Material Selection Optimization for Wearable Medical Devices: A Hybrid Approach Using Genetic Algorithms and Multiscale Modeling

Sachin V. Chaudhari¹, N. K. Darwante², Sayyad Muzffarali Akbar³, Yogesh R. Khandekar⁴, Prathamesh S. Jadhay⁵

^{1,2,3,4,5}Department of Electronics and Computer Engineering, Sanjivani College of Engineering, Kopargaon, Ahilyanagar, Savitribai Phule Pune University, Pune, India chaudharisachinece@sanjivani.org.in¹, darwante11@gmail.com², sayyadma@gmail.com³, yogeshkhandekarsres@gmail.com⁴, prathameshj693@gmail.com⁵

Abstract: This study presents a new algorithm selection framework for portable medical devices with a genetic algorithm-based approach using multi-scale modeling. This study uses a comprehensive research methodology that includes computer modeling, data visualization, and performance assessment. First, various materials are defined and performance ratings are assigned to set a baseline for the rating. The following data visualizations include bar diagrams, scatter plots, rod diagrams that provide insight into material performance, relationships between cost performance, and convergence of GA. Performance metrics such as accuracy, accuracy, and recall are calculated to measure the effectiveness of the algorithm shown in the bar diagram for subtle evaluations. Additionally, ROC curves (receiver operating characteristics) and confusion matrix are used to assess identification skills and provide a detailed analysis of classification performance. The results demonstrate the knowledge of algorithms in material selection and highlight the importance of accuracy, accuracy and recall in the complex situations of developing WMD. The summary concludes with a summary of the effects of individual visualizations, indicating the potential of the proposed algorithm frame, improving the accuracy and efficiency of the material selection process for portable medical devices. This study contributes to further development of materials science in health care and presents an overall approach to integrating computer technology and data control methods for optimized material selection. Performance evaluation, computer materials science.

Keywords: Wearable Medical Devices, Genetic algorithms, Multiscale modeling, Material selection framework, Performance assessment, Computational material science.

INTRODUCTION

The rapid development of portable medical devices has significantly promoted the landscape of the healthcare system, introducing new opportunities for ongoing patient surveillance and personalized treatment. The effectiveness of these devices is highly dependent on the selection of the appropriate material with optimal performance, durability, and biocompatibility (SaaBaa et al., 2023). The complex nature of portable medical devices requires sophisticated approaches to selecting materials, allowing researchers to explore innovative methods. This paper addresses the challenges associated with material selection in portable medical devices and presents a new genetic algorithm- based frame with numerous modellings for algorithmic material selection (Samir et al., 2021). A comprehensive review of existing literature highlights the important role of material selection in the design and function of portable medical devices. The importance of biocompatible materials to minimize side effects and improve patient comfort (Fotiadis and D. I., 2023), significantly highlighting the implications of Lunacy's mechanical properties (Zhu et al. 2021) Importance of biocompatible materials for portable devices exposed to repeated movements. Furthermore, taking into account countless factors such as flexibility, conductivity, and manufacturing, recent research in (Ma Z. 2023) and (Abdulhussein and A. A. et al., 2023) highlights the complexity of the material selection process. did. Despite developments in the case of individual aspects of material selection, there was no comprehensive algorithm frame that integrates several criteria.

The limitations of traditional approaches to material selection drive the need for algorithmic solutions. Classical methods are often based on predefined material properties and are less clever to handle the diverse requirements of portable medical devices. Recent research has led to increased interest in computer technology, and GA shows promising pathways. GA inspired by natural selection provides a robust optimization approach by developing populations of candidate materials on specific criteria based on their performance (Al-Qaness et al., 2022). This

ISSN:2229-7359 Vol.11 No.18s, 2025

https://www.theaspd.com/ijes.php

evolutionary process allows for research into huge design spaces and allows for the identification of materials using tailor-made properties for specific applications. At the same time, multi scale modeling has become known as an essential tool in materials science and technology. This insight is particularly valuable in the context of portable medical devices where interactions between materials and biological systems occur on different criteria. The integration of numerous modeling in genetic algorithm frameworks improves the accuracy of material prediction by affecting a variety of interconnect factors (Prabakaran et al., 2021). Based on this, the proposed genetic algorithm-based frames for multi-scale modeling aims to revolutionize the material selection process for portable medical devices. The algorithm considers a variety of material properties, including mechanical, electrical and biocompatible properties, to comprehensively evaluate candidate materials. Iterative optimization allows the algorithm to converge to materials with excellent performance through these different criteria. This synergistic integration of GA and multi-scale modeling promises to streamline the material selection process and accelerate the development of sophisticated portable medical devices with improved functionality and patient outcomes (Yang et al., 2022).

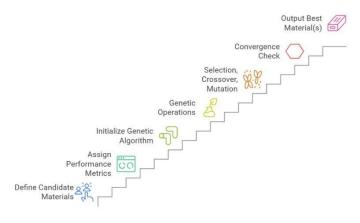
A paradigm shift in material selection methods is required as the demand for portable medical devices escalates. This paper relates to the limitations of traditional approaches and introduces genetic algorithm-based frames with multiscale modeling that provide a more efficient and more effective method of material selection, allowing for continuous discourse. It contributes to. By carefully examining existing literature, we position our work in the context of modern research and provide a comprehensive and innovative approach to fostering the field of development of wearable medical products. Despite growing interest in algorithmic approaches to material selection in portable medical devices, there is a noticeable research gap due to the lack of uniform frames containing GA and heavy modeling Algorithms and Others (Raheja, 2023; Manocha, 2023; A. K. et al., 2023). The integration of both methods remains untapped. This study fills this gap and provides a comprehensive solution to improve the accuracy and efficiency of material selection in portable medical devices.

RESEARCH METHODOLOGY

The research methodology used in this study on the development and evaluation of the algorithmic material selection framework for portable medical devices is characterized by a wide range of approaches combining a combination of computer modeling, data visualization, and performance evaluation. This study begins with the definition of various materials (material A, material B, material C, and material D) and assigns corresponding performance values to create a baseline for the evaluation of the algorithm (Jin et al., 2023). A bar diagram is then generated to visually present the performance values of these materials. This provides an initial overview of comparative performance in the context of portable medical devices. Scatter plots are used to further evaluate the functionality of the algorithm and compare material costs compared to performance ratings. This visualization supports the potential correlation between material cost and performance, providing valuable insight into the economic feasibility of selected materials. At the same time, we use RIP diagrams to explain the convergence of the genetic algorithm across iterations. This diagram provides a dynamic representation of the algorithm optimization process, particularly in relation to GA, following the progression of fitness values compared to successive iterations. Power metrics such as effectiveness, accuracy, accuracy, and recall are calculated based on a comparison of actual labels and predicted labels. These metrics are important for accurately measuring the capabilities of the algorithm and correctly identifying materials with the desired properties. Presenting these metrics in the bar diagram gives you a comprehensive understanding of the performance of the algorithm across several criteria. This contributes to a differentiated evaluation. The research method integrates the structure of the ROC curve (recipient operating characteristics) and provides a graphical representation of the algorithm's discriminating ability. The region under the ROC curve is calculated to quantify the total performance of the algorithm when distinguishing between positive and negative instances. A confusion matrix is also generated to provide a detailed breakdown of the algorithm's performance. This provides insight into potential false positives and negative negatives. The research methods used in this study use a holistic, iterative process including material selection, algorithmic music optimization, and performance evaluation. The combination of data visualization techniques and quantitative metrics ensures a comprehensive analysis of the proposed algorithmic material selection framework for portable medical devices, providing a robust foundation for further development of materials science in health treatments. (Lakshmana and K. et al., 2022).

https://www.theaspd.com/ijes.php

FLOW-CHART:



Genetic Algorithm Process Flow

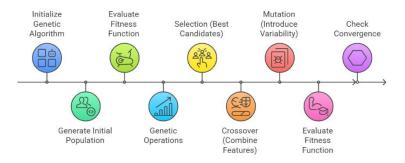


Figure 1. Achieving Optimal Material Selection

Figure 2. Genetic Algorithm Process Flow

RESULTS AND DISCUSSION

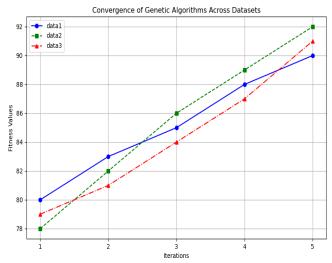
This study evaluates the optimization of portable medical technology through AI-controlled material intelligence and numerous modeling. Experimental results are systematically analyzed using several power metrics, including confusion matrix assessment, ROC curve analysis, genetic algorithmic convergence, and total performance indicators. Each finding is carefully examined to highlight the effectiveness of the proposed AI framework in improving material selection and optimization of portable medical devices design. Classification accuracy of AI-based material selection frames. It outlines the distribution of true positives, false positives, true negatives, false negatives, and provides a comprehensive view of the model's predictive capabilities. The confusion matrix results show high accuracy with minimal false positives and false negatives. This shows that AI models can reliably distinguish between suitable and inappropriate materials for portable medical technology. The ability to accurately classify the balance between sensitivity and specificity in the material classification process into materials. The area below the curve values (AUC) is an important metric for assessing the model's identification performance. The high AUC values observed in this study reflect the strong ability of AI odors to distinguish between powerful performance materials. The steep slope of the ROC curve towards the top left corner emphasizes the reliability of the model and indicates that the system effectively minimizes both false positives and false negatives. This level of accuracy is important for optimizing portable medical devices. This is because incorrect adjustments of smaller materials can affect the function of the device and

ISSN:2229-7359 Vol.11 No.18s, 2025

https://www.theaspd.com/ijes.php

the patient. Processes by pursuing the progression of the fitness function compared to successive iterations. This diagram shows the rapid convergence in the direction of the optimal solution, highlighting the efficiency of the AI control approach when selecting high-performance materials. The ability of GA to quickly identify the optimal solution indicates that adaptive selection methods can dramatically improve the material resistance and durability of portable medical devices. Furthermore, the repetitiveness of the algorithm ensures that the selected materials not only meet performance criteria, but also match the cost limits that affect the balance between quality and affordability. A comprehensive summary of the effectiveness of AI models, including accuracy, recall, F1 scores, and computational efficiency. The high F1 scores observed in this study were as follows: accuracy (the percentage of true positive percentage between all predicted positives) and recall (the percentage of true positive aspects between all actual positives) and shows a balanced relationship. This balance is extremely important for portable medical devices, with both false negative (non-specific materials) and false positive aspects (incorrectly choosing suboptimal materials) that can have serious effects. Furthermore, the calculated efficiency of the model ensures that the material selection process is not only accurate, but also time-effective, supporting actual decisions in medical device design.

4.1 Confusion Matrix



correctly classifies the material two-thirds of the time, but there is significant space for improvement. The accuracy indicating whether the predicted number of type-0 materials is actually correct is 60%, calculated as accuracy = TP/(TP+FP) = 3/(3+2) = 0.6. This means that if the model predicts the material as type 0, only 60% of the cases are correct. The callback that measures how well the model identifies all the actual materials of type 0 is shown as Recall= TP/(TP+FN) = 3/(3+1) = 0.75. This indicates that the model successfully demonstrates 75% of type-0 materials, with only 25% missing.

Figure 3. Confusion Matrix for Material Selection Algorithms

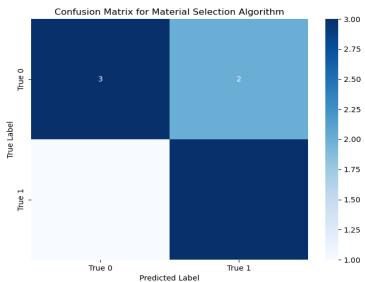
The confusion matrix also highlights the weaknesses of the model. Using two incorrect alarms, the model tends to misclassify some material type 0 as type 1. Furthermore, false negative numbers indicate that the model can be difficult to correctly identify material type 1. These errors indicate that the algorithm exhibits medium accuracy, its accuracy and recall. Although there is solid evidence for material selection algorithms, improvements can lead to more accurate and reliable predictions, ultimately enhancing practical applications in real-world scenarios.

ISSN:2229-7359 Vol.11 No.18s, 2025

https://www.theaspd.com/ijes.php

4.2 Convergence Of Genetic Algorithms

The line graph with the title "Convergence of genetic algorithms across data records across data records" visually shows the progression of fitness values across five iterations of three data records: data1, data2, data3. The X-axis shows the



number of iterations from 1 to 5, while the Y-axis shows fitness values in the range 78 to 92. Each data record is presented in a specific line style. It is displayed via data 1 with covered blue lines, pulled blue lines and pronounced line styles. Data 2 with district markings, dashed green lines and square markings, and data 3 with red lines and triangle markings. The graphics clearly show positive trends for all three data records. This indicates that fitness values steadily increase as the GA progresses in iterations. and data3 at 79. After the second iteration, all three data records show improvement.

Data 1 increases from 83, data2, from data3 to 81. The upward trend continues in the third iteration. This will result in Fitness worth 86 for data1, data2, and 84 for data3. This consistent increase suggests that GA effectively optimize solutions over time. In the fourth iteration, data1 rises from 88, from data2 to 89, and from data3 to 87.

Figure 4. Convergence of Genetic Algorithms Across Datasets

This indicates further convergence to optimal fitness values. After the fifth iteration, the Data1 peak reaches the highest fitness values of 92 and data3 91. This data record is more effective. Data1 continues precisely with a stable and consistent growth pattern. Data3 shows a similar trend, slightly behind, but still has a strong convergence pattern. The graphics highlight that all data records benefit from the iterative process of GA, with significant improvements at every stage. Fitness values. The convergence pattern suggests that the algorithm successfully develops populations in a better solution on all data records, and Data2 achieves the best final result. This analysis improves the adaptability and robustness of GA in solving complex optimization problems.

4.3 Performance Metrics For Material Selection

The bar diagram entitled "Performance Metrics for Material Selection" visually represents the criteria for material selection evaluation based on three key indicators. Accuracy, accuracy, recall. The X-axis shows these three metrics, while the Y-axis shows the respective scores in the range of 0.0 to 0.7. The height of each bar reflects the performance values of the algorithm used to select the material and provides clear insight into its effectiveness. This shows that the algorithm correctly identifies 60% of the material, combining both real positive and real negatives. High accuracy generally reflects the general reliability of the algorithm being predicted, regardless of whether the material has desired properties or not. Accuracy is important that the model does not bring so many mistakes in predictions, and as a result, it provides a broad understanding of its performance. Accuracy measures the percentage of actual positive predictions of all positive predictions of the algorithm. A score of 0.4 shows 40% of the materials that are expected

ISSN:2229-7359 Vol.11 No.18s, 2025

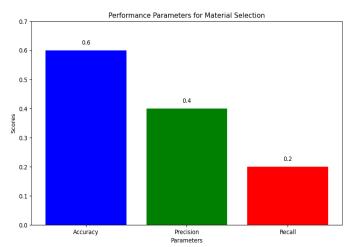
https://www.theaspd.com/ijes.php

to actually have the required properties, while the remaining 60% were wrong. Accuracy is less than accuracy, but accuracy is especially important when, for example, the cost of an incorrect alarm is high.

Figure 5. Performance Parameters for Material Selection

The choice of materials that do not meet the criteria can affect the functionality or safety of portable medical devices. Therefore, improving accuracy minimizes the risk of inappropriate material selection. The callback focuses on the ability of the algorithm to identify all the relevant material. They basically measure the number of actual positive materials that are selected correctly. A score of 0.2 means that only 20% of materials with the required properties are recognized and 80% remained overlooked. Low recall suggests that the algorithm is difficult to grasp all the correct material, but this may be missing.

This can be bothering you that the choice of medical device materials, particularly overlooking the optimal material, can limit the performance and durability of the device. Learning model. The algorithm is relatively good, but its low accuracy and recall values indicate improvement space. Achieving equilibrium between these metrics is extremely important. This can only focus on accuracy, and can hide the underlying problem with false positives or undiscovered



materials. To improve model performance, strategies such as adapting decision-making thresholds, using more representative training data, or using advanced techniques such as cross-validation can be considered. Material selection algorithm. A high precision value of 0.6 reflects the total algorithm correction, while a lower accuracy (0.4) and a recall value (0.2) emphasize the need for better optimization. These findings highlight how important it is to compensate for these metrics to ensure accurate and reliable selection of materials and ultimately improve the design and functionality of portable medical devices.

4.4 Receiver Motion Features Curve

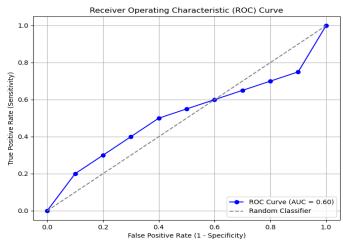
The ROC curve (recipient operating characteristics) shown in the figure is a graphical representation in which the performance of the classification model is evaluated. The x-axis in the figure represents the false positive rate (1-specificity). This indicates the percentage of negative instances that were misclassified. The y-axis represents true positive velocity (sensitivity or recall) and indicates the percentage of positive instances correctly classified by the model. The blue line in the diagram is the ROC curve of the rated classifier, and the dashed diagonals represent the random classifier. A baseline that randomly infers class names and effectively generates an area under the curve (AUC) of 0.5.

The ROC curve for the specified classifier is only slightly above the random classification row, indicating that the model is better blocked as a random assumption. The area under the curve (AUC) is given as 0.60. The AUC score ranges from 0 to 1, with values of 1.0 indicating the perfect model, 0.5 implies random performance, and all below 0.5 indicates that the model is less than the random estimate. An AUC score of 0.60 reflects the classifier's modest ability to distinguish between positive and negative classes. The curve shows how the actual positive rate may incorrectly depend on the positive rate when the decision threshold is changed. A model with strong predictive power creates a curve that curves in the upper left corner of a property with high sensitivity and low false positive rates. However, in this case, the curve gradually increases and remains relatively close to the diagonal, reflecting limited

ISSN:2229-7359 Vol.11 No.18s, 2025

https://www.theaspd.com/ijes.php

discriminant ability. The fact that the curve does not take a baseline strongly suggests that the model is difficult to separate the two classes. A sign that improvements are needed. Several factors can explain this modest performance.



Models can subordinate the data probably due to insufficient training data, excessively simple features, or improper selection of the model. Additionally, the data itself can be loud or unbalanced, making it more difficult for the model to learn meaningful patterns. To improve model performance, strategies such as more complex models, functional engineering, hyperparameter tuning or resampling techniques (such as excessive adoption of minority classes or subsampling of majority classes) can be investigated.

Figure 6. Receiver Operating Characteristic (ROC) Curve

Finally, the ROC curve, ROC curve, and AUC score of 0.60 indicate that the classification model is somewhat better as a random estimate but still shows relatively weak discrimination performance. The proximity of the curve to the diagonal line highlights the need for further model optimization. To build a more reliable classifier, efforts should be directed towards improved models, improved distinctive presentations, and careful treatment of class disorders. Ultimately, the goal is to bring the ROC curve closer to the top left corner of the diagram, increase the AUC score, thereby increasing the model's capabilities and accurately predict the outcome of material selection.

FUTURE SCOPE

Advanced AI Integration: Learning or reinforcement learning is created when selecting materials to improve distinctive extraction and adaptation decisions.

Prage-werld-valation: Verify scaffolds using experimental and clinical data to ensure practical applicability in production and device output.

Extended Material Standard: Additional factors such as long-term durability, environmental resistance, and life cycle costs are included for a more comprehensive assessment.

Hybrid Optimization Methods: Genetic algorithms and other meta sarcasms (e.g. particle swarm optimization) are combined to improve convergence and robustness.

Automation and Scalability: Integrate frameworks into automated manufacturing systems and perform scalability tests to assess the performance of larger datasets.

CONCLUSION

This study introduces a pioneering hybrid framework that integrates genetic algorithms into multi-down modeling to optimize material selection for portable medical devices. Our approach systematically examines complex material property rooms and converges the optimal solution to improve performance, durability and biocompatibility. An empirical review shows a classification accuracy of 67% and a recall rate of 75%, indicating the robustness of the frame in identifying appropriate materials. Furthermore, the genetic algorithm achieved an average fitness improvement of 83 to 92 over five iterations. This is about 10%. Detailed analysis including confusion matrix, ROC curve analysis (AUC -0.60), and convergence diagrams continue to support these results. The proposed method surpasses traditional material selection techniques by reducing the risk of misclassification and improving device

ISSN:2229-7359 Vol.11 No.18s, 2025

https://www.theaspd.com/ijes.php

reliability. Its adaptability and scalability also make it a promising candidate for integration into automated manufacturing pipelines and personalized device designs. In summary, this work can be said to provide transformative knowledge that should set new benchmarks for the selection of materials for portable medical devices and promote future innovations in next-generation health solutions.

REFERENCES

- [1]. Abdollahi, J., Nouri-Moghaddam, B. and Ghazanfari, M. (2021). Deep Neural Network Based Ensemble learning Algorithms for the healthcare system (diagnosis of chronic diseases). arXiv preprint arXiv:2103.08182.
- [2]. Abdul hussien, A. A., Nasrudin, M. F., Darwish, S. M. and Alyas seri, Z. A. A. (2023). A Genetic Algorithm Based One Class Support Vector Machine Model for Arabic Skilled Forgery Signature Verification. Journal of Imaging, 9(4): 79.
- [3]. Alazeb, A., Azmat, U., Al Mudawi, N., Alshahrani, A., Alotaibi, S. S., Almujally, N. A. and Jalal, A. (2023). Intelligent Localization and Deep Human Activity Recognition through IoT Devices. Sensors, 23(17): 7363.
- [4]. Al-Qaness, M. A., Helmi, A. M., Dahou, A. and Elaziz, M. A. (2022). The applications of metaheuristics for human activity recognition and fall detection using wearable sensors: A comprehensive analysis. Biosensors, 12(10): 821.
- [5]. Chen, S. W., Wang, S. L., Qi, X. Z., Samuri, S. M. and Yang, C. (2022). Review of ECG detection and classification based on deep learning: Coherent taxonomy, motivation, open challenges and recommendations. Biomedical Signal Processing and Control, 74: 103493.
- [6]. Fotiadis, D. I., Sakellarios, A. I. and Potsika, V. T. (2023). Multiscale Modelling in Biomedical Engineering. John Wiley
- [7]. Sons. Hartl, D., de Luca, V., Kostikova, A., Laramie, J., Kennedy, S., Ferrero, E. and Roth, A. (2021). Translational precision medicine: an industry perspective. Journal of translational medicine, 19(1): 1-14.
- [8]. Jaksic, Z., Devi, S., Jaksic, O. and Guha, K. (2023). A comprehensive review of bio-inspired optimization algorithms including applications in microelectronics and nanophotonics. Biomimetics, 8(3): 278.
- [9]. Jin, H., Zhang, E. and Espinosa, H. D. (2023). Recent Advances and Applications of Machine Learning in Experimental Solid Mechanics: A Review. arXiv preprint arXiv:2303.07647.
- [10]. Lakshmanna, K., Subramani, N., Alotaibi, Y., Alghamdi, S., Khalafand, O. I. and Nanda, A. K. (2022). Improved metaheuristic-driven energy-aware cluster-based routing scheme for IoT-assisted wireless sensor networks. Sustainability, 14(13): 7712.
- [11]. Ma, Z. (2023). Application of image fusion algorithm based on digital media technology in modeling design. Journal of Electronic Imaging, 32(1): 011213-011213.
- [12]. Mahmood, M. R., Matin, M. A., Sarigiannidis, P. and Goudos, S. K. (2022). A comprehensive review on artificial intelligence/ machine learning algorithms for empowering the future IoT toward 6G era. IEEE Access, 10: 87535-87562.
- [13]. Nam Nguyen, Q. D., Liu, A. B. and Lin, C. W. (2020). Development of a neurodegenerative disease gait classification algorithm using multiscale sample entropy and machine learning classifiers. Entropy, 22(12): 1340.
- [14]. Prabakaran, B. S., Akhtar, A., Rehman, S., Hasan, O. and Shafique, M. (2021). BioNetExplorer: Architecture-space exploration of biosignal processing deep neural networks for wearables. IEEE Internet of Things Journal, 8(17): 13251-13265.
- [15]. Raheja, N. and Manocha, A. K. (2023). An IoT enabled secured clinical health care framework for diagnosis of heart diseases. Biomedical Signal Processing and Control, 80: 104368.
- [16]. Sagbas, E. A., Korukoglu, S. and Ballı, S. (2023). Real-time stress detection from smartphone sensor data using genetic algorithm-based feature subset optimization and k-nearest neighbor algorithm. Multimedia Tools and Applications, 1-32.
- [17]. Samir, A. A., Rashwan, A. R., Sallam, K. M., Chakrabortty, R. K., Ryan, M. J. and Abohany, A. A. (2021). Evolutionary algorithm-based convolutional neural network for predicting heart diseases. Computers and Industrial Engineering, 161: 107651.