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Abstract

This invention presents a novel method for evaluating and enhancing the robustness of machine learning (ML) models
against adversarial attacks. Adversarial attacks, which involve small perturbations to input data that mislead models
into making incorrect predictions, pose significant risks, particularly in safety-critical applications such as autonomous
vehicles, healthcare systems, and security frameworks. Traditional methods for assessing model robustness, such as
accuracy and precision, fail to account for adversarial vulnerabilities, leaving ML systems susceptible to exploitation.
The proposed method introduces a comprehensive evaluation framework that rigorously tests models under various
adversarial attack scenarios, providing a more accurate and realistic assessment of their resilience.

This approach ensures that models are subjected to a diverse range of adversarial threats, helping identify weaknesses
that may not be apparent under standard conditions. In addition, the invention incorporates refined adversarial
training techniques that expose models to a broad spectrum of adversarial examples, enabling them to learn robust
patterns while maintaining performance on non-adversarial inputs. Complementing adversarial training, advanced
optimization techniques are employed to enhance the model's inherent resistance to adversarial perturbations, thereby
improving overall security. A significant contribution of this invention is the real-time adversarial attack detection
system, which allows models to identify and mitigate adversarial manipulations during deployment, adding an extra
layer of protection. Moreover, the invention supports custom defense mechanisms tailored to specific machine learning
architectures, ensuring that defense strategies are optimized for different model types. This method offers a scalable,
adaptable, and practical solution for enhancing the security of machine learning models, thereby making them more
reliable and resilient against adversarial threats in realaworld applications.

Keywords: - Adversarial Robustness, Model Vulnerability, Defence Mechanisms, Perturbation Analysis.

L INTRODUCTION

The basic premise of machine learning is to teach computers to analyze data, identify patterns, and then
apply that knowledge to solve problems or make informed decisions. Methods based on machine learning,
as opposed to symbolic reasoning, seek patterns in data and utilize them to make predictions. When
scientists realized that statistical approaches could help them deal with complicated and ambiguous data,
a paradigm shift occurred. When it comes to learning, machine learning places a premium on data.
Algorithms may learn representations, patterns, and correlations from massive datasets by training on
them. Machine learning encompasses a wide range of techniques, including supervised, unsupervised,
and reinforcement learning. Although conventional machine learning methods have found applications
in specific contexts, recent advancements in deep learning—specifically, multi-layer neural networks—have
enabled previously unimaginable improvements in domains such as image and speech recognition, NLP,
and beyond. Domain experts manually identify meaningful features from the data via feature engineering,
a fundamental stage in conventional machine learning. Algorithms used for training and prediction take
these features as input. Linear regression, decision trees, k-nearest neighbors, support vector machines,
and other similar algorithms are examples of classical machine learning. While these algorithms perform
admirably on some tasks, they may struggle to grasp hierarchical representations that are particularly
complex. Automatic learning of hierarchical and abstract representations from raw data is hindered by
traditional machine learning models' reliance on handcrafted features. The capacity of deep learning, a
branch of machine learning, to handle complicated tasks and make sense of massive volumes of data has
led to its meteoric rise in popularity in the past few years.

Adversarial Attacks on Machine Learning Models

Machine learning (ML) models can be vulnerable to adversarial attacks when their inputs are intentionally
designed to deceive or mislead them into producing unexpected or inaccurate results. Attacks like these
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take advantage of holes in ML algorithms, intense learning models, by subtly changing the input data in
ways that people can't see, but which drastically change the model's predictions. For example, an adversary
could manipulate a few pixel-level alterations to cause a picture-recognition classifier to identify a stop
sign as a speed restriction sign incorrectly.

In general, these kinds of attacks fall into two categories: white-box and black-box. When an attacker uses
white-box attacks, they have complete access to the model's parameters, training data, and architecture,
which allows them to manipulate it more precisely. On the other hand, black-box assaults depend on
studying outputs to deduce effective perturbations, rather than having access to the model's internal
workings. Some of the most well-known methods for creating adversarial instances include the Carlini
and Wagner (C&W) attacks, Projected Gradient Descent (PGD), and the Fast Gradient Sign Method
(FGSM).

Threats from adversaries are a significant concern in many ML-using industries, including those dealing
with autonomous cars, financial forecasting, image recognition, and natural language processing.
Misinformation, incorrect diagnoses, or compromised systems are all possible outcomes of such assaults,
making the consequences all the more severe in high-stakes settings like healthcare diagnostics and
cybersecurity.

Adversarial training, defensive distillation, input preprocessing, and model verification procedures are
just a few of the defense mechanisms that researchers have devised to combat these dangers. The subject
of antagonistic research, on the other hand, is dynamic and ever-changing due to the cat-and-mouse
character of the game. Given the growing integration of Al into sensitive and mission-critical applications,
ML systems must be durable, interpretable, and safe.

Purpose of the study

Computer vision, autonomous systems, healthcare, and natural language processing are just a few of the
many areas where machine learning (ML) has achieved significant success recently. Despite these
improvements, adversarial attacks are still a major threat to ML models, especially DNNs. These kinds of
assaults involve intentionally tampering with input data, causing models to make erroneous predictions,
even when the changes are imperceptible to humans. Particularly when used in situations where safety is
paramount, this flaw makes one very wary of the dependability and security of ML systems.

A crucial area of research now is understanding and assessing how well ML models can withstand these
hostile assaults. However, while numerous studies have examined attack-generating methods, far fewer
have systematically evaluated the robustness of models under various attack scenarios. This effort is
further complicated by the diversity of ML architectures and the complexity of adversarial behaviors,
highlighting the necessity for a consistent and thorough evaluation approach.

In this research, we offer a framework for evaluating ML models that takes into account various attack
routes, model kinds, and defense mechanisms to assess their resilience against adversarial attacks. By
simulating white-box and black-box attacks, the proposed method can quantitatively and qualitatively
evaluate a model's resilience to these types of threats. The study helps build safer and more resilient
machine learning systems by shedding light on how models behave in hostile environments.

1L REVIEW OF RELATED STUDIES

Ajayi, Joaja. (2025). Increasingly, machine learning (ML) is powering autonomous systems in the real
world, encompassing applications such as self-driving cars, drones, and robotic agents. While these
systems are efficient and autonomous, they are vulnerable to adversarial attacks, which are minor,
deliberately designed perturbations that might mislead the system because they rely on ML models.
Examining how well ML models in autonomous systems withstand adversarial attacks is the focus of this
research. We examine white-box and black-box attacks in training and inference settings, simulate attacks
in a virtual autonomous vehicle, and assess the efficacy of current protection strategies. Hybrid defense
systems offer a promising path toward practical implementation, as the results demonstrate trade-offs
among model accuracy, resilience, and computational cost. Finally, we propose some next steps for
research into making autonomous systems more resilient, with an emphasis on integrated system design
and real-world testing.
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Avilov, Fedor et al., (2024). The modeling of disordered crystals with the aid of artificial intelligence is a
proven method for creating new materials, but there has been limited discussion or resolution of the
issues with its stability, reliability, and robustness. In this study, we emphasize it by training several
machine learning models on nested intermetallic approximants of quasicrystal datasets. Our quantitative
and qualitative analysis of the prediction discrepancy demonstrates that a variety of plausible adjustments
to the training set can produce an entirely new collection of anticipated novel materials. We also
demonstrated the value of pre-training and suggested sequential training as a straightforward method for
improving stability.

Bayani, Samir et al. (2024). Today, modern financial management and investment decision-making are
incomplete without financial forecasting. The complexity and unpredictability of financial markets render
conventional methods of financial forecasting frequently inadequate. Research Design/Results: Applying
machine learning techniques is a great way to boost the efficiency and accuracy of economic forecasting,
by looking at its strengths, weaknesses, and potential for the future. Within their research, they account
for both linear and nonlinear approaches. Here, we focus on penalized regressions and ensembles of
models as examples of linear approaches. Boosted trees, random forests, and other tree-based methods,
as well as feed-forward and recurrent deep and shallow neural networks, are all considered in the study.
Additionally, they consider hybrid and ensemble models, which merge characteristics of multiple
alternatives. Policy, Practice, and Theory Consequences: A concise synopsis of the evaluation tools for
exceptional predictive capacity is offered. The study concludes by discussing potential applications of
machine learning in economics and finance, and we present an example that utilizes high-frequency
financial data (Benti, Chaka, and Semie, 2023).

Freiesleben, Timo & Grote, Thomas. (2023). In contemporary Machine Learning (ML), the term
"robustness" is frequently used. But context and community determine its meaning. Either researchers
define robustness narrowly in technical terms like adversarial robustness, natural distribution changes, or
performativity, or they don't define robustness at all. To help bring together various branches of
robustness research, this paper provides a conceptual understanding of the term, aiming to establish a
common vocabulary. Our robustness metric is the degree to which a robustness target is relatively
unaffected by targeted modifications to a modifier. Robustness to distribution shifts, prediction
robustness, and algorithmic explanations are only a few of the subtypes of robustness that our account
encompasses. Lastly, we separate robustness as a distinct epistemic term and set it apart from related
central ideas in ML like uncertainty, generalization, and extrapolation.

Henry, John et al. (2022). Using physiological data collected from wearable sensors, numerous recent
studies have focused on the detection of negative emotional states, including anxiety and stress. Various
publications have documented excellent accuracy when using features extracted from sensor signals, such
as skin temperature, heart rate, and skin conductance, in conjunction with machine learning classifiers.
The question of whether these models are field-deployable, however, is little discussed. In this research,
we assess the transferability of models trained on cardiac signals for anxiety and stress detection using
publicly available data from two big experimental investigations. We select the cardiac signal because
widely used properties of heartrate variability can be extracted from several sensor modalities, enabling
us to assess model robustness both within and across experimental environments. We demonstrate that
models can frequently train on proxies within the noise of lower-quality data, and that reliable
classification beyond the original experimental setting depends on high-quality training data with minimal
artifacts. Additionally, our findings highlight the importance of training on data from a variety of
emotional states to reduce the likelihood of incorrect classifications from hidden areas of the feature
space.

Publication, Research. (2020). A significant concern in recent years has been the vulnerability of Al
models to malicious attacks. Particularly in safety-critical applications such as autonomous vehicles,
healthcare, and finance, these attacks can pose significant security hazards by manipulating input data to
deceive Al models into making incorrect predictions or classifications. This study examines the theoretical
foundations and practical implications of adversarial attacks on Al models, exploring their characteristics
in the process. We review the various adversarial attack types, including poisoning and evasion attempts,
and examine the methods used to enhance the resilience of Al models. Additionally, we provide in-depth
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coverage of defensive mechanisms, including adversarial training, robust optimization, and approaches
to detection. Finally, the article explores potential avenues for further study, as well as the challenges of
developing Al models that are resistant to hostile manipulation.

I11. PROPOSED MODEL

Figure 1 illustrates our proposed adversarial training method, which iteratively repeats. The diagram here
serves to illustrate the two stages of our proposal strategy: 1) adversarial example testing to assess the global
model's robustness and 2) federated adversarial training.
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Figure 1: Federated Adversarial Training Framework: Model Aggregation and Robust Evaluation
Pipeline

We begin the training phase by augmenting each client's local data, as illustrated in Figure 2. By using
adversarial examples made from PGD, we enlarge the training set. We don't create malicious pictures
with a lot of disturbances, as people can see them.
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Local
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Figure 2: Local Data Augmentation Process Using Natural, Adversarial, and Augmented Images

Our goal is to find a way to protect ourselves from malicious images that are invisible to the naked eye.
To strengthen our model against random noise, we create more examples by introducing Gaussian noise
to normal or natural photos. To further lessen the likelihood of overfitting, the training set is subjected
to basic data processing techniques such as horizontal flipping and random cropping with padding. Then,
following the method outlined by Muller et al., we employ soft labeling for the target values rather than
hard labeling. We therefore assign the accurate label a high likelihood, closer to 1, and the other labels a
very low probability, while keeping the total probability at 1. This approach avoids assigning a probability
of '1' to the actual label and '0' to all the other labels.
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To promote generality and prevent model overfitting, soft labelling is commonly employed. For every
input, Equation 10 specifies soft labels. Think about a piece of data that falls into category ¢, where c is
an integer from 1 to N, the total number of categories. The i-th element of y can represent its ground

truth label.
n 1 ifi=c¢
= Yo ifste
Up to the Nth power. Finally, the unofficial ySt,

N
s J1- _\7l(n ifi=¢
LS ¥ if i £ ¢
N T

Where a is a value for label smoothing that is near zero, for a predetermined number of iterations, each
client trains the server-assigned model using soft labels and enhanced training examples. The model
aggregation method used in this study was the Federated Average algorithm, also known as FedAvg. After
the clientserver communication cycle concludes, the server stores the local model parameters 8 § Across

all employees. We average the weights of the local models according to their data contribution ratio to
|Dk |

aggregate them. Wlt is seen in the subsequent equation.
1 K
9“1 A |Uk0;\~
D] g‘;

where | D | determines the client's dataset size, and |D| = YX_, | Dx|. We then explain our federated
adversarial training architecture, which is derived from the FedAvg AT algorithm proposed by Shah et al.
When creating local model updates, Fed Avg AT considers adversarial examples, making it an extension
of the Fed Avg algorithm in an adversarial federated setting. In our federated adversarial training strategy,
the algorithm is fully described in Algorithm 1. Below, we outline the primary features of Algorithm 1.
In the first step, the model is trained locally on each client's private data for E epochs. Subsequently, every
client transmits the model weights that were trained with 8 § Through the server. The server then updates
the weights by aggregating them using a fusion function F, like Fed Avg 0. **1 With the customers. One
round of client-server communication has ended. To obtain the final global model, the process is repeated
for R communication rounds.

When we want to assess the resilience of the global model, we add random noise to the test images. The
model is resilient to slight random noise because it was trained using Gaussian noise. On the other hand,
adversarial images will most likely have their intentionally planned perturbations distorted when noise is
added to them.

The following two scenarios are also considered in this study: Clients have information that is uniquely
theirs (IID), and clients do not (non-IID). Each client is anticipated to have an equal quantity of data with
the same distribution of classes in the IID scenario. The non-IID scenario involves customers with non-
uniform class distributions and varying amounts of data. We employed two methods outlined in Zhao et
al. to generate clientside non-IID data. Initially, we used a method wherein every client was given data
from a single class. As a result, there is a significant departure from the IID scenario in terms of the
distribution of client classes. The second method involved randomly assigning two classes' worth of data
to every customer. To reduce the impact of the non-IID data's skewness, we draw inspiration from Zhao
et al.'s data sharing technique.

1v. EXPERIMENTAL RESULTS

In this section, we discuss how we implement the proposed adversarial (re)-training system into action
and assess it using experimental data. We test our federated adversarial training method and centralized
adversarial training method on IID and non-IID data to see which one performs better. Our goal is to
demonstrate the practicality of both approaches by comparing their robustness and natural accuracy, and
by bridging the performance gap between federated adversarial training and centralized training.
Experimental Setup and Computational Resources

Previous researchers employed the Adversarial Robustness Toolbox (ART), whereas our study used
Python 3.7.6 and PyTorch 1.13.1 to create adversarial examples for training and testing. The work
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employed ART with a more standardized and automated technique for creating and evaluating the
(re)trained models, in contrast to our method, which enabled fine-grained control over the production of
adversarial examples. Both studies seek to assess the model's resilience, despite these variations in
methodology. We should note that our FL implementation is a simulation; to represent a central server
and numerous client nodes, we used various variables in a Python program. As a result, the server and its
clients did not exchange any data. We reduce a model's training time by utilizing a shared NVIDIA A40
GPU card to accelerate computations. But we switch to an NVIDIA GeForce GTX 1080 Ti while the
A40 is in use by other academics.

Dataset and Modified Model Architecture

Our research utilizes the CIFAR-10 dataset, a widely recognized benchmark in adversarial machine
learning, to evaluate the effectiveness of the proposed strategies. We use the ResNet18 architecture for
experimentation with the CIFAR-10 dataset. However, we make two changes, as shown in Figure 3. We
begin by adjusting the kernel size of the initial convolution layer. Second, except for the first Res Net
block, which does not include down-sampling, we eliminate this step in all subsequent blocks. All
experiments in this work utilized the retrained ResNet-18 architecture.
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Figure 3: Modified ResNet18 Architecture of a Deep Convolutional Neural Network for Feature
Extraction.

Centralized Adversarial Training Strategy

Following the methodology, we tested the resilience of our suggested centralized model on the CIFAR-10
dataset. We used adversarial examples based on PGD to train the model, with the following parameters:
iteration number = 7, perturbation magnitude = 8/255, step size = 2/255. Furthermore, we supplemented
the training set with 0.1 standard deviation Gaussian noise, with a mean of 0. In the methodology section,
we covered the specifics of creating the adversarial images. We used the SGD optimizer to conduct
adversarial training on the centralized model, setting the learning rate to 0.001, momentum to 0.9, and
weight decay to 0.0002. During training, the learning rate was adjusted using a function that, after 100
and 150 epochs, respectively, reduced the initial learning rate by a factor of ten. Specifically, 0.1 is the
initial learning rate. In cases where the present epoch is 100 or above, the learning rate is divided by 10.
The learning rate is divided by 10 once again if it is equal to or greater than 150. As a loss function, we
selected categorical cross-entropy. We assess our model's resilience to adversarial attacks, such as FGSM,
C&W, DeepFool, and PGD, during the testing phase. We preprocessed the test photos by adding 0.1
standard deviation Gaussian noise with a mean of 0. Table 2 presents the experimental data used to
compare our method with the existing process.

Federated Adversarial Training with IID and Non-IID Data

Within the framework of our proposed decentralized adversarial training strategy, we will address how to
prepare for IID and non-IID data in the sections that follow. In all of our experiments, we used K workers,
where K is an integer between 5 and 10. To generate adversarial examples, we employ the same
hyperparameters used in the centralized adversarial training case (Section V-C), along with the PGD
method and Gaussian noise. We do our experiments with E = 1, 3, and 5.

1) IID Data: Partitioning the training set into separate subsets at random, with each subgroup distributing
data uniformly across the ten classes of the CIFAR-10 dataset, is the IID CIFAR-10 data split. The number

of subsets is directly proportional to the number of clients, and each client is given their subset. A key
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assumption in training machine learning models is that each client's training set follows an IID data
distribution. The data partition achieves this. After that, each client uses its private data to train its model.
With five and ten clients, respectively, we will evaluate our federated adversarial learning with 11D data
in Section V-E2.

2) Non-IID Data: A non-IID data split entails dividing the data in such a way that each subset has its
distinct data distribution, as opposed to the I1ID data split that randomly divides the training set into
separate subsets with a uniform distribution. Using this approach, the training data is distributed non-
uniformly among all clients. Specifically, a non-IID training subset is generated by randomly assigning
one or two data classes to each client from the training sets in a highly heterogeneous manner. It causes
the data distribution of all clients to be biased towards the allocated subset of classes and different from
each other. Part V-E3 detailed our methodology and the effects of non-1ID data on it.

3) Local Adversarial Training: To protect against adversarial attacks, we customize our centralized
training process for each client. For both the centralized training case and the local model training across
all clients, we stick to the same set of hyperparameters (section V-C) for creating adversarial instances. In
line with the strategy employed by Shah et al., our experimental design assumes that each client is selected
to participate in each communication cycle.

Experimental Results

This section presents the experimental findings of our proposed model's operation in federated
adversarial training, as well as in natural and adversarial example settings. The model's generalizability
and resistance to adversarial attacks during testing are part of our evaluation. Both federated adversarial
training and centralized training with IID and non-IID data show significant improvements when using
our strategy.

1) Centralized Training: On the CIFAR-10 test set, the ResNet-18 that was trained on the dataset achieves
a robust accuracy of 3.37% and a normal accuracy of 99.26%. Centralized adversarial training with PGD
examples yields a natural accuracy of 78.17% and a robust accuracy of 47.05% for the modified ResNet-
18 model. Adding samples of Gaussian noise to the training dataset also leads to a considerable
improvement in the robust accuracy (65.41%). When FGSM instances with F = 8/255 are used instead
of PGD adversarial examples, the robust accuracy drops from 47.05% to 27.27%. Evidence from PGDs
produced by an iterative local

Table 1: Comparison of Adversarial Training Strategies Using Customized and Official ResNet18
Models under FGSM Attack Conditions

Training Set Model Learning [Test Set Natural Robust
Rate lAccuracy IAccuracy

Natural examples Customized Varied FGSM 99.26% 3.37%
ResNet18

PGD examples Customized Varied FGSM 78.17% 47.05%
ResNet18

FGSM examples Customized Varied FGSM 78.59% 27.27%
ResNet18

PGD  examples +Customized Varied FGSM +78.65% 65.41%

Gaussian ResNet18 Gaussian

PGD  examples  +Official ResNet18 [Varied FGSM +70.17% 44.82%

Gaussian Gaussian

PGD  examples +Customized Fixed FGSM +79.87% 55.95%

Gaussian ResNet18 Gaussian

Search methods that focus on the immediate area around the primary examples yield better results. In
terms of natural accuracy (78.65% vs 70.17%) and robust accuracy (65.41% vs 44.82%), our modified
ResNet-18 outperformed the official ResNet-18. A slight improvement in natural accuracy (from 78.17%
to 79.87%) and a significant drop in robust accuracy (from 65.41% to 55.95%) are observed when the
learning rate is fixed to 0.1 rather than varied. In Table 1, the primary outcome is presented. Table 2
compares the existing technique to the customized ResNet18 model trained with varied learning rates.
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Table 2 illustrates how our centralized adversarial training method outperforms existing methods and
how effectively it defends against various white-box attacks. When tested against FGSM, C&W, and
DeepFool attacks, our technique demonstrates superior resilient accuracy.

Table 2: Centralized adversarial training - Robust accuracy (%) on the CIFAR-10 test dataset under
various white-box attacks.

Training FGSM C&W IDeep Fool
Existing method 47% 78% 36%
Our method 65.41% 31% 33%

2) Federated Adversarial Training with IID Data: Here, we evaluate federated adversarial training using
IID data and contrast it with centralized adversarial training. Our goal is to demonstrate that federated
approaches can be equally resilient to malicious attacks. For C&W, the robust accuracy in the federated
scenario with five clients is comparable to that of the centralized model (Table 3), while for Deep Fool
assaults, it is within 4% of the centralized model. When it comes to the PGD assault, the federated
method with five clients is marginally less effective than the centralized scenario. When we examine ten
clients, we observe the same pattern. The performance of the federated technique for the C&W attack is
within 5% of the results of centralized adversarial training, and for the Deep Fool attack, it is within 7%.
Comparing the centralized and federated approaches, the latter, with 10 clients, is 5% more effective
against the PGD attack. Our experiments show that federated adversarial training using IID data can
achieve robustness levels similar to the centralized scenario, particularly when all participants are involved
in every communication round.

Table 3: Performance of Federated Adversarial Training Across Varying Client Counts (K) Under
Different Attack Methods

# Clients (K) Natural FGSM C&wW DeepFool PGD
K=5 80.76% 63.07% 81% 79% 71%
K=10 66.23% 51.51% 76% 76% 77%

3) Federated Adversarial Training with Non-IID Data: Here, we investigate how data heterogeneity
affects the efficacy of our federated adversarial training approach. We focus on what happens to the global
model's robust accuracy and its natural accuracy when non-IID data is either one-class or two-class. To
further reduce the influence of data heterogeneity, we also assess how well the data sharing method works,
which allows customers to contribute a small amount of their private data. Tables 4 and 5 display the
outcomes of the experiments. We assess the robust accuracy of our federated adversarial training approach
on the CIFAR-10 test dataset, both with and without employing the data sharing method for local
training, in the tables below. To build the CIFAR-10 global shared training set, we follow the procedure
outlined in.

Out of the training images, we select 1,000 for each class at random, for a total of 10,000 images that will
be shared. To minimize the effect of data heterogeneity, we randomly choose 500 photos from the
worldwide shared dataset for each class in our study. Thus, the other five thousand pictures are rendered
useless. We split the unselected training samples into multiple parts after creating the global training
subset. A client is given each partition so they can practice local adversarial tactics. In Section V-D2, we
covered the specifics of generating non-IID data for each client.

We create the non-IID data for every client after making the global shared training set, using the steps
outlined in Section V-D2. We found that on both one-class and two-class non-IID data, the federated
adversarial training framework with data sharing achieved higher robust accuracy than the non-sharing
framework in our experiments. In particular, the global model trained without utilizing the global shared
training subset performs poorly in terms of both robust accuracy and natural accuracy when applied to
the one-class non-IID dataset, which presents a more challenging and extreme example of data
heterogeneity compared to the two-class non-IID samples. The specific accuracy rates against FGSM,
C&W, DeepFool, and PGD assaults are 11%, 12%, 11%, and 1.61%, respectively, in the robust accuracy
test. Table 4 shows that, in contrast to the non-data-sharing situation, the one-class non-IID federated
adversarial training approach with data sharing produced substantially greater robust accuracy and natural
accuracy. Even in the two-class non-IID scenario, we see the same patterns; for example, when comparing
the versions with and without data sharing, the former achieves far better natural and robust accuracy.
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Table 4: Accuracy Comparison of One-Class Non-IID Federated Adversarial Training with and
Without Data Sharing Across Different Attack Methods

Training Natural [FGSM C&W IDeepFool |PGD
One class of non-IID federated AT without10.97%  |1.61% 11% 12% 11%
data sharing

One class of non-IID federated AT with datal67.42%  |41.18%  |53% 47% 48%
sharing

Table 5 contains more detailed results. The findings suggest that utilizing private data, even in small
quantities, can help mitigate the effects of data heterogeneity and enhance the resilience of the federated
learning model to adversarial attacks.
Table 5: Accuracy Comparison of Federated Adversarial Training with and without Data Sharing
Against Various Adversarial Attacks

Training Natural [FGSM C&W IDeep Fool [PGD
Two-class non-IID federated AT without data57.82%  [54% 57% 62% 59%
sharing.
Two-class non-IID federated AT with data85.04%  [63.97%  [72% 71% 67%
sharing

V. CONCLUSION

To ensure the dependability and credibility of machine learning models for use in real-world scenarios, it
is crucial to assess their resilience against adversarial attacks. Researchers can successfully uncover
weaknesses in deep learning models by utilizing systematic evaluation approaches. These methods include
creating adversarial instances using white-box and black-box attack techniques (e.g., FGSM, PGD, Catlini-
Wagner). These assaults demonstrate how vulnerable even well-performing models can be to modest input
changes, as they simulate worst-case scenarios with tiny, often undetectable perturbations. One can
quantify the model's resilience by measuring its response to these perturbations; standard measures for
this include attack success rate, robust accuracy, and perturbation norms (L] ], L2, etc.).

To further understand how well a model can resist adversarial manipulations, it is essential to incorporate
adversarial training and several defense mechanisms into the robustness analysis. These include input
preprocessing, defensive distillation, and certified defences. To ensure a fair comparison of robustness
across models and architectures, these defences should be evaluated under powerful, standardized assault
circumstances. To strengthen the validity of robustness assertions, frameworks such as Robust Bench and
libraries like Clever Hans and Foolbox make it easier to create scalable and reproducible evaluation
pipelines.

Ultimately, when deploying Al systems in sensitive industries such as healthcare, banking, and
autonomous systems, creating and implementing rigorous techniques to test ML models against
adversarial threats is essential. Research like this should inspire more secure and performance-oriented
training paradigms and designs. For Al systems to be more resilient and accountable in the future,
robustness evaluation has to be a standard component of the development lifecycle for machine learning
models.
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