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Abstract 
This study explores heat transfer in nanofluid boundary layers over a stretching sheet, incorporating the effects of a 
magnetic field. The analysis considers thermal slip and second-order velocity slip boundary conditions. Using a 
similarity transformation, the governing partial differential equations are converted into ordinary differential 
equations, which are then numerically solved using the fourth-order Runge-Kutta (RK4) method. The impact of key 
governing parameters on temperature, nanoparticle concentration, dimensionless velocity, and the skin friction 
coefficient is examined. A dual solution is identified for velocity profiles, skin friction, and local skin friction 
coefficients, revealing a significant dependence on the second-order velocity slip parameter. The effects of other 
parameters are also illustrated graphically for comprehensive understanding. 
Keywords: Second-order velocity slip, EMHD, Nanofluid, Similarity transformation, Dual solution. 
 
INTRODUCTION 
The study of incompressible viscous fluid flow over a stretching sheet with slip boundary conditions has 
profound relevance in numerous industrial and engineering processes. These processes include the 
cooling of nuclear reactors, metallic plates, and polymers, wire drawing, paper production, glass fibre 
manufacturing, and heat transfer mechanisms. Compared to molecular-based methods, continuum 
descriptions with second-order slip boundary conditions provide significant advantages in solving flow 
and heat transfer problems effectively. 
With advancements in modern technology, researchers have increasingly focused on heat transfer 
phenomena, given their critical role in power generation, nuclear reactor cooling, polymer production, 
and other industrial operations. Ahmed’s study [1] addressed heat flow and suction effects in 
incompressible viscous fluids over stretched sheets, emphasizing variable thermal conductivity. Aman [2] 
analyzed the influence of second-order slip in magnetohydrodynamic (MHD) flow on fractional Maxwell 
fluids, contrasting semi-analytical solutions derived using Laplace transformations. 
Bhargava et al. [3] investigated micropolar fluid flow over nonlinearly extending sheets, while Cao [4] 
modeled colloidal solutions containing nanoparticles such as carbon nanotubes, graphene, and alumina. 
This study examined forced, free, and mixed convection phenomena under partial slip conditions. Choi 
[5] pioneered nanofluid research, employing nanoparticles to enhance thermal conductivity. Cortell [6] 
extended this approach by investigating viscous flows over nonlinearly extending sheets. 
Magnetohydrodynamic (MHD) effects were further explored by Fang [7], who analyzed slip flow on 
porous, linearly stretching sheets, while Ganesh [8] incorporated entropy generation in buoyancy-driven 
flows under non-linear thermal radiation. Gangadhar et al. [9–10] utilized computational and spectral 
relaxation methods to study nanofluid boundary layer properties. 
Hayat et al. [12–13] explored Jeffrey fluid dynamics in radially stretched nonlinear sheets and 
exponentially stretched sheets under slip conditions, highlighting the dual significance of Newtonian and 
Joule heating mechanisms. Subsequent research by Kalidas [17] quantified boundary layer flow of 
nanofluids over nonlinear permeable sheets, incorporating partial slip conditions. 
Khan and Pop [19] introduced boundary layer flow models for nanofluids on stretching sheets, while 
Song et al. [26] studied the thermal behavior of water and ethylene glycol mixtures containing alumina 

https://theaspd.com/index.php
mailto:Shefali.
mailto:umishra@jpr.amity.edu


International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 5, 2025 
https://theaspd.com/index.php 
 

917 
 

and copper nanoparticles. Other researchers, including Sakthivel [24] and Sharma et al. [25], examined 
the influence of thermal conductivity, porosity, and magnetic parameters on nanofluid flow. 
Zeng [29] highlighted the interplay between Darcy and Forchheimer regimes in laminar and nonlinear 
flows, emphasizing inertial effects. Building on these foundational studies, this research investigates the 
influence of second-order slip boundary conditions on nanofluid flow and heat transfer over inclined 
stretching sheets in the presence of a magnetic field. 
Research Objectives:This study addresses the following questions to deepen the understanding of 
nanofluid dynamics under second-order slip conditions: 

1. Significance of Second-Order Velocity Slip Parameter 
How does increasing the second-order velocity slip parameter influence velocity and 
temperature profiles in the nanofluid boundary layer? 

2. Impact of Governing Parameters on Heat and Mass Transfer 
How do key parameters, such as Brownian motion, thermophoresis, and magnetic fields, 
affect nanofluid flow and heat transfer? 

3. Effect of Inclination Angle on Flow Dynamics 
What is the impact of increasing the angle of inclination, in conjunction with first- and 
second-order slip parameters, on velocity and temperature distributions? 

 

Fig.1. Physical Configuration of Boundary Layer Flow over an Inclined Sheet 
1. Mathematical Formulation:   In this investigation, we examine an incompressible nanofluid 
streaming over a sheet that expands with the slip boundary. With the use of Maxwell's equation and the 
study of EMHD, the extended equation of continuity, equation of momentum, equation of fluid energy, 
and equation of fluid concentration produced. An inclined sheet is subjected to the electrically 
conducting viscous incompressible nanofluid flow of mixed convection. The thin plate forms the path of 
the tangential flow in the X- direction, and the Y- axis is perpendicular to it. 
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at        𝑦 = 0                                                                       (5)                                                                                                  

                     

      
𝑢 → 0
𝑇 → 𝑇∞
𝐶 → 𝐶∞

} as  𝑦 → ∞                                                                                                               (6)                                                                                                          

In reference of velocity, 𝐿1 and 𝐿2 are slip parameter and kinematic-viscosity is ‘𝜈’ and ‘𝐶1’ is the constant of 
proportionality. Here 𝑞1 and 𝑞2 are slip parameters in reference of temperature and concentration. Similarity 
variables are 

𝜉 = 𝑦√
𝑎

𝜈𝑓
                                                                                                                                 (7)                                                                                              

𝑢 = 𝑎𝑥ℎ′(𝜉) and 𝑣 = −√𝑎𝜈𝑓ℎ(𝜉) 
The dimensionless temperature and concentration variables are 

𝑡(𝜉) =
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𝑇𝑊−𝑇∞
,     𝜑(𝜉) =

𝑐−𝑐∞
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T=𝑇∞ + 𝐴𝑥 𝑡(𝜉) and  
c=𝑐∞ + 𝐵𝑥𝜑 (𝜉)                                                                                                                     (8)                                                                                                       
Using equation (7) and (8) in equations (2), (3) & (4). We get, 
ℎ′′′ + ℎℎ′′ − ℎ′

2
+𝑚(1 − ℎ′) + 𝐺𝑡𝑡𝑠𝑖𝑛𝛼 + 𝐺𝑐𝜑𝑠𝑖𝑛𝛼 −𝑚𝑒 = 0                                        (9)                 

𝑡′′ + 𝑃𝑟[ℎ𝑡′ + 𝜆𝑡 + 𝑁𝑏𝑡′𝜑′+𝑁𝑡𝑡′
2] + 𝜀(𝑡𝑡′′ + 𝑡′2) = 0                                                       (10) 

𝜑′′ + 𝑆𝑐𝑓𝜑′ +
𝑁𝑡

𝑁𝑏
𝑡′′ = 0                                                                                                      (11) 

The boundary conditions are 

 

ℎ = 𝑆, ℎ′ = 1 + 𝛽1ℎ
′′ + 𝛽2ℎ

′′′

𝑡(𝜉) = 1 + 𝛿1𝑡′(𝜉)

𝜑(𝜉) = 1 + 𝛿2𝜑′(𝜉)

} 𝑎𝑡 𝜉 = 0                                                                           (12)                                                                                                    

 
ℎ′ → 0
𝑡 → 0
𝜑 → 0

}  𝑎𝑠   𝜉 → ∞                                                                                                              (13)                                                                                                                                                                                                         

Where 𝛽1 = 𝐿1√𝑎/𝜈 and 𝛽2 =
𝑎

𝜈
𝐿2, are referred to as the 2nd  and 3rd  order coefficients of slip 

parameters.𝛿1 = 𝐾1√
𝑎

𝜈
   and 𝛿2 = 𝐾2√

𝑎

𝜈
  are referred to as the slip coefficient of heat transfer and slip 

coefficient of mass diffusion.  
The transfer of heat, in accordance with Ahmed [1], occurs in two components, one of which is caused 
by a difference in temperature and the other by a variation in thermal conductivity. In equation (10), the 
term independent of 𝜀, i.e. 𝑡′′ + 𝑃𝑟[ℎ𝑡′ + 𝜆𝑡 + 𝑁𝑏𝑡′𝜑′+𝑁𝑡𝑡′

2] is caused by difference in temperature, 
while the 2nd component, i.e., 𝜀(𝑡𝑡′′ + 𝑡′2), is caused by variable thermal conductivity. 
2.1 SKIN FRICTION:  The Skin friction coefficient 𝐶𝑓  at the surface is defined as, 
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2.2 Nusselt Number and Sherwood Number: - The Nusselt number is defined as follows, 

𝑁𝑢 =
𝑥𝑄𝑤

𝑘𝑓(𝑇𝑤 − 𝑇∞)
 

Similarly, the Sherwood's number is defined as,          

    𝑆ℎ =
𝑥𝑄𝑚

𝐷𝐵(𝐶𝑤 − 𝐶∞)
 

Here, 
𝑄𝑤  𝑖𝑠  heat flux. 
𝑄𝑚𝑖𝑠  mass flux.  
Thermal conductivity coefficient is represented by 𝑘. 
characteristic length is represented by 𝑥 
By using equation (9) we get, 
𝑁𝑢

𝑅𝑒𝑥
1/2 = −[1 +

𝜀𝜃(0)

1+𝜀𝜃(0)
] 𝜃′(0),

𝑆ℎ

𝑅𝑒𝑥
1/2 = −𝜙′(0). Where, local Reynolds number 𝑅𝑒𝑥 =

𝑢𝑤𝑥

𝜐
. 

Numerical Solution: - 
This study examines the heat conduction-convection system, characterized by a highly non-linear system 
of partial differential equations (PDEs), making the discovery of an exact solution particularly challenging. 
To address this, a similarity variable is utilized to transform the non-linear partial differential equation 
(PDE) into a non-linear ordinary differential equation (ODE). The model has been analyzed using the 
4th-order method and the shooting technique. Equations (9–11) encompass the effects of the 2nd-order 
slip parameter, considering various parameters such as 𝑆𝑐 𝑁𝑏, m, e and 𝑃𝑟. Additionally, the following 
new variables were introduced: 𝑓1 = ℎ,  𝑓2 = ℎ′,  𝑓3 = ℎ′′,    𝑓4 = 𝑡, 𝑓5 = 𝑡′, 𝑓6 = 𝜑, 𝑓7 = 𝜑′ 
Subsequently, the equations (9-11) become: 
𝑓1′ = 𝑓2, 𝑓2′ = 𝑓3                                                                                                                   (14)                                                                                                                                                
𝑓3
′ = −𝑓1 ∗ 𝑓3 + 𝑓2

2 −𝑀(1 − 𝑓2) − 𝐺𝑡𝑓4𝑠𝑖𝑛𝛼 − 𝐺𝑐𝑓6𝑠𝑖𝑛𝛼+ME                                          (15)           
𝑓4′ = 𝑓5                                                                                                                                  (16)                                                                                                                                                   
𝑓5
′ = −𝜀(𝑓4 ∗ 𝑓5

′ + 𝑓5
2) − 𝑃𝑟 ∗ [𝑓1 ∗ 𝑓5 + 𝜆 ∗ 𝑓4 +𝑁𝑏𝑓5 ∗ 𝑓7+𝑁𝑡 ∗ 𝑓5

2]                               (17) 
𝑓6′ = 𝑓7                                                                                                                                  (18)  

𝑓7
′ = −𝑆𝑐𝑓1𝑓7 +

𝑁𝑡

𝑁𝑏
𝑓5′                                                                                                          (19)                                                                                                                     

With boundary conditions, 
𝑓 = 0, 𝑓2 = 1 + 𝛽1𝑓3 + 𝛽2𝑓3

′      𝑎𝑡 𝜉 = 0                                                                             (20)                                                                                               
𝑓2 → 0 𝑎𝑠   𝜉 → ∞   
𝑓4(0) = 1 + 𝛿1𝑓5(0), 𝑓6(0) = 1 + 𝛿2𝑓7(0)                                                                          (21)                                                                                            
𝑓4 → 0 𝑎𝑠   𝜉 → ∞,  𝑓6 → 0 𝑎𝑠   𝜉 → ∞ 
Table-1: Comparison of the values of −t′ (0) and −φ′ (0) for different values of  
𝑁𝑡 and 𝑁𝑏 and Gt = Gc = λ =m= e = 𝛿1 = 𝛿2 = S = 0 and 𝑆𝑐 = 𝑃𝑟 = 10 with Khan and Pop [85] 

 
 

𝑁𝑡 𝑁𝑏 −𝑡′(0) 
Khan & 
Pop 

−𝜑′(0) 
Khan & 
Pop 

−𝑡′(0) 
K.L.Hsiao 

−𝜑′(0) 
K.L.Hsiao 

−𝑡′(0) 
Present 
Result 

−𝜑′(0) 
Present 
Result 

0.1 0.1 0.9524 2.1294 0.9524 2.1294 0.952402 2.129421 
0.2 0.1 0.6932 2.2740 0.6932 2.2740 0.693211 2.274012 
0.3 0.1 0.5201 2.5286 0.5201 2.5286 0.520113 2.528641 
0.4 0.1 0.4026 2.7952 0.4026 2.7952 0.402621 2.795201 
0.5 0.1 0.3211 3.0351 0.3211 3.0351 0.321101 3.035103 
0.1 0.2 0.5056 2.3819 0.5056 2.3819 0.505612 2.381902 
0.1 0.3 0.2522 2.4100 0.2522 2.4100 0.252223 2.410010 
0.1 0.4 0.1194 2.3997 0.1194 2.3997 0.119412 2.399652 
0.1 0.5 0.0543 2.3836 0.0543 2.3836 0.054301 2.383567 
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RESULT AND DISCUSSION: 

With a 2nd-order velocity slip parameter, Maxwell fluid flow has been studied across an inclined 
stretched sheet. To solve the system of nonlinear differential equations (9)-(11) with boundary 
conditions (12-13), we employed the Runge Kutta fourth-order approach. Physical parameters (e.g., 
magnetic parameters, 1st and 2nd order velocity slip parameters, heat transfer slip parameter) have 
been widely investigated to fully understand their influence. Temperature, velocity, concentration 
profile graphs, and local Nusselt and Sherwood numbers are used to depict the results of this study. 
Analysis of data in relation to numerous boundaries was carried out using the method described 
earlier.  

 
                                                                    Fig.2(a)                                                                    
Ist solution of variation of  ℎ′(𝜉) vs 𝜉 on different values of 𝛽2 = 0.1,0.3,0.5 with m=e= 𝑁𝑡 = 𝑁𝑏 =
0.1,Pr=1, 𝐺𝑡 = 1, 𝐺𝑐 = 0.1.                                                 

 
                                                                           Fig.2(b) 
Dual solution of variation of  ℎ′(𝜉) vs 𝜉 on different values of 𝛽2 = 0.1,0.3,0.5 with m=e= 𝑁𝑡 = 𝑁𝑏 =
0.1,Pr=1, 𝐺𝑡 = 1, 𝐺𝑐 = 0.1. 

 
Fig.3(a)                                                                    
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Fig.3(b) 
Dual solution of variation of  −𝑡′(𝜉) vs 𝜉 on different values of 𝛽2 = 0.1,0.3,0.5,0.7 with m=e= 𝑁𝑡 =
𝑁𝑏 = 0.1,Pr=1, 𝐺𝑡 = 1,𝐺𝑐 = 0.1. 
 

 
Fig.4(a)                                                            
 

 
Fig.4(b) 
Dual solution of variation of  ℎ′′(𝜉) vs 𝜉 on different values of 𝛽2 = 0.1,0.3,0.5 with m=e= 𝑁𝑡 = 𝑁𝑏 =
0.1,Pr=1, 𝐺𝑡 = 1, 𝐺𝑐 = 0.1. 

Figure 2a and 2b shows the effect of the 2nd-order slip parameter 𝛽2 on the dimensionless velocity. 
It is observed that the dimensionless velocity decreases in the first solution and increases in 
second with increasing the values of the 2nd order slip parameter. Similarly, figures 3a,3b & 4a,4b 
shows the effect of the 2nd order slip parameter 𝛽2 on the dimensionless reduced Nusselt number 
−𝑡′(0). and skin friction −ℎ′′(0). It is observed that the dimensionless reduced Nusselt number 
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increasing in both solutions while dimensionless skin friction in decreasing in both solutions.  

 
Fig.5 
Variation of  ℎ′(𝜉) vs 𝜉 on different values of 𝛼 = 300, 450, 600 with m=e= 𝑁𝑡                                     =
𝑁𝑏 = 0.1, Pr=1, 𝐺𝑡 = 1,𝐺𝑐 = 0.1.  

 
Fig.6 
Variation of  ℎ′′(𝜉) vs 𝜉 on different values of 𝛼 = 300, 450, 600  with m=e= 𝑁𝑡 = 𝑁𝑏 = 0.1,Pr=1, 𝐺𝑡 =
1, 𝐺𝑐 = 0.1. 

  
Variation of t(𝜉) ) vs 𝜉 on different values of 𝛼 = 300, 450, 600  with m=e= 𝑁𝑡 = 𝑁𝑏 = 0.1,Pr=1, 𝐺𝑡 =
1, 𝐺𝑐 = 0.1.              
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Variation of  𝜑(𝜉) vs 𝜉 on different values of 𝛼 = 300, 450, 600   with m=e= 𝑁𝑡 = 𝑁𝑏 = 0.1,Pr=1, 𝐺𝑡 =
1, 𝐺𝑐 = 0.1.  

 
Variation of  −𝑡′(𝜉)   vs 𝜉 on different values of 𝛼 = 300, 450, 600  with m=e= 𝑁𝑡 = 𝑁𝑏 = 0.1, Pr=1, 𝐺𝑡 =
1, 𝐺𝑐 = 0.1 

 
Variation of  −𝜑′(0) vs 𝜉 on   different values of 𝛼 = 300, 450, 600  with m=e= 𝑁𝑡 = 𝑁𝑏 = 0.1,Pr=1, 𝐺𝑡 =
1, 𝐺𝑐 = 0.1.  

Figures 5-10 shows that the effect of the inclined angle 𝛼 on the velocity, skin friction, temperature, 
concentration profile, Nusselt number and Sherwood number. Skin friction, temperature profile, 
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concentration profile and Sherwood number decreasing with increasing the value of 𝛼 while 
velocity profile and Nusselt number decreasing. This behavior can be explained by the changes in 
heat transfer mechanisms associated with the inclined surface. A higher angle of inclination can 
result in less effective convective heat transfer as the flow becomes less aligned with the temperature 
gradient. The reduced interaction between the fluid and the heated surface results in lower thermal 
energy retention within the boundary layer, leading to a diminished temperature profile. 
 

  
Variation of  𝑡(𝜉) vs 𝜉  on different values of  𝐺𝑡 with m=e= 𝑁𝑡 = 𝑁𝑏 = 0.1,Pr=1,  𝐺𝑐 = 0.1.  
 

 
Variation of   𝜑(𝜉) vs 𝜉 on different values of  𝐺𝑡 with m=e = 𝑁𝑡 = 𝑁𝑏 = 0.1,Pr=1,  𝐺𝑐 = 0.1.           
Figures 11-12 showing the effect of 𝐺𝑡. Figures 11 and 12 demonstrate that as the thermal Grashof 
number 𝐺𝑡 increases, the temperature profile rises due to enhanced buoyancy effects and improved 
convective heat transfer, while the concentration profile decreases due to intensified mixing and 
disruption of concentration gradients. These findings highlight the critical interplay between 
thermal and mass transfer processes within the fluid system and underscore the importance of 
buoyancy-driven flows in influencing temperature and concentration distributions in various 
engineering applications.                                                                                    
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CONCLUSION:  
In the context of a numerical study examining mixed convection over a stretching sheet in the presence 
of a free stream and a magnetic field, it has been observed that the governing equations of the flow exhibit 
dual solutions. This duality in solutions highlights the complexity of the flow behavior under the 
influence of multiple physical forces, such as buoyancy and magnetic effects. The first solution, which 
aligns with physical observations, reflects realistic fluid behavior and demonstrates stable flow 
characteristics. This solution is characterized by moderate fluid velocities and follows the expected 
patterns of heat and mass transfer in mixed convection scenarios. The presence of the stretching sheet 
and the external magnetic field contributes to the dynamics of the flow, facilitating the development of a 
thermal boundary layer and influencing the overall convective heat transfer. 
In contrast, the second solution diverges significantly from physical reality. This solution is characterized 
by excessively high fluid velocities that are not feasible within the context of the system being studied. 
Such unrealistic velocities suggest that the second solution may stem from mathematical anomalies or 
instability in the governing equations rather than representing a viable physical state. This discrepancy 
highlights the importance of critically evaluating solutions derived from mathematical models, 
particularly when dual solutions arise. 
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