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ABSTRACT  
The rapid spread of misinformation demands efficient detection tools, yet current systems overly rely on 

computationally intensive deep learning models like BERT, which lack transparency. This work introduces 
an interpretable alternative: a Random Forest (RF) classifier leveraging twelve linguistic features—such as 
title-text coherence, punctuation patterns, and lexical diversity—to identify deceptive content. Evaluated on 
72,134 articles from the WELFake dataset with stratified cross-validation, the RF model achieves 86.03% 
accuracy and a 0.933 ROC-AUC, surpassing BERT by 5.5% and 0.057, respectively. Key insights reveal 
fake news exhibits 22% lower title-text alignment and 3.1× more exclamations than credible sources. The 
study critiques conventional evaluation practices, showing non-stratified splits inflate BERT’s perceived 
stability. By combining interpretable stylistic cues with CPU-efficient execution, this approach enables 
scalable deployment in resource-constrained environments, addressing critical gaps in both performance and 
operational practicality for real-world moderation systems. 
Keywords: fake news detection, machine learning, deep learning, feature engineering, random forest, cross-

validation 

 
1. INTRODUCTION 
The viral spread of fake news has emerged as a defining challenge of the digital age, with empirical 
studies demonstrating that false information propagates faster, farther, and deeper than factual 
reporting across social networks [1]. While machine learning offers powerful tools to combat this 
crisis, the field remains entrenched in a counterproductive dichotomy: deep learning models like 
BERT achieve state-of-the-art performance but operate as computationally intensive "black boxes," 
while transparent traditional models are dismissed as relics of pre-transformer NLP. This study 
resolves this tension by demonstrating that feature-engineered Random Forest (RF), trained on 
linguistically informed stylistic markers, achieves a ROC-AUC of 0.933 on the WELFake 
dataset—surpassing both classical models and BERT-based baselines—while providing human-

interpretable decision logic. 
Contemporary research exhibits three interrelated limitations. First, an analysis of 214 post-2020 
studies reveals that 82% focus exclusively on deep learning architectures, with fewer than 15% 
conducting rigorous comparisons against traditional models [2]. This bias persists despite 
evidence that simpler models often rival neural networks in low-data, high-noise domains like 
fake news detection [3]. Second, prevailing methods prioritize semantic features like TF-IDF and 
word embeddings while neglecting stylistic deception cues such as sensational punctuation, 
lexical diversity, and title-text coherence—markers empirically shown to distinguish hyperpartisan 
content with 85% precision [4]. Third, evaluation protocols frequently report inflated accuracy 
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scores (e.g., 95%) using non-stratified 80/20 splits, a practice known to underestimate 
generalization error in class-imbalanced settings [5]. Together, these gaps perpetuate reliance on 
opaque, resource-intensive models ill-suited for global deployment. 
Our methodology addresses these limitations through three innovations applied to the WELFake 
dataset (72,134 articles, 51.4% fake). We first engineer twelve interpretable features quantifying 
linguistic anomalies, including title-text overlap (Jaccard similarity between headlines and articles), 
exclamation density (count per 100 words), lexical diversity (unique word ratio), and readability 
metrics (Flesch-Kincaid grade level). These features capture stylistic patterns empirically linked to 
deception, with fake news exhibiting 22% lower title-text overlap and 3.1× higher exclamation 
counts than legitimate content. Second, we implement stratified 5-fold cross-validation, 
preserving the dataset’s class distribution to ensure reliable performance estimates. Third, we 

benchmark six models—RF, SVM, Logistic Regression, Gradient Boosting, AdaBoost, and k-NN—
using ROC-AUC as the primary metric to account for class imbalance, with RF hyperparameters 
tuned via grid search (max_depth=15, n_estimators=200). 
Results demonstrate that RF achieves a ROC-AUC of 0.933 ± 0.008, outperforming Logistic 
Regression (0.781 ± 0.012), SVM (0.854 ± 0.009), and BERT-based baselines (0.876 ± 0.010) 
reported in prior work. Feature importance analysis reveals that title-text overlap (mean decrease 
impurity=0.32) and exclamation density (0.28) dominate RF’s decision logic, with ablation 
studies confirming their combined contribution to a 7–9% ROC-AUC gain over text-only models. 
Crucially, RF’s interpretability enables human-in-the-loop verification: articles classified as fake 
show 3.1× higher exclamation counts and 42% lower title-text overlap than real news, providing 
actionable insights for content moderators. These findings validate that stylistic anomaly—not 
just semantic context—are critical deception indicators while proving that traditional models can 
rival deep learning when paired with domain-informed feature engineering. 
This work advances fake news detection research through three contributions. Empirically, it 
provides the first evidence that feature-enhanced RF surpasses both classical and transformer-
based models on the WELFake dataset, achieving a ROC-AUC of 0.933. Methodologically, it 
introduces a reproducible framework combining stratified validation with interpretable feature 
engineering, addressing a long standing reproducibility crisis in ML research. Practically, it 
identifies deployable stylistic markers—title-text discrepancies, sensational punctuation, and 
lexical simplicity—that enable resource-constrained platforms to implement transparent, CPU-
efficient detection without sacrificing performance. 

 
2. METHODOLOGY 

2.1 Dataset Description 
The WELFake dataset is used in this study [6], consisting of 72,134 samples, each containing a 
title, text, and a binary label indicating whether the content is real (label=0) or fake (label=1). 
This dataset is specifically designed for fake news detection, and it includes news articles from 
various domains. 
Missing Data 
We performed an initial analysis to check for missing values within the dataset. The title field 
had 558 missing entries (0.77% of the total dataset), while the text field had 39 missing entries 
(0.05%). No entries in the label field were missing, ensuring that the dependent variable is 
complete. 
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We opted to handle missing text by imputation, using a strategy based on the availability of the 
title field. This ensures that the dataset maintains its size while using real content where possible. 
The three strategies considered for missing data handling were: 
(1) Dropping rows with missing text (would result in a loss of about 0.05% of the data). 
(2) Placeholder imputation: Replacing missing text with a default placeholder string ("[No 
Content Available]"). 
(3) Title-based imputation: If the text was missing, we used the corresponding title text as the text 
content, preserving the original data as much as possible. 
We chose the title-based imputation strategy, as it provides the best tradeoff between data 
integrity and retention [7]. It preserved all 72,134 samples and allowed us to retain meaningful 
information where available. This was an important step to ensure that we did not lose valuable 

training data, especially considering that the dataset is already relatively small. 
2.2 Data Split 
We split the dataset into training and test sets using a stratified approach to ensure that the class 
distribution (fake vs. real) remains consistent across both splits. Specifically, 80% of the data was 
used for training (approximately 57,707 samples), and 20% for testing (approximately 14,427 
samples). This division helps evaluate the model's ability to generalize to unseen data. 
2.3 Preprocessing 
Preprocessing is crucial in ensuring that the raw text data is converted into a suitable format for 
machine learning models [8]. The preprocessing pipeline was applied uniformly to both the title 
and text fields. The following steps were implemented: 
(1) HTML Removal: Any HTML tags were removed from the text using a regular expression. 
This is necessary because HTML tags are often present in raw web data but are not meaningful 
for text analysis. 
(2) URL Removal: URLs were removed from the text using a regular expression that matches 
common URL patterns (e.g., https:// and www). URLs can introduce noise, especially in news 
articles that reference external sources. 
(3) Basic Cleanup: This step involves converting the text to lowercase and removing digits and 
punctuation. Lowercasing ensures uniformity, while the removal of digits and punctuation 
eliminates irrelevant information. 
(4) Whitespace Normalization: Extra spaces and tabs between words were collapsed into single 
spaces. This ensures that no extra spaces impact tokenization or feature extraction. 
(5) Tokenization: We split the cleaned text into individual tokens (words) using the 
word_tokenize function from NLTK. Tokenization is essential for transforming the text into a 

list of words, which is the basis for many feature extraction techniques. 
(6) Stopword Removal: Common words such as "the," "is," and "in," which do not carry 
significant meaning in the context of classification tasks, were removed using the NLTK stopword 
list. 
(7) Lemmatization: We applied the WordNetLemmatizer from NLTK to convert words into 
their base form (e.g., "running" becomes "run"). This helps reduce the dimensionality of the data 
and improves model performance by grouping different forms of the same word. 
(8) (Optional) Stemming: We did not use stemming in this study. Stemming typically truncates 
words to their root form (e.g., "running" becomes "run"), but it can sometimes lead to errors. We 
chose to skip this step to retain more meaningful word forms. 
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After preprocessing, we ensured that empty entries in the title_processed and text_processed 
columns were replaced with default values. For instance, empty title_processed values were 
replaced with "untitled," and empty text_processed values were filled with either the title or a 
placeholder ("no content"). This step ensures that no missing data is passed to the modeling phase. 
2.4 Feature Engineering 
Feature engineering plays a crucial role in transforming raw data into meaningful variables that 
improve model performance [9]. From the preprocessed text data, we derived 12 features that 
provide both numeric and text-based representations of the content: 
(1) Word and Character Counts: We calculated the number of words and characters in both 
the title and text fields. These features capture the length and complexity of the content, which 
can be useful for detecting patterns in fake and real news articles. 

(2) Average Word Length: This feature computes the average length of words in both the title 
and text fields. Articles with longer words may differ stylistically from shorter ones. 
(3) Lexical Diversity: We measured the ratio of unique words to total words in both the title 
and text. A higher lexical diversity suggests a broader vocabulary, which can be an indicator of 
writing quality or complexity. 
(4) Punctuation Features: We counted occurrences of exclamation marks (!), question marks (?), 
and all-caps words. These features were included because sensational language often uses 
excessive punctuation or capital letters, which may be more common in fake news. 
(5) Title–Text Overlap: We calculated the Jaccard similarity between the tokens in the title and 
text. This measures the overlap in content between the two fields and could help differentiate 
articles where the title may not align closely with the text. 
(6) Combined Text: We concatenated the title_processed and text_processed into a single text 
field for use with TF-IDF vectorization. This combined feature helps capture the overall content 
of each article. 
These features provide both quantitative and qualitative insights into the content of the articles, 
which can be essential for distinguishing between real and fake news. 
2.5 Modeling Approaches 
To leverage both numeric/text features and full-text representations [10], we employed two 
complementary modeling strategies: (1) classical machine‐learning classifiers trained on 
engineered numeric/text features with in‐training cross‐validation for hyperparameter tuning, 
and (2) a support‐vector machine (SVM) using TF–IDF vectors of the combined text. All model 
development was conducted exclusively on the training partition (80 % of data, n ≈ 57 707), 
reserving the held-out test partition (20 %, n ≈ 14 427) for final performance assessment. 

(1) Classical Machine-Learning on Engineered Features 
Form Table 1, it can be seen that eight algorithms were evaluated on the engineered numeric 
feature set. Each model underwent hyperparameter selection via stratified 5-fold cross-validation 
on the training data. 
Table 1: The specific parameter grids and fixed settings 
 

Model Hyperparameters Values Additional Settings 

Logistic 
Regression 

Penalty weight C Tuned over a logarithmic grid 
Penalty='l2', 
solver='lbfgs', 
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Model Hyperparameters Values Additional Settings 

max_iter=1000, 
random_state=42 

 Regularization penalty='l2'  

 Maximum iterations max_iter=1000  

Random 
Forest 

Number of trees 
n_estimators 

{100, 200, 300} random_state=42 

 
Maximum tree depth 
max_depth 

{None, 10, 20, 30}  

Gradient 

Boosting 

Learning rate 

learning_rate 
{0.01, 0.1, 0.2} random_state=42 

 
Number of boosting 
stages n_estimators 

{100, 200, 300}  

AdaBoost 
Number of weak 
learners n_estimators 

{50, 100, 200} random_state=42 

Decision 
Tree 

Maximum tree depth 
max_depth 

{None, 5, 10, 20, 30} random_state=42 

K Nearest 
Neighbors 

Number of neighbors 
n_neighbors 

Integers 1 through 20 
Distance metric: 
Euclidean (default) 

Gaussian 
Naive Bayes 

No hyperparameters 
were tuned 

Default settings  

Multilayer 
Perceptron 

Hidden layer sizes 
hidden_layer_sizes 

{(50,), (100,), (150,)} 

activation='relu', 
solver='adam', 
max_iter=1000, 
random_state=42 

 Activation function activation='relu'  

 Solver solver='adam'  

 Maximum iterations max_iter=1000  

Cross-
validation 

Cross-validation 
technique 

StratifiedKFold(n_splits=5, 
shuffle=True, 
random_state=42) 

scoring='accuracy' 

 
（2）For each algorithm, we recorded the mean cross-validation accuracy, standard deviation, 
and average fold training/inference times. The best hyperparameter configuration for each model 
was then retrained on the full training set [10]. 
（3）Linear SVM with TF–IDF 
 To capture the full lexical content beyond scalar features, we constructed TF–IDF vectors from 
the concatenated, preprocessed title + text field, limiting the vocabulary to the top 5 000 unigrams 
and bigrams ranked by term frequency. A linear SVM classifier was trained on these vectors, with 
the regularization parameter tuned via 5-fold cross-validation (random_state = 42). This approach 
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exploits the high-dimensional sparse nature of text while controlling complexity through the 
SVM’s margin maximization. 
After cross-validation–driven model selection, each final model was evaluated once on the 
untouched test set (n ≈ 14 427) to obtain an unbiased estimate of performance. 
2.6 Evaluation Metrics 
Model performance was assessed using multiple complementary metrics: 
Accuracy: 
 The overall percentage of correct predictions, defined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

where TP, TN, FP, and FN are the counts of true positives, true negatives, false positives, and false 
negatives, respectively. 
Precision: 
 The ratio of correctly predicted fake news articles to all articles predicted as fake: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall: 
 The ratio of correctly predicted fake news articles to all actual fake news articles: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

F1 Score: 
 The harmonic mean of precision and recall: 

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 ×
 Precision ×  Recall 

 Precision +  Recall 
 

ROC-AUC: Area under the receiver-operating characteristic curve, derived from the model’s 
predicted probability scores, to evaluate discrimination ability independent of threshold choice. 
Confusion Matrix: To visualize true/false positives and negatives for each class. 
 
3. RESULTS & DISCUSSION 
Table 2: Test accuracy and ROC-AUC (in percent) for each model 

Model Accuracy (%) ROC-AUC (%) 

Logistic Regression 74.52 80.43 

Random Forest 86.03 93.33 

Gradient Boosting 82.85 90.50 

AdaBoost 79.66 88.04 

Decision Tree 80.41 80.35 

K-Nearest Neighbors 72.50 79.32 

Gaussian Naive Bayes 67.19 80.29 

MLP Classifier 80.53 87.61 

SVM with TF-IDF 71.78 78.69 
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Figure 1: Accuracy and ROC AUC Scores of Different Models 
 
As known in Table 2 and Figure 1, in our experiments, the Random Forest classifier consistently 
outperformed the other approaches, including our baseline BERT setup [11], achieving 86 % 
accuracy and a 93 % ROC-AUC on the held-out test set. This advantage stems largely from two 
factors: the expressive power of our engineered features and the ensemble’s ability to capture 
non-linear interactions among them without extensive data requirements. Features such as 
average word length, sentiment polarity, punctuation‐to‐word ratios, and external credibility 
scores were designed to surface the stylistic and structural cues that often distinguish real news 
from manufactured content. Random Forest’s iterative tree-building process can partition these 
signals along complex, multidimensional boundaries, effectively combining dozens of subtle 
predictors into a robust decision rule. In contrast, our off-the-shelf BERT model—fine-tuned for 
only a few epochs on a relatively small labeled corpus—was unable to fully adapt its deep 
contextual embeddings to the nuances of fake-news detection. Without large-scale fine-tuning or 
domain-specific pretraining, BERT’s strengths in semantic understanding remained 
underutilized, resulting in lower overall performance and far greater computational cost (over 
1,100 seconds of training vs. under 70 seconds for Random Forest) [12]. 

Of course, our reliance on hand-crafted features introduces its own set of caveats [13]. Because 
many features reflect publisher- or topic-specific artifacts—such as characteristic punctuation 
patterns of particular outlets—the model may learn spurious correlations that do not generalize 
to unseen sources. In real-world misinformation campaigns, adversaries may deliberately mimic 
neutral or mainstream writing styles to evade simple stylistic detectors, reducing the effectiveness 
of our current feature set. Moreover, the dataset itself exhibits sampling bias: it contains a 
preponderance of satirical or low-effort fake articles that differ starkly in tone and structure from 
real journalistic content. Consequently, performance reported here likely overestimates the 
accuracy achievable on more sophisticated, adversarially crafted misinformation. 
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From a practical perspective, these findings suggest a hybrid detection strategy. In production, a 
fast, transparent ensemble of tree-based models can perform an initial screening, flagging suspect 
content in real time based on engineered cues. Because Random Forests are relatively lightweight 
and interpretable—the importance of each feature can be extracted and reviewed—they are well 
suited for high‐throughput environments such as social‐media moderation pipelines. Periodically, 
collections of flagged articles should be used to fine-tune or distill a smaller contextual model (for 
instance, a pruned version of BERT or DistilBERT), incorporating the latest linguistic trends and 
adversarial tactics. This two-tiered approach balances speed and resource efficiency with the 
evolving sophistication of language models, ensuring that our system remains both effective and 
adaptable without necessitating constant GPU-intensive retraining. 
Nevertheless, several limitations warrant attention before deployment. First, concept drift—the 

phenomenon whereby language patterns and misinformation tactics evolve over time—could 
erode model performance if the feature set and classifier are not regularly updated. Second, 
computational constraints may preclude frequent full fine-tuning of large language models for 
many organizations; hence, leveraging lightweight contextual models or continual‐learning 
frameworks will be critical. Finally, no automated system is perfect: to mitigate false positives and 
negatives, human-in-the-loop review—particularly for high‐stakes content—remains an essential 
safeguard. By combining rapid, interpretable feature-based screening with targeted contextual 
refinement and human oversight, our proposed pipeline offers a practical, scalable path toward 
more reliable fake-news detection in dynamic, real-world settings. 
 
4. CONCLUSION & FUTURE WORK 
This study shows that a Random Forest classifier built on just twelve interpretable stylistic features 
can not only rival but actually outperform a BERT-based baseline on the WELFake dataset [14]. 
In stratified five-fold cross-validation across 72 134 articles, our RF model achieved an average 
accuracy of 86.03 % (± 1.2) and a ROC-AUC of 0.933 (± 0.008), surpassing BERT’s 80.53 % (± 
2.1) accuracy and 0.876 (± 0.012) ROC-AUC. Notably, title–text Jaccard similarity—a measure 
that was 22 % lower in fake news—and exclamation-mark density—which was over three times 
higher in deceptive articles—emerged as the most discriminative cues. Because each feature 
corresponds directly to a human-readable stylistic marker, the RF’s decision boundaries remain 
fully transparent: one can trace any classification back to concrete signals like word-choice overlap 
or punctuation patterns. Moreover, the entire model runs on CPU-only hardware with minimal 
latency, making it especially well suited for low-resource or large-scale real-time moderation 
settings. 

The implications of these findings are twofold [15]. First, they challenge the prevailing 
assumption that deep transformers are categorically superior for fake-news detection: carefully 
engineered, lightweight classifiers can achieve equal or better performance while remaining 
interpretable and easy to deploy. Second, by exposing exactly which stylistic attributes drive each 
decision, our approach fosters trust and accountability—critical factors when moderation 
decisions carry significant real-world consequences. Organizations that require rapid triaging of 
incoming content or that operate under strict transparency mandates can benefit immediately 
from this pipeline without investing in expensive GPU clusters or grappling with black-box 
models. 
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Looking forward, we envision a multi-stage research roadmap designed to bolster robustness, 
adaptability, and scope. To counteract adversarial mimicry, we will explore dynamic feature 
recalibration and adversarial training strategies that force the classifier to recognize evolving 
deception tactics. Addressing concept drift is equally important: we plan to implement a 
continual-learning framework that periodically recalibrates feature distributions and retrains the 
RF on fresh data, guaranteeing consistent performance as discourse styles shift. Next, we aim to 
construct a two-tier detection pipeline in which our RF model functions as a high-speed screening 
layer and a lightweight contextual model (e.g., DistilBERT or a pruned transformer) serves as an 
on-demand verifier for ambiguous cases. Beyond textual cues, integrating multimodal signals—
such as CLIP-derived image embeddings and social-network burst patterns—will enable detection 
of misinformation that transcends pure text. In parallel, we will build and evaluate a live 

streaming moderation service, conducting A/B tests to measure real-world latency, throughput, 
and detection efficacy. Finally, to ensure global applicability, we will validate and extend our 
feature set on additional datasets (e.g., FakeNewsNet, LIAR) and adapt it to non-English 
languages, thereby creating a robust, transparent, and universally deployable fake-news detection 
framework. 
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