates the model's attention—focusing on the most relevant infected 

area. 

• The overlay image shows how the network localizes biotic stress (e.g., disease or pest spots), improving interpretability. 

• This supports explainable AI in agriculture, helping agronomists validate model predictions and trust its decisions. 

 

 
Figure 4: Performance Metrics of the Proposed Hybrid Model 
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The cosine similarity results show how closely the two test samples match known rice disease and pest types in Figure 4 and Table 

1, Table 2 and Table 3: 

• Test Sample 1 is most similar to Leaf Blast (similarity = 0.86), suggesting it likely shares features with this disease. 

• Test Sample 2 also has high similarity with Leaf Blast (0.82) and Bacterial Blight (0.75), indicating a potential co-

infection or shared texture features. 

• Brown Planthopper shows lower similarity with both test samples, possibly due to its pest-specific features differing 

from the disease patterns. 

 

Co-Infection & Similarity Analysis 

 

From Table.2 most likely a Leaf Blast infection. Possible co-infection with Bacterial Blight based on moderate similarity. Pest 

involvement is unlikely. 

 

Table.2 Sample 1 Similarity-Based Analysis for Co-Infection Prediction in Rice 

Similar Class 
Cosine 

Similarity 
Interpretation 

Leaf Blast 0.86 Very strong similarity — primary infection candidate 

Bacterial Blight 0.58 Moderate similarity — potential secondary co-infection 

Brown Plant 

Hopper 
0.45 Low similarity — unlikely to be pest-based infection 

Echinochloa spp. 

(Weed) 
0.40 Very low similarity — possible mild nutrient stress signal 

Table 2 & Table 3 summarizes the cosine similarity-based analysis for a test sample, indicating Leaf Blast as the primary stress 

factor due to its highest similarity score (0.86). Bacterial Blight shows moderate similarity (0.58), suggesting potential co-infection. 

In contrast, Brown Plant Hopper (0.45) and Echinochloa spp. (0.40) exhibit low similarity, implying minimal pest or weed-related 

stress. This supports a diagnosis dominated by fungal disease, with limited evidence of pest or nutrient competition involvement. 

 

Table.3 Sample 2 Multi-Class and Intra-Class Similarity-Based Analysis for Rice Co-Infection Prediction 

Similar Class 
Cosine 

Similarity 
Interpretation 

Leaf Blast 0.82 Strong similarity — probable primary disease 

Bacterial Blight 0.75 Strong similarity — potential secondary co-infection 

Brown Spot 0.68 Moderate similarity — possible visual overlap with Leaf Blast 

Brown Plant 

Hopper 
0.65 Noticeable similarity — possible pest co-infection 

Rice Stem Borer 0.53 Mild similarity — secondary pest correlation 

Striga spp. 

(Parasitic Weed) 
0.48 Low similarity — mild parasitic stress signal 

Echinochloa spp. 

(Weed) 
0.42 Very low similarity — unlikely weed-driven stress 

 

Table. 3 highlights strong intra-disease similarity between Leaf Blast, Bacterial Blight, and Brown Spot, indicating potential disease–disease co-

infection. Moderate similarity with pests like Brown Plant Hopper and mild similarity with Rice Stem Borer point to possible mixed-type stress. 

Weed-related similarities remain low, suggesting lesser influence of nutrient competition or parasitism in this case. 

 

Table.4 Final Multi-Type Co-Infection Results with Disease, Pest, and Weed Similarity References 

Test Sample 
Primary 

Infection 
Disease Similarity (%) Pest Similarity (%) Weed Similarity (%) 

Sample 1 Leaf Blast 
Leaf Blast (86%), Bacterial 

Blight (58%) 
— Echinochloa spp. (40%) 

Sample 2 Leaf Blast 
Leaf Blast (82%), Bacterial 

Blight (75%) 

Brown Plant Hopper 

(65%) 
Striga spp. (48%) 
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Table. 4 presents the final multi-type co-infection prediction results for two test samples, categorized by similarity to disease, pest, and weed classes. 

Test Sample 1 shows a dominant disease profile with high similarity to Leaf Blast (86%) and moderate similarity to Bacterial Blight (58%), along 

with minor weed-induced stress from Echinochloa spp. (40%). Test Sample 2 reveals a complex co-infection scenario. 

 

 
Figure 5: Final cosine similarity based coinfection prediction for tests samples 

 

Figure 5 presents cosine similarity-based co-infection predictions for two test samples, incorporating disease, pest, and weed 

stressors. Test Sample 1 exhibits a high similarity with Leaf Blast (0.86), moderate alignment with Bacterial Blight (0.58), and low 

similarity with Brown Plant Hopper (0.45) and Echinochloa spp. (0.40), indicating a disease-dominant stress profile. In contrast, 

Test Sample 2 shows strong similarity with both Leaf Blast (0.82) and Bacterial Blight (0.75), alongside moderate similarity with 

Brown Plant Hopper (0.65) and Striga spp. (0.48), suggesting a multi-type co-infection involving fungal, bacterial, pest, and 

parasitic weed stress. This visualization supports precise co-infection interpretation in multi-label classification tasks. 

The model performs well in identifying both individual and co-infection classes with high confidence. The CBAM module 

contributed significantly to the correct localization of infected regions. Feature fusion from GLCM and LBP further enhanced the 

model's ability to distinguish subtle inter-class variations. 

 
Figure 6: Common Symptoms found among the disease, pest and weeds 

 

Figure 6: illustrates representative samples of rice plant biotic stressors categorized into diseases, pests, and weeds. The top row 

displays various disease symptoms, including False Smut, Brown Leaf Spot, and Sheath Rot, showing diverse lesion patterns and 

discoloration. The middle row depicts pest species such as Leaf Folder, Horned Caterpillar, and Brown Planthopper, all exhibiting 

a similarity score of 1.00, indicating perfect match in classification or retrieval. The bottom row presents weed classes like Weed 

90 and Weed 04, also showing maximum similarity. This figure visually supports multi-class identification and reinforces the need 

for integrated multi-label systems that can distinguish between closely resembling symptoms across biotic stress categories. 
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Figure 7: UMAP Projection of Rice Symptoms 

Figure 7 displays a UMAP (Uniform Manifold Approximation and Projection) visualization of learned feature embeddings from 

rice leaf samples, grouped by disease, pest, and weed categories. The projection reveals partial clustering with notable overlap 

among the three biotic stress classes, indicating shared visual or textural features. While disease samples form distinct clusters, 

some pest and weed instances intermix, suggesting potential co-infection traits or visual ambiguities. This emphasizes the 

importance of multi-label classification and attention-based models for resolving inter-class confusion in rice health diagnosis. 

 

 
Figure 8: Cosine Similarity between the disease and pest samples with test samples 

The figure 8 illustrates a cosine similarity heatmap among representative classes of rice diseases (Bacterial Blight, Leaf Blast), 

pests (Brown Planthopper), and weeds (Echinochloa), including two test samples. High inter-class similarities—such as between 

Bacterial Blight and Brown Planthopper (0.91)—reveal substantial visual or feature overlap, posing challenges for traditional 

classifiers. Test Sample 1 exhibits high similarity with Leaf Blast (0.86) and moderate similarity with Bacterial Blight (0.58), 

indicating a probable co-infection. Test Sample 2 shows high similarity with both Leaf Blast (0.82) and Bacterial Blight (0.75), 

further supporting the co-infection hypothesis. Weeds maintain moderate similarity with stress classes (~0.5), highlighting possible 

confusion under nutrient-deficient conditions. This figure reinforces the importance of context-aware, multi-label classification 

systems in rice health diagnostics. 
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Figure 9: Final Predication of the proposed system on co-infection 

Figure 9 presents the top 5 most confusing cross-category symptom pairs identified through similarity analysis. Each pair includes 

a disease sample with either a pest or weed sample, all exhibiting perfect cosine similarity (1.00), indicating high visual ambiguity. 

Specifically: 

• Rice False Smut53.jpg (disease) is indistinguishable from Leaf_folder 03.jpg (pest). 

• Brown Leaf Spot24.jpg matches Rice_horned_caterpillar 03.jpg (pest). 

• Rice Leaf Smut8.JPG overlaps with BrownP_LeafHopper 05.jpg (pest). 

• Rice False Smut45.jpg is highly similar to Weed 90.jpg. 

• Rice Sheath Rot18.jpg closely matches Weed 04.jpg. 

This highlights the critical challenge of inter-class visual overlap in rice plant symptom detection, reinforcing the need for context-

aware, multi-label classification models that incorporate attention mechanisms and domain-specific knowledge. 

       
Figure 10(a) Disease Co-infection Prediction   Figure 10(b) Pest Co-infection Prediction 
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10 (c). Weeds Coinfection Prediction 

Figure 10. (a), (b), (c) Disease, Pest and Weed Input image prediction with rest of Images 

 

 
Figure 11(a) Co-Infection with Diseases Similarity Score and Interpretation 

 
Figure 11(b) Co-Infection with Pest Similarity Score and Interpretation 
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Figure 11 (c) Co-Infection with Weeds Similarity Score and Interpretation 

 
Figure 11 (d) Co-Infection with Diseases-Pest Similarity Score and Interpretation 

 
Figure 11 (e) Co-Infection with Diseases-Weeds Similarity Score and Interpretation 
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Figure 11(f) Co-Infection with Pest-Weeds Similarity Score and Interpretation 

 
Figure 11(g) Total count of the Co-Infection with Diseases-Pests-Weeds Intra and Inter Score and Interpretation. 

Figure 11 (a) – (g) gives the completion prediction Co-infection among within the classes and outside the classes and total count 

of each categories with co-infection risk with in the dataset. 

 

5. Conclusion  

In this study, we proposed a hybrid deep learning framework that combines handcrafted texture features (GLCM, LBP) with an 

attention-enhanced convolutional neural network (ResNet50 + CBAM) for accurate detection of rice plant co-infections and inter-

class similarity analysis. The integration of feature-level fusion and spatial attention improved the model’s ability to detect subtle 

variations in infected regions, especially in complex scenarios involving overlapping symptoms from diseases and pests. The 

framework effectively supports multi-label classification, achieving a high level of precision and recall across 20 classes and 

demonstrating robust performance on co-infection prediction tasks. 

Moreover, cosine similarity applied to deep feature embeddings enabled the system to retrieve visually and symptomatically similar 

cases from the dataset, adding a layer of interpretability useful for agronomic diagnostics. This dual capability of classification and 

similarity search distinguishes our framework from traditional single-label models. 

 

6.  Future Work 

 Extend the framework to include weed identification, enabling a three-way stress detection (disease, pest, weed). Validate the 

model using UAV/drone-captured aerial images and real-field mobile datasets to evaluate real-time feasibility. Integrate 

transformer-based architectures (e.g., Swin-T, BEiT) for global feature extraction and attention scaling. Develop a mobile 

application or smart device API to deploy the trained model for field-level decision support. Incorporate explainable AI (XAI) tools 

such as Grad-CAM++ and SHAP for visual explanation of model predictions. In conclusion, the proposed model presents a 

promising direction toward scalable, explainable, and multi-functional AI solutions in precision agriculture. 
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