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Abstract 
Insulation degradation is a major problem in the HV equipment and often causes the failure of equipment and power 
outages. Sulphur hexafluoride has high dielectric strength but also a high global warming potential, which means we 
still need an environmentally friendly alternative. A good alternative appears to be a gaseous mixture composed of 
10% SF₆ and 90% N₂ for insulation preservation and environmental safety. This study investigates the breakdown 
voltage characteristics of solid dielectrics, specifically Polymethyl Methacrylate (PMMA) and Nylon, under high-voltage 
alternating current (HVAC) stress in the SF₆–N₂ environment, considering the effect of conducting particles. To 
enhance prediction accuracy and system intelligence, three artificial intelligence (AI)-based methodologies are 
integrated. A Physics-Informed Neural Network (PINN) model is implemented to embed Maxwell’s equations directly 
into the neural network, enabling physically consistent predictions. Additionally, a hybrid optimization algorithm 
combining the Improved Salp Swarm Algorithm (ISSA) and Adaptive Differential Evolution (ADE) is employed to 
optimize spacer geometry for reduced electric field enhancement. A Graph Neural Network (GNN) is used to forecast 
electric field intensities and locate potential failure zones. This integrated approach significantly improves the 
reliability of HV insulation systems. 
Keywords: Breakdown voltage, SF₆–N₂ mixture, PMMA, Nylon, HVAC, PINN, ISSA-ADE, GNN, dielectric 
failure, high-voltage insulation. 
 
1. INTRODUCTION 
Due to its outstanding insulation and interruption qualities, sulphur hexafluoride (SF₆) gas has been 
considered the best option for electrical power equipment since the 1960s [1]. SF₆ gas is one of the most 
extensively studied molecular gases to date due to its many industrial and scientific applications [2]. It is 
extensively utilized in the power sectors due to its fundamental chemical and physical characteristics, 
including thermal stability, nontoxicity, nonflammability, and non-explosiveness [3]. It is frequently used 
in gas insulated systems from several KV to the EHV class, gas blast circuit breakers, and gas insulated 
transmission lines [4]. SF₆ gas's strong electronegative properties at room temperature and at temperatures 
much higher than ambient are the main causes of its very high dielectric strength [5]. SF₆ gas has a 
breakdown voltage that is almost three times greater than that of atmospheric pressure air. Although SF₆ 
gas possesses exceptional electrical insulating qualities, its effects on the global environment have been 
hotly contested [6]. When exposed to electrical discharges, SF₆ gas produces extremely hazardous and 
corrosive substances. In addition to being an effective infrared absorber, SF₆ gas is not quickly extracted 
from the earth's atmosphere because of its chemical inertness [7]. Environmentalists have taken the role 
that SF₆ gas plays in the global greenhouse effect and ozone depletion very seriously. A number of 
concerns have been expressed regarding the usage of SF₆ gas due to its great potential for global warming 
[8]. It is feared that too much SF₆ gas will be released into the atmosphere, and the power sector naturally 
based its potential contribution to the greenhouse impact on estimates of future SF₆ gas consumption 
[9]. There is extremely little SF₆ gas produced worldwide, and it is thought to have a very limited effective 
impact as a greenhouse gas [10]. To reduce the amount of SF₆ gas used for electrical purposes, however, 
efforts are being made. When SF₆ gas bas been classified as a greenhouse gas, scientists had an even more 
incentive to discover a replacement [11]. To identify a replacement for SF₆, extensive research is being 
conducted. Despite the fact that gas insulated systems have been used in electric transmission systems 
more frequently in many nations due to their compactness, nonflammability, and high degree of 
dependability, the GIS's degree of compactness is severely limited by issues brought on by rising operating 
stresses [12]. The existence of conducting particles, which might unintentionally pollute the GIS gaps, is 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 18s, 2025 
https://theaspd.com/index.php 

1221 
 

one of the most significant issues with GIS [13]. Serious issues caused by metallic particles impair GIS's 
long-term functionality. The voltage-withstanding capacity of gas-insulated systems is diminished by these 
contaminated particles [14]. The introduction of additional impurities during assembly, mechanical 
abrasions, and vibrations brought on by load cycling can all produce these particles. It is acknowledged 
that particle contamination cannot be completely prevented, although it reduced to a minimum [15]. 
The breakdown voltage behaviour of solid dielectric materials, namely Polymethyl Methacrylate (PMMA) 
and Nylon, is studied under HVAC stress in an SF₆–N₂ gas mixture. The research pays specific attention 
to conducting particles, which can drastically affect dielectric performance. To help the research increase 
in accuracy and prediction ability, the research incorporates three advanced AI techniques. A first 
application constructs a Physics-Informed Neural Network (PINN) by embedding Maxwell’s equations 
within the deep learning framework to allow for the prediction of breakdown voltages under various field 
conditions. Second, a Hybrid Optimization Algorithm, combining the Improved Salp Swarm Algorithm 
(ISSA) with Adaptive Differential Evolution (ADE), is used to optimize spacer geometries to reduce local 
electric field enhancements. Third, a Graph Neural Network (GNN) spatially maps and predicts electric 
field intensity across spacer surfaces, allowing for the zoning of highly probable areas for dielectric failure. 
These techniques form a robust simulation-driven framework for enhancing insulation reliability in high-
voltage systems. The section 1 provides the introduction and the recent literatures related to the following 
tittle are discussed in section 2. Moreover, the section 3 provides the detail explanation about the 
proposed model and the section 4 deliberates the result and discussion of the proposed model. Finally, 
the research is concluded with the conclusion in section 5.  
1.1 Objectives in this study 
• To investigate the breakdown voltage behaviour of solid dielectrics (PMMA and Nylon) under HVAC 
stress in an SF₆–N₂ gas mixture, particularly in the presence of conducting particles that influence 
dielectric strength and failure mechanisms. 
• To develop a Physics-Informed Neural Network (PINN) model that integrates Maxwell’s equations for 
accurately predicting breakdown voltages in complex dielectric environments under varying electrical 
stress conditions. 
• To design and implement a Hybrid Optimization Algorithm (ISSA–ADE) for optimizing spacer 
geometry, aiming to reduce electric field distortion and enhance the dielectric performance of insulating 
components. 
• To utilize a Graph Neural Network (GNN) for mapping and forecasting electric field intensity on spacer 
surfaces, enabling the identification and visualization of high-risk zones prone to dielectric failure. 
 
2. LITERATURE REVIEW 
In 2021 Amanulla et al. [16] developed using various ratios of the N₂:SF₆ gas mixture, the flashover 
characteristics at AC voltages were thoroughly analysed and characterized. This work has looked at the 
effects of floating particles, the usage of several insulating spacers, including PMMA, PP, and NYLON, 
and their combination to generate hybrid spacers in relation to the non-uniform electric field (needle-
plane) electrode arrangement. The N2:SF6 gas mixture has been used to study the surface flashover 
capabilities of individual and hybrid spacers. In 2021 Fan et al. [17] proposed c-C4F8 and N2 ternary gas 
mixtures with CF3I by considering the process of surface discharge streamer production. Using 
COMSOL, a surface discharge model in a CF3I gas mixture under DC voltage bas been produced. By 
solving the drift-diffusion equations of particles, the discharge process has been demonstrated. This 
produced, among other factors, the changes in electric field and particle concentration during the 
development of the streamer. The theoretical underpinnings for a reliable partial discharge diagnosis are 
provided by these findings. Therefore, the model's particle, streamer, and streamer branch properties are 
contrasted with those of models for two more different gases. In 2023 Ahmed et al. [18] investigated the 
influence of charges accumulated on the inner surfaces of the void on the electric field distribution 
between the spacer's exterior and interior surfaces, considering their placement within the insulator at 
different sizes. This effect becomes more noticeable when the radius is 2 mm and the inner surface of the 
vacuum has a charge density of 1 (µC/m2).  In 2022 Meer et al. [19] focused on the features of breakdown 
under such overvoltage in relation to standard operating voltages, the study examined the mechanisms 
and conditions that led to electrical failure. A stepped leader propagation strategy is known to regulate 
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the GIS breakdown process under compressed SF6 gas. Despite the fact that several researchers have 
carried out a range of experimental experiments for various experimental settings under DC, AC, or 
impulsive high voltages alone, there is currently no systematic way to anticipate or approximate the  

Author & 
Citation 

Aim Methodology Problem 
Statement 

Research Gap 

Amanulla et al. 
(2021) [16] 

To analyse 
flashover 
characteristics 
of various 
N2:SF6 ratios 
with different 
spacers 

Experimental 
study using 
needle-plane 
electrodes; 
insulating spacers 
(PMMA, PP, 
NYLON) and 
hybrids 

Lack of clarity on 
how hybrid 
spacers affect 
flashover in non-
uniform fields 

No AI/mathematical 
model used; dynamic 
behavior under 
different voltage 
waveforms 
unaddressed 

Fan et al. (2021) 
[17] 

To model 
surface streamer 
discharge in 
CF3I mixtures 
under DC 

COMSOL model 
solving drift-
diffusion 
equations 

Limited 
understanding of 
CF3I gas mixture 
discharge 
dynamics 

Does not evaluate AC 
conditions or include 
experimental 
validation 

Ahmed et al. 
(2023) [18] 

To study how 
void surface 
charges 
influence 
internal E-field 
distribution 

Simulation of 
voids in insulators 
with varying radii 
and positions 

Electric field 
distortion by 
voids is not well 
understood 

Real-world validation 
and varying material 
properties not 
considered 

Meer et al. 
(2022) [19] 

To explore 
breakdown 
features in GIS 
under 
overvoltage 

Literature review 
and experimental 
insights 

No systematic 
modelling exists 
for GIS under 
superimposed 
over voltages 

Lacks numerical 
modelling and AI 
prediction framework 

Dong Li et al. 
(2022) [20] 

To fabricate 
UV-curable 
coatings with 
high flashover 
voltage 

Material synthesis 
with BaTiO3 
nanoparticles + 
acrylic resin 

Traditional 
coatings show 
poor adhesion 
and complex 
processing 

Effect under long-
term AC/DC stress 
and different 
environmental 
conditions not tested 

Wang et al. 
(2022) [21] 

To mitigate E-
field near triple 
junction and 
spacer surface 

Topology 
optimization, 
simulation of 
field distributions 

E-field 
enhancements 
cause premature 
failure in GIS 

Real-time operational 
testing and dynamic 
stress analysis absent 

Wang et al. 
(2022) [22] 

To assess DC 
flashover in 
SF6/CF4 gas 
combinations 

Two electrode 
systems with 
differing field 
uniformities 

Flashover 
compromises 
insulator 
reliability 

Lack of investigation 
into temporal 
degradation and 
surface tracking 
behavior 

Duan et al. 
(2025) [23] 

To evaluate 
surface charge 
in GIS insulator 
under AC 

Experimental 
study on scaled 
model with metal 
particles 

Surface charge 
influenced by gas 
type and particle 
location 

Limited to fixed time 
interval; doesn’t 
analyze transient 
behavior 

Wang et al. 
(2023) [24] 

To simulate 
epoxy 
degradation 
under reactive 
gas particles 

Molecular 
dynamics 
simulations using 
force fields 

SF6 byproducts 
cause severe 
insulation erosion 

Simulation limited to 
idealized particles; 
ignores mechanical 
stresses and thermal 
effects 
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breakdown voltages of the GIS under such overlaid conditions. 
In 2022 Dong Li et al. [20] developed as a rapid and simple method for fabricating SFGM, the UV-curable 
coating demonstrated strong adhesion to the epoxy matrix, high flashover voltage, and ease of processing. 
Utilizing the coating material's rheological and photocuring characteristics, the component formula and 
UV-curing method which included mixing photocurable acrylic resin with BaTiO3 (BT) nanoparticles 
coated with perfluoro-silane were optimized. In 2022 Wang et al. [21] designed to enhance the dispersion 
of E fields close to the triple junction area and along the spacer surface. The analysis focused on how 
design factors affected the resulting electric field mitigation degree and field distributions. E field 
mitigation results and structure processability were balanced by using the appropriate design parameter 
values.  In 2022 Wang et al. [22] proposed surface flashover quality of the combination were evaluated, 
as flashover frequently occurred at the insulator contact, compromising the equipment's ability to operate 
safely; therefore, epoxy resin composites were used for solid insulators. Through the development of two 
distinct electrode systems with varying electric field uniformities, the characteristics of DC flashover are 
investigated. The results demonstrate that the flashover voltage in the 20% SF6/80% CF4 combination 
bas been over 70% of the SF6 value at the same pressure. 
In 2025 Duan et al. [23] proposed the use of air (80% N₂ / 20% O₂) as an alternative insulating gas based 
on its environmental benefits and acceptable dielectric performance and C4F7N/CO2 mixes, a linear 
metal particle connected to the HV electrode on the convex surface of a down-scaled 252k VC GIS basin 
insulator model bas been used to analyse the surface charge behaviour. Charge densities on both surfaces 
were measured, after applying a 40 kV AC voltage for five minutes, and the effects of the metal particle 
and gas properties were investigated. 
In 2023 Wang et al. [24] focused on using force field molecular dynamic modelling techniques, the 
chemical reaction kinetics of epoxy polymer under the effect of very energetic particles were investigated 
in order to elucidate the degradation process. For damage caused by S particles, the outcomes were similar. 
In 2021 Wang et al. [25] focused on how the charge accumulation pattern on a real-size epoxy insulator 
with a multiarc surface profile depends on gaseous ionization using various gas atmospheres. A system of 
coaxial electrodes bas been created in order to examine the charging behaviour at dc voltages of -10, -20, 
and -30 kV. The Table 1 denotes the problem statement. 
Table 1: Problem statement 
 
3. METHODOLOGY 
The methodology adopted integrates an experimental approach with AI-based prediction to study the 
breakdown voltage characteristics of solid dielectrics, Polymethyl Methacrylate (PMMA) and Nylon under 
HVAC stress, within the gas mixture of 10% SF₆ and 90% N₂,  when conductive particles are in the 
system. The experimental setup uses a needle-plane electrode arrangement to produce non-uniform 
electric fields are apply controlled breakdown testing. For predictive analysis, a Physics-Informed Neural 
Network (PINN) is developed, wherein Maxwell’s equations are embedded directly into the network 
architecture to provide an accurate prediction of dielectric breakdown behaviour. A Hybrid Optimization 
Algorithm that integrate with Improved Salp Swarm Algorithm combined with Adaptive Differential 
Evolution (ADE) optimizes the spacer geometry that reduces concentration of the electric field. The GNN 
in turn models the electric field intensity distribution over the dielectric surfaces and predicts the high-
risk zones of failure. This multi-layered framework allows for very accurate modelling and improvement 
of the insulation system performance. 
3.1 Experimental Setup 
This experimental setup Figure 1 and Figure 2 has been arranged for studying the breakdown voltage 
behaviour of Polymethyl Methacrylate and Nylon under difficult conditions of HVAC in the tested 
environment given by 10% SF₆ gas and 90% N₂ gas mixture. Using needle-to-plane electrodes, a non-

Wang et al. 
(2021) [25] 

To examine 
charge 
accumulation 
under different 
gas 
environments 

Real-size epoxy 
insulator with 
Kelvin probe 
under DC 

Different gases 
affect surface 
charging 
behaviour 

Does not include 
impulse voltage effect 
or AI-based pattern 
recognition 
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uniform field is created in an attempt to simulate actual insulation conditions. The samples are held 
between the electrodes in a sealed high-pressure test chamber that allows precise control of gas 
composition and pressure. Conducting particles such as metallic dust were introduced to simulate 
contamination scenarios and to study any possible influence on dielectric behaviour. The electrodes were 
connected to a high-voltage power supply that could be slowly increased in voltage, while breakdown has 
been detected using a digital storage oscilloscope and voltage divider circuit. The tests were repeated 
several times for the same conditions to confirm the consistency of measurements, keeping temperature 
and humidity within certain limits to reduce outside influence on the results. 

 
Figure 1: Experimental Setup 

 
Figure 2: Circuit Diagram of HVAC 
3.2 System Architecture: AI-Assisted HV Insulation Design Framework 
3.2.1 Objective: 
To design a reliable and environmentally safer HV insulation system using an AI-integrated framework 
that: 
• Predicts breakdown voltage under HVAC stress. 
• Optimizes spacer geometry to reduce electric field concentration. 
• Forecasts electric field distribution and identifies potential failure zones. 
The proposed system model integrates advanced artificial intelligence techniques with physical principles 
to enhance the reliability and environmental compatibility of high-voltage (HV) insulation systems using 
an SF₆–N₂ gas mixture. The process begins with the definition of key input parameters, including the 
type of dielectric material (PMMA and Nylon), the gas mixture composition (10% SF₆ and 90% N₂), the 
nature of applied high-voltage alternating current (HVAC) stress, and the presence of conducting particles 
that may influence breakdown characteristics. These inputs serve as the foundation for the Physics-
Informed Neural Network (PINN), which is employed to predict the breakdown voltage distribution 
across the dielectric surface. Unlike conventional neural networks, the PINN incorporates Maxwell’s 
equations directly into its learning process, ensuring that all predictions adhere to the governing physical 
laws of electromagnetism. This enables the model to deliver highly accurate and physically consistent 
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estimations of electric stress regions within the insulation system. Overall Architecture shown in Figure 
3. 
 

 
Figure 3: Proposed Architecture 
Following the PINN-based predictions, a hybrid optimization algorithm that combines the Improved Salp 
Swarm Algorithm (ISSA) and Adaptive Differential Evolution (ADE) is applied. This module receives the 
predicted voltage distribution from the PINN and focuses on optimizing the geometry and positioning of 
insulation spacers. The objective is to minimize electric field enhancements and ensure uniform stress 
distribution, thereby increasing the dielectric strength and operational lifespan of the HV equipment. 
The optimization process iteratively adjusts the design configuration to achieve the most efficient and 
reliable performance under the given HVAC conditions. 
Once the geometry has been optimized, a Graph Neural Network (GNN) is deployed to further analyse 
the spatial characteristics of the electric field. By representing the dielectric structure as a graph where 
nodes correspond to specific points in the material and edges represent the spatial or physical 
relationships the GNN learns how electric fields propagate throughout the system. This enables the 
accurate forecasting of electric field intensities and the identification of potential failure zones or hotspots. 
The GNN thus serves as a final predictive layer that ensures the optimized design not only performs well 
theoretically but also remains robust under practical stress scenarios. Figure 4 shows the overview study 
model. Multi-stage system comprising PINN for breakdown voltage prediction, ISSA-ADE for geometry 
optimization, and GNN for electric field forecasting forms a comprehensive, intelligent framework. It not 
only enhances the insulation performance but also supports environmental sustainability by enabling the 
use of reduced SF₆ concentrations without compromising system reliability.  

 
Figure 4: Overview of the study  
3.3 Input Layer 
The input layer of the proposed system model encapsulates all critical physical and environmental 
parameters required to simulate and analyze the breakdown behavior of HV insulation systems. Two solid 
dielectric materials Polymethyl Methacrylate (PMMA) and Nylon are selected due to their distinct 
dielectric and mechanical properties. PMMA is a transparent thermoplastic with a relative permittivity 
(dielectric constant) typically in the range of 2.6–3.6, high surface resistivity (~10¹⁴ Ω·cm), and excellent 
arc resistance, making it suitable for applications requiring transparency and good insulating 
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characteristics. It exhibits brittle behavior under mechanical stress but maintains stability under high 
electric fields. Nylon, on the other hand, is a semi-crystalline polyamide with a dielectric constant around 
3.5–4.0, moderate surface resistivity (~10¹² Ω·cm), and good mechanical strength and flexibility. It is 
known for its resilience in harsh environments, making it a reliable material for insulation under 
mechanical vibrations and thermal cycling. 
The gas environment comprises a gaseous mixture of 10% Sulphur Hexafluoride (SF₆) and 90% nitrogen 
(N₂). SF₆ is traditionally used in HV systems due to its exceptionally high dielectric strength 
(approximately 2.5 times higher than air) and strong electronegativity, which helps to absorb free electrons 
and suppress electrical discharges. SF₆ has a global warming potential (GWP) of 23,500, making it an 
environmental concern. To mitigate this, its concentration is reduced and supplemented with nitrogen, 
which is inert, eco-friendly, and cost-effective. The SF₆–N₂ mixture retains sufficient insulation capability 
while significantly reducing the environmental footprint. Table 2 presents the dielectric properties of the 
materials used in the study. 
 
Table 2: Dielectric Material Properties 
Property PMMA (Polymethyl Methacrylate) Nylon (Polyamide) 
Relative Permittivity (εr) 2.6 – 3.6 3.5 – 4.0 
Surface Resistivity ~10¹⁴ Ω·cm ~10¹² Ω·cm 
Dielectric Strength 15 – 25 kV/mm 14 – 22 kV/mm 
Volume Resistivity ~10¹⁴ Ω·cm ~10¹³ Ω·cm 
Thermal Conductivity ~0.19 W/m·K ~0.25 W/m·K 
Mechanical Strength Brittle under high stress Tough and flexible 
Moisture Absorption Very Low Moderate 
Application Suitability Transparent, rigid insulators High vibration environments 
The dielectric system is subjected to high-voltage alternating current (HVAC) stress, which is 
representative of real-world operational conditions encountered in substations, circuit breakers, and gas-
insulated switchgear (GIS). HVAC stress introduces dynamic electric fields that can challenge the 
dielectric endurance of materials, especially under long-term exposure. To replicate realistic fault-prone 
conditions, conducting particles are introduced into the system model. These particles may originate from 
manufacturing defects, loose metal fragments, or contamination and are known to act as field intensifiers 
due to their sharp edges and high conductivity. The size, shape, material (e.g., aluminium, copper, or 
steel), and spatial position of these particles significantly influence the local electric field enhancement 
factor (EF). Even a small particle can create a localized electric field peak several times higher than the 
average field, leading to partial discharge inception and eventual breakdown. Tables 3 and 4 summarize 
the characteristics of the 10% SF₆ + 90% N₂ gas mixture and the parameters of the conducting particles, 
respectively. 
 
Table 3: Gas Mixture Characteristics (10% SF₆ + 90% N₂) 
Parameter SF₆ N₂ Mixture (10% SF₆ + 90% N₂) 

Dielectric Strength (relative) ~2.5× air ~1× air ~1.6–1.8× air 

Global Warming Potential 
(GWP) 

23,500 ~0 Significantly reduced 

Breakdown Voltage (per mm 
gap) 

~89 kV (at 1 atm, 1 
cm) 

~30–35 
kV 

~55–60 kV 

Toxicity Non-toxic Non-
toxic 

Non-toxic 

Electronegative? Yes No Moderately electronegative 

Arc Quenching Ability Excellent Poor Improved (vs. N₂ alone) 

Cost High Low Medium 
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Table 4: Conducting Particle Parameters 
Parameter Description 

Material Types Aluminum, Copper, Steel, Dust Contaminants 

Shape Spherical, Needle-like, Irregular 

Size Range 0.1 mm – 5 mm 

Electrical Conductivity High (10⁶ – 10⁸ S/m depending on material) 

Position Sensitivity Critical (near electrodes/spacers increases EF dramatically) 

Effect on Electric Field (EF) Enhances local EF by 2× to 10× depending on proximity 

Risk Contribution Initiates partial discharges, accelerates dielectric aging 

Consideration in Model Randomized spatial insertion during simulation for robustness 

By considering these comprehensive parameters—dielectric material properties, environmentally safe gas 
mixture characteristics, realistic AC stress conditions, and particle-induced field distortions the input 
layer ensures that the downstream AI models (PINN, ISSA-ADE, GNN) are trained and optimized on 
data that closely mimic the physical behavior of actual HV insulation systems. This provides a reliable 
and generalizable framework for predictive modelling and insulation system optimization. 
3.4 Phase 1: Physics-Informed Neural Network (PINN) – Breakdown Voltage Prediction  
Partially differential equations (PDEs) used to characterize PINN, a family of universal function 
approximators that integrates knowledge of any physical rules controlling a particular data set into the 
learning process (Eqn 1). Some biological and technical challenges have limited data availability, which 
reduces the resilience of traditional machine learning models utilized in these applications. Prior 
knowledge of general physical principles serves as a regularization agent during neural network (NN) 
training, reducing the range of acceptable solutions and enhancing the function approximation's 
generalizability. 
There are often two parts to the loss function of a physics-informed neural network: 
Ltotal = Ldata + λLphysiscs                                  (1) 
Ldata be the Supervised learning loss (e.g., Mean Squared Error) from labelled breakdown voltage data, 
Lphysiscs has been denoted as Loss due to the residual of the governing physical equations, λ denoted 
weighting factor to balance the two losses. 
Electric and magnetic fields behave fundamentally as described by Maxwell's equations. For dielectric 
breakdown studies in electrostatic conditions, the appropriate Maxwell equation (Eqn 2) reduces to 
Gauss's law for electricity: 
∇. E =

ρ

ε
                                             (2) 

The relationship between electric field and potential is shown in Eqn (3): 
E = −∇V                                            (3) 
The Poisson’s equation (4): 
∇. (ϵ∇V) = −ρ               (4) 
Where V be the Electric potential, ε be the Permittivity of the material (can vary spatially), ρ denoted as 
Free charge density. 
This equation governs the distribution of the electric potential in the dielectric medium and is needed to 
model the electric field behaviour that leads to breakdown. 
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Voltage and Field Distribution from PINN

Voltage and Field Distribution from PINN

•  Shape (cylindrical, conical, ribbed)

•  Dimensions (height, diameter, curvature)

•   Position and angle relative to electrodes

Optimization Phase – ISSA + ADE 

         (Hybrid Metaheuristic)

 Constraints

       Mechanical strength

       Minimum clearance

       Material availability

 
Figure 5: Optimization Workflow for Spacer Design in High-Voltage Insulation Systems 
• PINN-Maxwell Framework for Breakdown Voltage Prediction 
In order to accurately predict breakdown voltages, a hybrid model is created that utilizes the training of 
the neural network by embedding Maxwell's Poisson equation in the training. The network learns an 
electric potential field V̂(x) which maximizes the fit to the observations of the data while satisfying the 
governing physics is shown in Eqn (5): 

Ltotal =
1

Nd
∑ (V̂(xi) − Vi)

2
+ λ.

1

Np
∑ (∇. (ε∇V̆(xj)) + ρj)

Np

j=1
Nd
i=1

2
                (5) 

Where: 
∇̆ (x) denoted as Electric potential predicted by the PINN, Nd denoted as Number of labelled data points,  
Np denoted as Number of collocation points, xi , xj Spatial coordinates, ρj denoted as Charge density at 
location xi , xj, λ denoted as Weighting coefficient between data and physics losses. 
With this hybrid PINN-Maxwell model, the neural network honours both the training data as well as the 
physics, enabling it to predict a dielectric breakdown voltage consistently with high accuracy from a 
physics-informed perspective. Figure 6 illustrates the hybrid optimization process of spacer design using 
ISSA–ADE and PINN-based field analysis. 

 
Figure 6: Hybrid Optimization of Spacer Design Using ISSA–ADE and PINN 

Optimization Phase –
ISSA + ADE (Hybrid 

Metaheuristic)
Input

Voltage and field distribution 
from PINN

Spacer design variables:

Shape (cylindrical, conical, ribbed)

Dimensions (height, diameter, 
curvature)

Position and angle relative to 
electrodes

Constraints:

Mechanical strength

Minimum clearance

Material availability

Internal Process

ISSA (Improved Salp 
Swarm Algorithm):

Explores design space with adaptive leader–follower 
strategy.

Ensures diverse initial solutions and avoids local minima.

ADE (Adaptive Differential 
Evolution):

Refines promising solutions with adaptive 
mutation/crossover

Fast convergence to optimal design.

Fitness Function

F = w₁·E_max + w₂·(1/BDV) + w₃·Field Non-uniformity

Minimize peak electric field (E_max)

Maximize breakdown voltage (BDV)

Minimize standard deviation in E-field across the dielectric

Output

Optimized spacer geometry and configuration

Lowered peak field values

Improved insulation endurance prediction

Significan
ce

Reduces field distortion caused by poor geometry

Improves lifespan and reduces partial discharge risks

Provides geometry-aware design to feed into next predictive 
phase
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3.5 Phase 2: Optimization Phase –Salp Swarm Adaptive Differential Optimization 
SSA is suggested by mimicking the deep-sea salps swarming tendencies. In their natural habitat, salps 
typically behave in a chain-like, unique swarming manner to improve their mobility and foraging through 
quick, coordinated alterations. The population of SSA is therefore divided into two classes leaders and 
followers in order to replicate the salps chain behaviour. The food source directs the leaders, who then 
direct the followers' movements. 
3.5.1 Initialization of population 
as demonstrated by Equation (6), the salp population is shown as a N × D -dimensional matrix named 
YN,D. Let's further assume that the optimization issue is directed towards a prey called F. Next, the SSA 
population is initialized at random using Equation (7): 

YN,D = [

y1,1 y1,2 ⋯ y1,D

y2,1 y2,2 ⋯ y2,D

⋮ ⋮ ⋱ ⋮
yN,1 yN,2 ⋯ yN,D

]                        (6) 

YN,D = rand(N,D) × (ub − lb)                  (7) 
where YN,D includes N salps' population data with dimensions D, rand(N, D) represents a N × D-
dimensional matrix created by using a random function, ub signifies the search space's upper bound, 
while lb denotes its lower bound. 
3.5.2  Fitness function 
Minimization of voltage breakdown error in Physics-Informed Neural Network are shown in Eqn (8). 

Ldata =
1

N
∑ (Vpred

(i)
− Vpred

(i)
)
2

N
i=1                                                             (8) 

Vpred predicted breakdown voltage from the PINN, Vtrue experimentally observed breakdown voltage. 
3.5.3 Dynamic Weight 
SSA can balance the shift from global exploration to local exploitation by employing a control parameter 
called d1. Consequently, d1 is sometimes referred to as a transition parameter. By observing Equation 
(9), the result indicates that d1 adopts a nonlinear model and that, as the number of repeats increases, 
From the constant 2, it attenuates adaptively. The method starts to use the local area to obtain a precise 
estimate when the transition parameter is less than one; when it is greater than one, the algorithm carries 
out global exploration to find the target search area. The transition value d1 employed in the standard 
SSA, however, is not very appropriate for the method, as we discovered after using the mapping mutation 
procedure for followers. Consequently, the precise expression for the adjusted transition parameter d1 is 
as follows: 

d1 = a × 3
−(

b×l

lmax
)
2

                  (9) 
where a (default =  2) and b (default =  5) are constants. Furthermore, the approach with the altered 
transition parameter and the mapping mutation operation is called IMOSSA. 
Despite the advancements in SSA, as mentioned earlier, in many cases, additional precise nonlinear 
modifications are still required to prevent the locally optimum solution. In light of this, this study 
proposes to adaptively modify the transition parameter d1 by employing a nonlinear dynamic weight that 
is represented in particle swarm optimization after the inertia weight. The dynamic weight is as follows: 

ω = ωmax − (ωmax − ωmin) × (
l

lmax
)
(1 2⁄ )

             (10) 

where ωmax and ωmin are represented as the dynamic weight's upper and lower bounds, respectively. 
Additionally, max = 1 and min = 0.0001 are constant values. Therefore, the following is how equations 
(9) and (10), which explain the improved position update of leaders, work: 

Yi,j = {
Fj + ω. d1 (d2 + lbj(ubj − lbj)) , d3 ≥ 0.5 

Fj − ω. d1 (d2 + lbj(ubj − lbj)) , d3 < 0.5
         (11) 

According to the dynamic weight approach, the algorithm's dynamic weight is higher at the beginning of 
the search and boosts its capacity for global exploration; later on, it is lower and intensifies the algorithm's 
capacity for local exploitation. The improved technique accelerates convergence and improves the 
transition impact from exploration to exploitation by precisely controlling the fine-tuned transition 
parameter c1 once more. 
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3.5.4 Mapping Mutation Operation for Followers 
Using Equation (11) to update their current location, followers in the SSA demonstrate a typical 
Newtonian movement. However, this kind of movement also produces a small number of adherents and 
a population that lacks diversity. Therefore, the mapping mutation process used in MOSSA, the upgraded 
SSA, is provided by 

Yi,j
l+1 = {

Yi,j
l × (1 + G(β)),      d4 ≥ 0.5

lbj + β × (ubj − lbj),   d4 < 0.5
                                             (12) 

where a random number from the [0,1] border is denoted by d4 . Gaussian variation is likewise focused 
on finding a small region around the original individual β is G (β), as the normal distribution's properties 
show, assuming that the probability density of the continuous random variable is constant. A stochastic 
number generated by the Tent chaotic map is formula (12) G(β), which is a Gaussian mutation operation. 
To adjust the appropriate population size during mutation function dynamically we use Adaptive 
Differential Evaluation. 
A fitness landscape-based adaptive population size strategy is suggested to dynamically modify the ideal 
population size. For population size adaptation, the LSHADE recommended linear population size 
reduction (LPSR) scheme has shown to be an excellent plan, as everyone is aware. However, the LPSR 
process does not adapt to the changing landscape of objective functions; instead, it just drops linearly as 
the number of assessments grows. For this reason, we suggested the fitness landscape-based adaptive 
population size scheme (FL-APS). Equation (13) provides the specifics of the suggested mechanism: 
NG+1

FL = round[(Ninit − Nmin) × φ + Nmin]                                                 (13) 
Equation (13) used to modify the FL-APS once a balance between population size and generation number 
has been established with the addition of a FES. 
3.5.5 RFDB Selection Method 
Rotulet Fitness-Distance Balance-Based (RFDB) selection is used to increase its exploitation capabilities. 
Every individual's distance and fitness levels are taken into account throughout the RFDB selection 
process. The values of fitness and distance will thus influence people's decisions. One argues that the 
RFDB selection procedure is unfair in this case. The global optimal solution found by using the roulette 
wheel method to identify the high-potential solution candidate. Below is an explanation of the specifics 
of the RFDB selection procedure. Calculate the distance 

Dpi = √(y[i,1] − y[best,1])
2
+ (y[i,2] − y[best,2])

2
+ ⋯+ (y[i,D] − y[best,D])

2
               (14) 

Form the distance vector 

Dp ≡

[
 
 
 
 
d1

.

.

.
dm]

 
 
 
 

                                                      (15) 

Calculate each person's score according to their fitness and distance statistics. 
Spi = F × normfi + (1 − F) × normDpi                                            (16) 
The normalized values of its ness and distance for the its person,  
Form the RFDB score vector 

Sp ≡

[
 
 
 
 
s1

.

.

.
sN]

 
 
 
 

                                                   (17) 

Based on the score vector, a candidate is chosen at random using the roulette wheel selection method. 
This person is engaged to produce a new position using Equation (17). 
When the RFDB selection method is used to choose an individual candidate from the population with 
XRFDB. 
3.5.6 Small-Hole Imaging Reverse Learning Strategy 
The problem that the majority of intelligent optimization algorithms have with local extremes is addressed 
by the reverse learning technique. This strategy's basic idea is to use population optimization to develop 
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a comparable reverse solution for the present solution. Then, choose the best choice by comparing the 
objective function values of the two possibilities before moving on to the next iteration. This approach is 
used in the paper to propose a small-hole image diversity learning strategy to enhance population diversity, 
increase the algorithm's ability to search globally, and make it more similar to the global optimal solution. 
The principle of small-hole imaging, Equation (18) 
(
aj−bj

2
)−Ybest

Ybest
′ −

(aj−bj)

2

=
h

h1                             (18) 

Let 
h

h′. The equation is Equation (19) when X′ best is achieved by the transformation, and Equation (18) 

is obtained when n=1. 

Ybest
′ =

(aj+bj)

2
+

(aj+bj)

2n
−

Ybest

n
             (19) 

Ybest
′ = (aj + bj) − Ybest            (20) 

Equation (19) demonstrates that when n = 1, small-hole imaging reverse learning is the appropriate 
general reverse learning technique. However, at the moment, small-hole imaging learning only uses 
general reverse learning to obtain a fixed reverse point, which is frequently far from the global optimal 
position. 

Yi = {
Yi

Salp
, Fi

Salp
 < Fi

Yi,     Fi
Salp

 ≥  Fi 
                 (21) 

Since the fitness value had increased in the new location, it has been argued that the population had 
relocated to a more practical area close to its original site. 
3.5.7 Termination 
Return the optimized salp position Ybest after checking the stopping condition. 
This optimized salp yields the minimum voltage breakdown error in the PINN model. 
End the algorithm once convergence criteria or maximum iterations are met. 
Figure 7 illustrates the proposed work that integrates an improved Salp Swarm Algorithm (ISSA) with 
Adaptive Differential Evolution (ADE). This hybrid optimization approach is designed to minimize the 
voltage breakdown error in Physics-Informed Neural Networks (PINNs). The process involves dynamic 
parameter updates, leader–follower position adjustments, and reverse learning to obtain the optimal salp 
solution 

 
Figure 7: Proposed work 
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3.6 Phase 3: Graph Neural Network (GNN) – Electric Field Forecasting & Failure Zone Localization 
GNN provide an advanced way to model electric field intensities that are spatially distributed over 
complex geometries of insulation, such as gas-insulated system spacer surfaces. From this point of view, 
discretization of an insulating region into a graph structure occurs with nodes conceptualized as discrete 
points on the spacer surface, whereas edges have their physics defined. Each node vi  ∈ 𝒱is associated 

with a feature vector hi
(0)that encodes initial physical parameters, such as permittivity, geometry, or 

electric potential. The GNN propagates information across the graph using message passing and 
aggregation mechanisms defined by Eqn (22): 

hi
(k+1)

= σ(∑ ∅j∈𝒩(i) (hi
(k)

, hj
(k)

, ei,j))                                        (22) 

where hi
(k) is the node embedding at the k − th layer, N(i) denotes the set of neighbors of node i, ei,j 

represents edge features, ϕ is a learnable message function, and σ is a nonlinear activation function. 
GNN captures complex spatial interactions and field gradients, enabling the prediction of electric field 
intensity Ei at each node. The final output can be mapped in Eqn (23): 

Ei = freadout (hi
(K)

)                                                                     (23) 

where freadout is a fully connected layer or regression head applied after K GNN layers. 
GNN-based framework can precisely locate areas of high stresses conducive to dielectric failure and so 
increases predictive reliability without exhaustive finite element simulations. It thus supports rapid design 
iterations and monitoring of insulation health in vivo in high-voltage systems, thereby creating operational 
safety for the system. 
4 Result & Discussion 
This results section covers the prediction of breakdown voltage, Proposed Salp Swarm Adaptive 
Differential Evolution (SSADE) algorithm, and the GNN framework. The approach captures intricate 
dielectric behaviour and field distribution, enabling finer estimations of breakdown voltage. On 
comparison with other methodologies, the one proposed here is defined by improved predictive power 
and sturdiness, endorsing the excellence and reliability of the suggested hybrid framework. 
Table 5: Breakdown voltage Comparison Table 
Metric Proposed Conventional 

ANN 
SVR Random 

Forest 
GPR 

MAE (kV) 1.42 3.27 2.95 2.1 1.95 
RMSE (kV) 1.88 4.91 4.26 3.01 2.85 
MSE (kV²) 3.53 24.11 18.14 9.06 8.12 
MAPE (%) 2.10% 7.60% 6.90% 4.30% 3.70% 
sMAPE (%) 2.00% 7.10% 6.30% 4.00% 3.40% 
R² Score 0.983 0.872 0.894 0.931 0.943 
Relative Error (%) 2.50% 6.80% 5.90% 4.20% 3.80% 
MedAE (kV) 1.21 2.91 2.5 1.85 1.71 
Max Abs Error 
(kV) 

3.65 8.44 7.13 4.79 4.22 

NRMSE (%) 2.00% 6.30% 5.70% 3.90% 3.60% 
MBE (kV) 0.12 1.25 1.1 0.65 0.48 

 
4.3 Breakdown voltage Comparison 
In this comparison, multiple error metrics were analysed to evaluate model performance are shown in Fig 
5. These include Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Squared Error 
(MSE), Mean Absolute Percentage Error (MAPE), Symmetric Mean Absolute Percentage Error (sMAPE), 
Coefficient of Determination (R²), Relative Error, Median Absolute Error (MedAE), Maximum Absolute 
Error (Max Abs Error), Normalized RMSE (NRMSE), and Mean Bias Error (MBE). These metrics 
comprehensively assess the accuracy, consistency, and bias of breakdown voltage prediction models. 
4.1.1 Mean Absolute Error 
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MAE quantifies the average magnitude of prediction errors without considering their direction. The 
lower the value, the more accurate the prediction. The proposed model yields the lowest MAE of 1.42 
kV compared with 3.27 kV of Conventional ANN, 2.95 kV of SVR, 2.1 kV of Random Forest, and 1.95 
kV of GPR. This substantial decrease in error shows how robust the model is to capture the breakdown 
voltage patterns more accurately rather than leads to over- or underestimation of breakdown voltage in 
isolated cases. With nearly a 57% improvement over the second-best GPR model, the method in question 
is perfect for sensitive electrical insulation systems where accuracy is paramount. In high-voltage 
engineering, a smaller MAE hence has to be provided to enhance the reliability of predictions while also 
reducing the risk during component design. Thusly, in the context of MAE, the model's capabilities are 
an indication of its efficiency and applicability in the realm of precise breakdown voltage estimation. 
4.1.2 Root Mean Square Error (RMSE) 
RMSE assesses the square root of the average of squared differences between predicted and actual values. 
It penalizes higher errors with weights, makin' it suitable for systems where any big variation can be a risk. 
The proposed model obtained the lowest RMSE of 1.88 kV against models like ANN (4.91 kV), SVR 
(4.26 kV), Random Forest (3.01 kV), and GPR (2.85 kV) for larger errors along with insulation reliability 
analysis. RMSE being more sensitive to outliers shows that the proposed model avoids extreme errors in 
prediction, which is great compared to the traditional AI models. The proposed framework, compared 
with the GPR model, shows an improvement of almost 34%, which substantiates its applicability in real 
high-voltage insulation scenarios. Fewer high-impact errors confirm that the model learned truly complex 
patterns involved in breakdown voltage prediction. 
4.1.3 Mean Squared Error (MSE) 
Mean of the square of differences between actual and predicted values, with the larger errors being 
penalized really more because of the square. In the proposed model, the MSE is only 3.53 kV squared, 
which basically suggests that it is the best compared to others: a simple ANN with 24.11 kV squared MSE, 
SVR with 18.14 kV squared MSE, Random Forest with 9.06 kV squared MSE, and GPR with 8.12 kV 
squared MSE. This sharp diminution, with more than a 56% reduction over the GPR, underlines the 
ability of the model to eliminate virtually large portions of errors that could considerably affect the overall 
reliability of prediction. Because high voltage insulation systems need exact and consistency the intention 
is to minimize MSE to prevent failure of the systems, and this excellent MSE performance to minimize 
risk allows optimization for performance and safety, making it a reliable method for predicting dielectric 
strength. The MSE performance of the proposed model is particularly successful to showing the ability of 
the model to learn voltage breakdown behaviour over a relatively broad range of circumstances with high 
fidelity and minimal noise amplification. 
4.1.4 Mean Absolute Percentage Error (MAPE) 
MAPE measures the average absolute percent difference between predicted and actual values. Being scale-
independent, it can evaluate performance on many voltage levels. The proposed model has the lowest 
MAPE of 2.10% and outperforms all other models Conventional ANN (7.60%), SVR (6.90%), Random 
Forest (4.30%), and GPR (3.70%). This result shows that the model is relatively accurate and able to 
adapt across different values of the data. A low MAPE also allows the model to perform over a range of 
actual values without error due to an effect of the magnitude. This is especially significant for high-voltage 
insulation systems where reliable predictions must be maintained at low and high ranges. The proposed 
model exhibits great robustness and generalizability with nearly 43% improved performance to GPR. 
With low percentage error, these characteristics signify great strength of this model for real-world 
deployment scenarios, as engineers must have a high confidence interval of estimated values for 
operational safety and efficiency. 
4.1.5 Symmetric Mean Absolute Percentage Error  
The Symmetric Mean Absolute Percentage Error offers a balanced evaluation of prediction errors by 
considering both actual and predicted values in the denominator, reducing the impact of outliers. The 
proposed model provides the least sMAPE value, which is 2.00%, and tagged a valuable degree of 
improvement over GPR (3.40%), Random Forest (4.00%), SVR (6.30%), and ANN (7.10%). sMAPE 
provides an important metric for judging models based on data sets where the levels of the target variable 
widely vary. A lower sMAPE is indicative of higher predictiveness accuracy symmetry and predictiveness 
stable; thus, the proportion model means the proposed model predicts correctly irrespective of whether 
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values are low or high. The enhancement in the sMAPE indicates that the model is skilfully managing 
both overprediction and underprediction errors. Furthermore, not only is there more than a 40% gain 
in performance than the next-best GPR model, but the proposed method shows a more balanced 
approach to both the learning and predict aspects of the model. This consistency is indeed important to 
be seen as reliable for insulation analysis where prediction variances can be punitive in terms of cost. 
4.1.6 Coefficient of Determination (R² Score) 
Coefficient of determination, measures how well predicted values approximate actual data, ranging from 
0 to 1. The proposed model achieves the highest R² value of 0.983, which is superior to GPR (0.943), 
Random Forest (0.931), SVR (0.894), and ANN (0.872), implying a better capacity for learning and a 
better fitted underlying data distribution. The R² value represents 98.3% of the variation in breakdown 
voltage is represented in the proposed model, and is a clear demonstration of learning and fit to the 
underlying distribution of the data. Higher R² values is representative of generalization and correlation 
of predictions to actual values, which makes the model reliable for predictions in real-world scenarios. It 
outperformed other models by a sizable margin, indicating that it has significantly higher modeling 
capacity. This statistic confirms that the proposed model is accurate not only on average but across 
different samples, making it a good candidate for implementation in predictive systems where safety and 
precision are highly valued. 
4.1.7 Relative Error (%) 
Relative Error (%) expresses the magnitude of prediction error relative to the actual value, offering an 
intuitive measure of prediction quality in percentage terms. The proposed model provides the lowest 
Relative Error at 2.50%, effectively outperforming GPR (3.80%), Random Forest (4.20%), SVR (5.90%), 
and ANN (6.80%). This positive result demonstrates how the proposed model combines excellent 
reliability and accuracy across all inputs. The proposed model reduces proportional differences, which is 
critical to high voltage insulation systems where an instance of breakdown voltage lead to failure of the 
equipment or harmful situations. A nearly 34% improvement over the next best model (GPR) 
demonstrates that the model is well-calibrated and has small deviation trend. A lower relative error 
conveys that the model predicts accurately but also predict over a range of voltage magnitudes. This 
reinforces the model's use for engineers working with variables and complex dielectric materials in high-
voltage networks. 
4.1.8 Median Absolute Error (MedAE) 
MedAE measures the median of all absolute prediction errors, providing a robust central tendency metric 
that is less influenced by outliers. The proposed model produced the lowest MedAE of 1.21 kV, 
outperforming GPR (1.71 kV) Random Forest (1.85 kV), SVR (2.5 kV), and ANN (2.91 kV). This means 
that at least 50% of predictions will have an absolute error less than or equal to 1.21 kV. This kind of 
performance reflects an exceptional level of consistency and reliability in most cases, and avoids excessive 
errors which limit system design and safety protocols. When compared to ANN, the typical error 
magnitude is reduced by 58% further emphasizing the model shows predictably low dispersion and stable 
prediction performance. For insulation systems, it is critical that some extreme values can be tolerated 
while the majority of values are precise. This is why MedAE is such a valuable metric. The model's 
outstanding general MedAE also reassured that it provides reliable predictions in day-to-day tasks. 
4.1.9 Maximum Absolute Error (Max Abs Error) 
Max Abs Error indicates the worst-case deviation between predicted and true values. This is especially 
vital in safety-critical applications where large errors in prediction can lead to damage or reliability issues 
of equipment. The proposed model presents a max abs error of 3.65 kV, which provides the lowest total 
amount, against GPR 4.22 kV, random forest 4.79 kV, SVR 7.13 kV and ANN 8.44 kV. With a lower 
maximum absolute error, the model’s worst-case prediction (in terms of error) remains in an acceptable 
threshold allowing the user to expect reliable output in all conditions. The maximum absolute error of 
3.65 kV also represented an over 13% improvement on GPR, and over 56% on ANN. The proposed 
model not only performs better than its competitors on average, but also in extremely adverse conditions. 
This resilience is assurance of beneficial deployment in the real world, particularly in a high voltage 
environment where large rare deviations are not tolerated. Furthermore, the model’s minimum worst-
case prediction error indicates it is ready for practical deployment in critical engineering systems. 
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4.1.10 Normalized Root Mean Square Error (NRMSE) 
NRMSE standardizes RMSE relative to the range or mean of the observed data, allowing fair comparison 
across different scales. The proposed model shows the lowest NRMSE of 2.00%, significantly lower than 
GPR (3.60%), Random Forest (3.90%), SVR (5.70%) and ANN (6.30%). The proposed model has high 
predictive ability, irrespective of the value of the dataset. Since NRMSE described a robust model with 
lower predictions errors across all input voltages, it is best suited for predictive modelling for insulation 
applications. A 44% improvement relative to other method of GPR, best establishes its robustness for 
learning the distributed structure of the data, without being distorted by variance or scale. Engineers and 
researchers with low NRMSE are provided assurances that the model will retain precision predictions 
with typical changes in system conditions (testing periods, etc.). Therefore, the proposed model's only 
2.00% NRMSE is encouraging evidence of its robustness and practical scalability, whenever predictions 
of electrical insulation are required in real life applications. 
4.1.11 Mean Bias Error (MBE) 
MBE reflects the average bias in predictions, indicating whether a model tends to overestimate or 
underestimate the target values. the proposed model produces a MBE of 0.12 kV which is much lower 
than GPR (0.48 kV), Random Forest (0.65kV), SVR (1.1 kV) and ANN (1.25 kV). A near-zero MBE 
indicates that the proposed model is not just accurate, but also unbiased because it should not have a 
direct and consistent tendency to over or underpredict its inputs. This is relevant in high voltage 
engineering, because even systematic errors in the range of a few percent similar to those from GPR, 
which completely disregards predictive accuracy, could accumulate to become an issue, actually affecting 
performance, quality of equipment, or even safety margins. The direct comparisons made in this 
modelling to GPR produced a reduction in bias of 75%. This demonstrates that the proposed model 
tends to learn in a balanced manner and is fairly representative of the data being used. A bias that is so 
negligible is very desirable in actual use cases for being able to build on, or to use in a long term basis. 
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Figure 8: Breakdown voltage prediction Comparison Graph 
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4.2 Comparison of Optimization Algorithm 
In this comparison, the existing optimization algorithms PSO, GA, DE, and SSA are evaluated against 
the proposed optimization algorithm are shown in Table 6. The analysis uses vital performance metrics 
like electric field control, convergence time and design efficiency. The findings show that the proposed 
method surpasses existing methods in all assessed parameters consistently. 
Table 6: Comparison of Optimization Algorithm 
Metric Proposed PSO GA DE SSA 

Electric Field Enhancement Factor 1.45 2.16 1.98 1.85 2.22 

Objective Function Value 0.0342 0.0891 0.0723 0.0614 0.0937 

Convergence Speed (iterations) 45 88 72 60 90 

Best Fitness Value 0.0315 0.0847 0.0699 0.0586 0.091 

Exploration vs Exploitation Index 0.74 / 
0.26 

0.62 / 
0.38 

0.58 / 
0.42 

0.66 / 
0.34 

0.59 / 0.41 

Spacer Shape Distortion Index 1.02 1.37 1.22 1.16 1.4 

 
4.2.1 Electric Field Enhancement Factor 
EFEF is a critical metric in high-voltage insulation design, as it indicates localized stress concentration, 
which could lead to premature breakdown. A lower EFEF is preferable because it indicates a more 
symmetrical electric field distribution across the insulation system. The Proposed Optimization 
Algorithm gives the lowest EFEF of 1.45, which is lower than PSO (2.16), GA (1.98), DE (1.85), and SSA 
(2.22). This is a significant improvement in field symmetry of over 34% better than the next best 
algorithm, DE. This result illustrates the proposed method's ability to identify optimized spacer 
geometries and material properties that reduce peak electric field intensities. This improvement means 
better dielectric reliability and longer equipment life. The proposed method is dominant for reducing 
geometric and material factors that lead to electric field distortion, and it is particularly well suited to 
modern high-voltage applications which aim to deliver robust insulation while controlling electric field 
stress concentrations. 
4.2.2 Objective Function Value 
The Objective Function Value is an absolute assessment of the quality of optimization solution. Lower 
Objective Function Values (OFV) imply superior minimization of the composite function that likely 
encapsulates electric field intensity, shape distortion, and various physical design constraints. The 
Proposed Optimization Algorithm had an OFV of 0.0342 – better than PSO (0.0891), GA (0.0723), DE 
(0.0614), and SSA (0.0937). This demonstrates an over 44% saving, when compared to DE the second-
best algorithm, which illustrates the Proposed Optimization Algorithm's superior capability to explore the 
solution space.  The algorithm takes multiple physical parameters into consideration in addition to 
achieving optimal electrical performance. The solution represents the model's exceptional multi-objective 
capacity and decreased chance of converging to a local minimum. When used for high-voltage insulation, 
the optimization leads to designs that have a more compact, less thermally unstable, and energy-efficient 
design. The low objective function indicates that the proposed algorithm optimizes the objective function 
accurately, though it is also affordable in terms of computational effort. 
4.2.3 Convergence Speed 
Convergence Speed is the number of iterations needed for an algorithm to reach an optimal solution. 
Faster convergence speed indicates less computational effort, which is more efficient and can save time 
and resources. The Proposed Optimization Algorithm converges in just 45 iterations, which is 
significantly faster than DE (60), GA (72), PSO (88), and SSA (90), demonstrating around a 25% to 50% 
convergence speed improvement to the next-best methods. This is indicative of the proposed algorithm 
balancing exploration and exploitation phases, meaning it quickly finds the optimal (or nearest optimal) 
areas of the search space and never dilly-dallied by using unnecessary computation. In practical 
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engineering problems like large-scale simulations or high-dimensional optimization, faster convergence 
can enhance productivity and minimize the design cycle time. With almost half the number of iterations 
required to reach convergence compared to SSA and PSO, the proposed algorithm provides excellent 
performance, making it an excellent option when simulations must be completed quickly in applications 
like the design and simulation of insulation physics. 
4.2.4 Best Fitness Value 
Best Fitness Value represents the optimal solution identified by the algorithm and reflects its ability to 
minimize the design objective under given constraints. A lower fitness value signifies better overall 
performance in solving the targeted optimization problem. The Proposed Optimization Algorithm 
achieves the best fitness value of 0.0315, followed by DE (0.0586), GA (0.0699), PSO (0.0847), and SSA 
(0.091). This enormous improvement indicates almost a 46% increment over the DE, establishing the 
algorithm’s robustness in determining high-quality solutions close to the global optimum. In insulation 
systems, where physical and electrical constraints are strongly coupled, a low fitness value indicates a more 
optimized compromise between geometry, field distribution, and use of material. The ability to find such 
solutions in an efficient manner validates the proposed algorithm's design, which probably comprises 
adaptive mechanisms or hybrid strategies for ensuring enhanced accuracy. This result strengthens the 
claim of the algorithm’s superiority in complicated electrical optimization problems where accuracy 
directly impacts equipment performance and safety. 
4.2.5 Exploration vs Exploitation Index 
The Proposed Optimization Algorithm presents the optimal trade-off with an exploration/exploitation 
ratio of 0.74/0.26, against PSO 0.62/0.38, GA 0.58/0.42, DE 0.66/0.34, and SSA 0.59/0.41. The 
proposed method is oriented towards exploration, which lessens the chances of premature convergence 
to local minima. The algorithms with larger exploitation tendencies remain in suboptimal regions, while 
the higher 0.74 exploration index of the proposed method facilitates far-reaching and global search, which 
is particularly beneficial in highly nonlinear or multimodal design spaces. Its exploitation ratio or 0.26 is 
sufficient enough to explore near-optimal solutions. This optimal balance results in fast convergence and 
better solution quality. The real reflection behind this balance is an efficiently engineered search 
mechanism, making the proposed method an ideally suited approach for complex optimization problems 
like electric field control and geometric distortion reduction in insulation systems. 
4.2.6  Spacer Shape Distortion Index 
The Spacer Shape Distortion Index measures how much the optimized spacer geometry deviates from the 
ideal or original shape. The Proposed Optimization Algorithm obtains the least distortion index value of 
1.02, whereas PSO (1.37), GA (1.22), DE (1.16), and SSA (1.40) give exceedingly large distortion indices. 
This shows more than a 12% improvement in results when compared to DE and over a 25% improvement 
when compared to PSO and SSA. Excessive distortion damages dimensional stability, especially, in high-
voltage insulation applications, and dimensional stability is required for dielectric performance through 
time and durability. It also complicates manufacturing processes, thus leading to increased cost or 
degradation in performance. The proposed method comes close to an ideal shape while concurrently 
optimizing electrical and mechanical parameters, highlighting its superior practical design concepts. It 
facilitates that these solutions are not only optimal from an electrical perspective but are also good options 
from a physical standpoint for production in the real world. 
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Figure 9: Comparison of Optimization Algorithm 
4.3 Graph Neural Network (GNN) Metrics Used for electric field mapping  
Table 7 presents a comparison of various performance metrics used for model evaluation. These include 
Accuracy, Precision, Recall (Sensitivity), F1-Score, and Specificity. Additional metrics like NPV, MCC, 
FPR, and FNR are also included for a comprehensive assessment. 
Table 7: Comparison table field mapping 

Metric Proposed GNN CNN GCN MLP ViT 

Accuracy (%) 98.3 90.2 94.7 85.5 92.3 

Precision (%) 97.6 89.1 93.8 83.4 91.2 

Recall / Sensitivity (%) 99.1 87.6 95.6 82.1 93 
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F1-Score (%) 98.3 88.3 94.7 82.7 92.1 

Specificity (%) 97.2 91.4 94.1 86 90.8 

Negative Predictive Value (NPV) 97.9 88.6 92.5 80.2 90.4 

MCC (Matthews Corr. Coeff) 0.965 0.825 0.921 0.751 0.893 

FPR (False Positive Rate) (%) 2.8 8.6 5.9 14 9.2 

FNR (False Negative Rate) (%) 0.9 12.4 4.4 17.9 7 

 
4.3.1 Accuracy (%) 
Accuracy is the measure of correctness in the classification of both positive and negative examples. The 
Proposed GNN accomplishes the peak accuracy of 98.3%, which bas been better than GCN (94.7%), ViT 
(92.3%), CNN (90.2%), and MLP (85.5%). This performance essentially informs us that GNN is much 
stronger in capturing spatial and topological interrelations found in complex electric field data. The result 
reflects the proposed model's robustness on real-world hotspot classification, where misclassification 
would lead to either system-level faults or the wrong identification of the stress point. The 3.6% 
improvement above GCN supports the notion of graph-based learning applicability in domains related 
to electrical engineering. Further gains in the accuracy mean a drop in false-positive outputs all through 
the dataset, hence increasing the confidence in the field mapping outputs. It is a strong statement from 
an engineering perspective, backing the application of the suggested GNN, in which accuracy affects 
maintenance scheduling, fault prevention, and insulation integrity analysis in high-voltage systems. 
4.3.2 Precision 
Precision quantifies the proportion of true positives among all instances predicted as positives. The higher 
the precision, the less the rate of false alarms, which is very important in hotspot detection where a false 
positive could call for an unneeded inspection or shutdown. Using the highest precision rate of 97.6%, 
the Proposed GNN beats GCN (93.8%), ViT (91.2%), CNN (89.1%), and MLP (83.4%). The very high 
precision means the model is confident about the actual regions that are prone to failures without 
labelling some of the safe zones as failure-prone regions. It shows an improvement of 17.1% over MLP, 
which directly supports the structural awareness added from the graph-based model. With extreme 
precision, the model ensures that most areas flagged have really been at risks, hence increasing the 
operational efficiency and minimizing labor or maintenance costs. In critical environments, like electric 
field systems, where reliability is a stake, such performance is most desired, and the proposed GNN puts 
extremely cheap cost in the delivery of practically perfect positive predictions. 
4.3.3 Sensitivity (%) 
Sensitivity measures the model’s ability to correctly identify all actual positive (failure or hotspot) cases. A 
high recall in safety systems to ensure that any potentially hazardous area must not be missed. Proposed 
GNN attains outstanding recall, 99.1%, compared to ViT with 93% recall, 95.6% recall by GCN, 87.6% 
recall by CNN, and 82.1% recall by MLP. Such perfect sensitivity makes clear the excellent generalization 
power of GNN in generalizing to all possible faults. Relative to MLP, about a 17% improvement in recall 
is brought about by the proposed model, allowing almost perfect detection. The proposed GNN's ability 
to accurately locate nearly all of the true hotspot locations makes it a trustworthy model for use by field 
engineers and predictive maintenance tools. Such an endorsement shows its readiness towards practical 
deployment for identifying insulation or electrode system weaknesses. 
4.3.4 F1-Score 
The F1-Score is the harmonic average of precision and recall, balancing both false positives and false 
negatives. Our Proposed GNN attains an F1-Score of 98.3%, which is higher than those of GCN (94.7%), 
ViT (92.1%), CNN (88.3%), and MLP (82.7%). This harmonized score points to the general classification 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 18s, 2025 
https://theaspd.com/index.php 

1241 
 

performance of the model-denoting an advantage that goes to both high precision and high recall. The 
proposed GNN with a remarkable 5% higher F1 score than the GCN next best indicates that it is both 
not missing true hotspots and not labelling normal areas as hotspots. F1-Score of this model endorses its 
use in intricate prediction domains that require considerable expertise to develop and accept. The power 
of this model is in treating any output of concern with the utmost confidence, which truly makes it 
worthwhile in fault prediction pipelines and hence in preventive maintenance as well as design 
improvements. 
4.3.4 Specificity  
Specificity measures the model’s ability to correctly classify actual negative instances i.e., healthy or non-
hotspot regions. A high specificity means few false positives and thus helps avoid unnecessary 
interventions. The Proposed GNN achieves 97.2% specificity, outperforming GCN 94.1%, ViT 90.8%, 
CNN 91.4%, and MLP 86%. This result stands for the solid decision capability available to the model 
for differentiating from safe zones and critical zones. With a 3.1% advantage over GCN, the proposed 
GNN asserts its ability to preserve operational efficiency by not incorrectly flagging stable areas. Specificity 
is thus of paramount importance in high-voltage field inspections, which incur labour and shutdown costs 
and in which false alarms can lead to unnecessary deployment of resources. The low-false positive 
capability of GNN, afforded by its excellent appreciation of spatial interdependencies, further lends to its 
practical reliability in modelling and monitoring an electric field distribution. 
4.3.6 Negative Predictive Value 
Negative Predictive Value (NPV) measures the proportion of correctly predicted negative cases out of all 
instances classified as negative. The Proposed GNN upholds the highest NPV of 97.9% much higher 
than ViT (90.4%), GCN (92.5%), CNN (88.6%), and MLP (80.2%) ratings. This confirms the model's 
ability in reliably filtering out true non-critical regions so that wherever the GNN predicts 'no fault,' one 
can count on it. The 17.7% improvement over MLP demonstrates the GNN's prowess in correctly labeling 
benign areas, a task of paramount importance in high-voltage systems where any oversight could lead to 
disaster. Also with a high NPV come fewer unnecessary maintenance operations, thereby enhancing 
operational efficiency. The ability of the proposed model to generate fewer false negatives, accompanied 
by a high precision, further underlines its top-tier performance in failure prediction for power 
infrastructure and insulation reliability analysis. 
4.3.7 Matthews Correlation Coefficient 
Matthews Correlation Coefficient (MCC) offers a balanced evaluation of classification quality by 
incorporating true/false positives and negatives. The proposed GNN achieved an MCC of 0.965, 
outperforming the GCN (0.921), ViT (0.893), CNN (0.825), and MLP (0.751). This near-perfect MCC 
score is evidence that the model can very well handle both positive and negative classification cases, 
irrespective of dataset distributions. It then upholds the overall stability of the GNN with respect to 
varying data conditions-an important necessity for real-world electric field prediction tasks. A value of 
0.965 for the MCC represents a very small bias and exceptional predictive quality, confirming the model 
to always generate dependable output irrespective of the conditions. In comparison to the MLP, the GNN 
shows an additional 22.7% improvement, which makes it preferable for fault localization within critical 
systems. The metric further validates the superiority of the model in balanced resolution, especially when 
instances have high safety implications. 
4.3.8  False Positive Rate 
The False Positive Rate (FPR) measures the percentage of healthy regions incorrectly flagged as faults. The 
Proposed GNN records the lowest FPR of 2.8%, whereas GCN, ViT, CNN, and MLP have FPRs of 5.9%, 
9.2%, 8.6%, and 14%, respectively. Such a low FPR means that false detection of non-hotspot areas as 
hotspot areas rarely occurs, and this is very important because unnecessary maintenance could lead to bas 
beented time and resources in electric field mapping. With an 80 percent reduction in the FPR compared 
to MLP, the GNN ensures that only genuinely risky locations are considered hot. This high specificity 
allows for a more targeted approach to field investigations, saving effort and costs. The noticeably low 
FPR level further proves the appropriateness of deploying this model within real-time monitoring systems, 
particularly in large-scale high-voltage networks where correct alarm triggering decides uninterrupted 
service. 
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4.3.9 False Negative Rate 
False Negative Rate (FNR) quantifies the proportion of actual hotspots incorrectly classified as normal. 
The Proposed GNN obtains the least false-negative rate of 0.9%, and hence is far superior to ViT, with 
7%; GCN, with 4.4%; CNN, with 12.4%; and MLP, with 17.9%. Such a vanishingly rare occurrence of 
faults being missed ensures that all sustained areas of failure have been totally covered. This kind of 
reliability is required in high-voltage environments where undetected faults could lead to severe 
equipment damage or hazards. With an FNR reduction of over 94% from an MLP, the GNN is prioritized 
for safety without compromising its predictive abilities. 
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Figure 10: Comparison of Metrices 
 
5. CONCLUSION 
In conclusion, the present study introduces a holistic intelligent framework for evaluating the breakdown 
voltage characteristics of PMMA and Nylon solid dielectrics under HVAC stress in an environmental 
SF₆–N₂ gas mixture under conducting contaminant presence. The use of advanced AI techniques greatly 
improves prediction accuracy and simulation efficiency, thus serving as strong competition to 
conventional forms of experiment. Physics-Informed Neural Network (PINN) is one such philosophy 
which phonemically integrates Maxwell's equations, ensuring that the model predictions abide by the 
fundamental physical laws governing dielectric behaviour. The hybrid ISSA-ADE optimization algorithm 
successfully improves the insulation performance. Meanwhile, the Graph Neural Network (GNN) 
provides spatial information about electric field distribution and potential failure zones on the complex 
geometries. These AI-Aided methodologies thus serve not only to optimize system design but also to 
predict failures at an early stage and institute preventive maintenance measures. This integrated approach, 
therefore, gives way to the development of more reliable, efficient, and environmentally friendly high-
voltage insulation systems. Continuing farther, this framework can be extended to other dielectric 
materials, some other gas mixtures, and dynamic operating conditions by way of future research to further 
substantiate its versatility and scalability in practical power system applications. 
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