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Abstract: In 5G technology, the prediction of coverage areas plays a vital part in network optimization and reliable 
connectivity. In this paper, coverage area prediction is presented on an extensive comparative analysis involving many 
machine learning algorithms based on the RF Signal Data. The target column, Band Width, is used to determine 
prediction accuracy of various models through evaluation. Evaluation is performed using traditional methods like 
Logistic Regression, K-Nearest Neighbors (KNN), Naive Bayes, Random Forest, Support Vector Machine (SVM), 
XGBoost, LightGBM, AdaBoost, Bayesian Network Classifier, Multi-Layer Perceptron (MLP), Long Short-Term 
Memory (LSTM); against proposed advanced techniques such as Stacking and Voting Classifiers, and Convolutional 
Neural Networks (CNN). The aim is to find the feature parameters that strongly influence 5G coverage prediction. 
This research is intended to benchmark the performance and accuracy of these algorithms through developing a wide 
range of models. The comparative analysis provides the advantageous and disadvantageous factors for each 
methodology, thus giving valuable insights for researchers and network engineers. The conclusion drawn from this work 
is that ensemble methods, namely Stacking and Voting Classifiers, along with CNN, attained much higher prediction 
accuracies and robustness, and therefore, are viable solutions for improving 5G network planning and deployment.  
Keywords - 5G Coverage Prediction, Machine Learning, RF Signal Data, Stacking Classifier, Voting Classifier, 
Convolutional Neural Network (CNN), Feature Parameters, Prediction Accuracy, Network Optimization, Ensemble 
Methods.  
 
I. OVERVIEW 
The advent of fifth-generation (5G) wireless technology has marked a significant leap in the evolution of 
communication systems. With its promise of ultra-fast data speeds, significantly reduced latency, and the 
capability to connect a massive number of devices simultaneously, 5G stands at the core of future digital 
infrastructure. Its integration into various domains including smart cities, autonomous vehicles, 
healthcare systems, and industrial automation has already begun transforming the way we interact with 
technology. However, despite its benefits, one of the biggest challenges lies in the efficient and accurate 
prediction of 5G coverage areas to ensure optimal deployment and user satisfaction. 
In current deployment scenarios, telecom providers are racing to expand 5G infrastructure across both 
urban and rural regions. However, ensuring consistent signal availability and performance requires careful 
planning. Predicting 5G coverage involves understanding complex signal behavior across various 
environments, accounting for factors like building density, terrain, and signal interference. Accurate 
coverage prediction not only reduces infrastructure costs but also improves user experience by minimizing 
connectivity issues and optimizing signal distribution. 
Historically, Prediction of signals coverage depended on common methods of machine-learning 
algorithms traditionally. Such techniques as Logistic Regression, K-Nearest Neighbors (KNN), Naive 
Bayes, Random Forest, and Support Vector Machines (SVM) were commonly used for their simplicity 
and interpretability. Models would generally work under controlled environments; however, they fail to 
show any dominant behavior when exposed to real-world high-variance and non-linear-dependent 
datasets. They are not much generalized under all different conditions, which greatly limits their 
performance when required for modeling complex rf signals by modern 5g networks. 
To address these limitations, recent studies have focused on advanced machine learning techniques 
capable of handling high-dimensional and heterogeneous data. The gradient boosting machinery of 
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XGBoost and LightGBM has proved superior having further boosted precision through an iterative 
process. Deep Learning Models such as Multi-Layer Perceptrons and LSTMs implement enhanced feature 
learning and temporal pattern recognition-providing well for model dynamic signal environments. These 
models have shown significant promise in capturing complex relationships between signal parameters 
and coverage outcomes. 
In addition to individual models, ensemble learning techniques have emerged as a powerful tool in 
improving model robustness and generalization. Methods such as stacking and voting classifiers combine 
multiple algorithms to enhance prediction reliability. Furthermore, the incorporation of Convolutional 
Neural Networks (CNN) is being explored to analyze spatial signal distributions and patterns in RF data. 
CNNs can effectively capture localized signal variations, making them particularly useful in urban 
coverage scenarios where signal degradation can be irregular due to obstacles and reflections. 
This research proposes a comparative analysis of both classical and modern machine learning models to 
evaluate their effectiveness in predicting 5G coverage based on RF signal parameters. Using features such 
as signal strength and bandwidth, the study aims to benchmark model performance in terms of accuracy, 
efficiency, and scalability. The goal is to identify a suitable model or hybrid approach that can be deployed 
in real-time network planning tools to guide telecom engineers in optimizing 5G deployment strategies. 
By bridging the gap between theoretical modeling and practical implementation, this work contributes to 
the growing body of research aimed at enhancing next-generation wireless network planning.  
 
II. RELATED WORK 
Sudhamani et al. (2023) offer an extensive examination of various strategies for enhancing coverage in 
5G networks. They delve into prime limitations like interference at cell edges due to heavy deployment 
and mention some budding techniques for boosting spectral efficiency and reducing latency. Their survey 
also points out a plethora of future avenues for improvement in the wireless communication technologies, 
thus providing a wide landscape of challenges and research opportunities in the realm of 5G 
deployments.[1] 
Ahamed and Faruque (2021) analyze the real-world considerations in deploying 5G over various 
frequency spectrums. The paper discusses planning complexities for high-frequency bands, where signal 
propagation loss necessitates dense deployments of small cells. The authors suggest architectural 
enhancements such as sectorized cells and smart antennas and point out that mobile operators will face 
logistical issues pertaining to the acquisition of infrastructure.[2] 
According to Santana et al. 2022, Indoor 5G network planning is facilitated using a new machine 
learning-supported methodology. The method incorporates the predictive path loss model into the 
Genetic Algorithm, allowing signal coverage estimation with minimum access points.The hybrid solution, 
therefore, not only serves to an accelerated timed deployment but also satisfies radical design criteria such 
as signal strength consistency and reduced RF exposure.[3] 
Fauzi and colleagues (2022) had studied various machine learning models for the prediction of mobile 
coverage. Their study compared linear regression, ANN, and random forest algorithms for predicting 
RSRP. Among the models, the one with the most accurate results was Gaussian Process Regression, while 
the Random Forest model was deemed most appropriate for real-time deployment in the environment as 
it offered an optimum balance between accuracy and speed.[4] 
Fauzi et al. (2023) established the Machine Learning-based Online Estimator (MLOE) as a real-time 
prediction tool for mobile network performance. MLOE is based on the Random Forest algorithm, 
deployed on a MATLAB web server, and provides accurate estimates of network coverage by processing 
multiple input features. The model greatly improves the planning accuracy, and it is scalable for large-
scale network deployments.[5] 
Chiroma et al. (2020) present a survey exploring the integration of nature-inspired meta-heuristic 
algorithms with deep learning frameworks. Their work categorizes different algorithmic strategies and 
highlights how such methods can address optimization challenges in fields such as computer vision and 
autonomous systems. They propose new research directions to bridge the gap between meta-heuristic 
optimization and deep learning.[6] 
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This paper introduces a Convolutional Neural Network-Auto Encoder (CNN-AE) trained to predict 
location-dependent rate and coverage probability in cellular networks. CNN-AE improves upon stochastic 
geometry-based models by as much as 40% and 25% in coverage and rate prediction errors, respectively, 
when trained on Indian, Brazilian, German, and American BS location data. Furthermore, the model 
will assist in identifying better BS locations to adaptively achieve performance targets in a spatially 
heterogeneous manner. [7] 
An ensemble machine learning approach to better path loss prediction in 4G LTE networks is presented 
in this work. By combining Radial Basis Function (RBF) and Multilayer Perceptron (MLP) neural network 
models, it is shown that increasing the number of centroids in the RBF model and use of Gaussian kernel 
function would adequately lower the Mean Square Error (MSE), and thereby improve prediction 
accuracy. [8] 
The development of the modular model, that is 5GPA, has been achieved with the use of machine 
learning methods for predicting and improving the 5G network performance. The predicted model has 
higher precision of being 95% on average and low error rates in the categories of performance metrics. 
In addition, it guides the simplification of feature selection and optimization of 5G network performance 
during a design and planning phase. [9] 
The study proposes a method for modeling radio propagation relying on a deep-convolutional-neural-
network (CNN) architecture. The method provides considerably better performance than conventional 
empirical and deterministic models by exploiting unconventional site information, such as satellite 
imagery. Improved cellular network planning and optimization will be possible because of this 
advancement. [10] 
Dubhe is a deep learning algorithm developed to study coverage in the Beyond 5G (B5G) networks. The 
model calibrates and modifies existing empirical models to suit a given environment, accurately predicting 
wireless signal coverage strength. This essentially permits fewer base station sites to be built at a reduced 
cost, thus making operations more efficient in fully representing B5G signal coverage under complicated 
and dynamic scenarios.[11] 
III. SYSTEM DESIGN ARCHITECTURE 
The current landscape of 5G coverage prediction is dominated by a variety of machine learning algorithms 
that utilize radio frequency (RF) signal data to forecast network reach. Techniques have been widely 
implemented to analyze and interpret signal parameters. While these models offer promising levels of 
accuracy and computational efficiency, they present several limitations. Complex models like Random 
Forest and CNN often lack interpretability, making them difficult to apply in real-time network planning 
scenarios. Moreover, their dependency on high-quality datasets, substantial computational resources, and 
static learning processes impedes scalability and adaptability. As 5G networks are inherently dynamic and 
vast, these limitations reduce the effectiveness of existing systems in rapidly changing and large-scale 
environments. To address the challenges posed by traditional models, the proposed system introduces a 
hybrid approach that combines ensemble learning techniques specifically Stacking and Voting Classifiers 
with deep learning models. [12] This system attempts to improve the prediction's robustness and accuracy 
by using the advantages of different methods. Through a structured process involving the preprocessing 
of RF signal data, model training, and rigorous validation, the system evaluates the performance of each 
technique to determine the most effective solution. Ensemble methods improve generalization by 
mitigating the weaknesses of individual models, while CNNs enable the extraction of complex patterns 
within the data. This advanced approach not only supports scalable and accurate 5G coverage prediction 
but also offers greater adaptability to the dynamic nature of networks, ultimately aiding in more intelligent 
and efficient 5G deployment strategies.  
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Figure 1 System Design Architecture Work Flow 
IV. DATASET DESCRIPTION 
In this work, a dataset consisting of on lakh+ instances and containing 20+ features relevant to 5G 
network performance and environmental conditions was used. The data are indexed by a RangeIndex 
from 0 to 10000+ and use up approximately 35mb of memory. The features are determined in different 
data types, including integers, float numbers, boolean, and categorical (object) types, giving a rich mix of 
numerical and contextual data for effective model training and evaluation. Key columns in the dataset 
include Timestamp, Frequency, Signal Strength, Modulation, and Bandwidth, which directly realize the 
characteristics of the 5G signal. Environmental parameters were also considered for their importance in 
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signal propagation considerations. On the device side, Device Type, Antenna Type, Battery Level, Power 
Source, CPU Usage, Memory Usage, WiFi Strength, and Disk Usage provide clues about the operational 
environment of the user equipment. Location information, such as Latitude, Longitude, and Altitude(m), 
is available for spatial analysis of coverage. Some features such as Interference Type with missing values 
in respect of some of the entries and I/Q Data only partially populated are of particular note. Air Pressure 
is blank and hence should be deleted or imputed in preprocessing. The target variable for prediction is 
identified as Bandwidth, which is an integer-type field representing the capacity or throughput of the 5G 
signal. In summary, the dataset is an all-encompassing platform for the assessment of machine-learning 
paradigms to predict the coverage of 5G, integrating technical, environmental, and geographical data.  
V. EXPLORATORY DATA ANALYSIS 

 
Figure 2 Bar Plot Device Status 
The three device statuses "Streaming I/Q data," "Transmitting beacon signal," and "Running game" all 
have almost identical counts, slightly above 50,000. This suggests a balanced utilization of these 
functionalities, pointing to consistent demand across different device capabilities. The uniformity in 
activity could indicate well-distributed resource usage, preventing over-reliance on a single function. Such 
data could be valuable for performance analysis, helping to prioritize equal support for all three 
functionalities. The even distribution might reflect user behavior trends, highlighting that no single 
activity dominates the device's usage patterns. 

 
Figure 3 Link Plot Missing values 
Parameters like "Weather Condition," "Air Pressure," and "I/O Data" show significantly higher 
percentages of missing values, indicating potential challenges in data quality for these variables. Most 
other parameters, such as "Timestamp," "Frequency," and "Device Status," exhibit minimal missing values, 
suggesting reliable data collection for these metrics. The disparity in missing values could point to 
differences in measurement methods or external factors affecting data capture for certain variables. 
Addressing the gaps in high-missing-value parameters could improve overall dataset completeness and 
enhance analysis accuracy. This graph provides a clear direction for prioritizing data cleaning efforts, 
focusing on the parameters with the most missing data. 
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Figure 4 Distplot for Frequency 
The frequency data exhibit distinct peaks, an indication that certain frequencies or patterns dominate the 
dataset. The histogram bars suggest specific frequency values that have disproportionately high 
occurrences and could represent fundamental frequencies of a signal. The oscillatory trend of the line 
plot between bars of the histogram indicates the periodicity that one could use to evaluate cyclic behavior 
in a signal or event. Bars that are extremely narrowed but high imply conciseness around a few values, 
suggesting frequency counts are distinctly not evenly spread but are rather clustered at certain points. 
Such kinds of visualizations are largely relevant to signal processing in the identification of important 
frequency components in music, electromagnetic waves, or the like. 

 
Figure 5 Scatter Plot between Temperature and Humidity 
Humidity can vary widely across temperatures, suggesting that there might be other physical factors 
controlling humidity-there. In fact, the scatter plot of humidity against temperature does not reveal a clear 
upward or downward trend, indicating that, in consideration of this dataset, temperature does not control 
humidity. The vertical spread suggests that both extreme high and low humidity data are uniformly 
distributed across temperature ranges rather than clustering at specific points. This further indicates 
external environmental factors, such as wind systems or geography, might exert a more dominant control 
over humidity. These enormous fluctuations, therefore, offer considerable information for climate 
endeavors, including improvements in weather prediction models and an understanding of atmospheric 
behavior. 
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Figure 6 Pair Plot 
Specific patterns of frequency the frequency variable shows four prominent peaks in its histogram that 
imply concentrations of values rather than being evenly distributed. Temperature Discreteness The scatter 
plots show that temperature values are discrete and vertically aligned when plotted against other variables. 
Humidity Variation Humidity has an extensive range of values and produced tightly packed scatter plots 
relative to frequency, which indicates a possible association. Memory Usage Distribution The memory 
usage histogram indicates a more continuous distribution with several peaks and implies variations in 
memory use over time. Dependency Between Variables Current scatter plots demonstrate trends that can 
be interpreted as showing dependence among frequency, temperature, humidity, and memory. Many 
signal processing insights can be derived by such distributions and patterns that are proved significant in 
analyzing the performance of a system or the environmental influence on computing resources. 
Understanding the Behavior of the System This image gives a great deal of visual insight as to how 
different variables interact, laying a basis for further analysis or optimization. 

 
Figure 7 Select best k feature selection 
Disk Usage is established as the foremost feature in the analysis. This would imply that it has a greater say 
in determining system performance/behavior as it has the highest rank score attested to it. Following 
closely is Device Status, indicating that it significantly contributes to overall efficiency and operational 
behavior of the system. Environmental conditions such as Weather Condition, Altitude, and Battery 
Level show moderate influence, suggesting that the system should also be interpretative of outside 
conditions where its performance is concerned. Device Type and Frequency, on the other hand, have 
been judged to have little effect, suggesting they are of trivial contribution to the model. This, then, 
renders the overall ranking of features very useful for optimization as it will guide the priorities of 
investigations into important variables and improve model efficiency and performance. 
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VI. DATA PREPROCESSING 
Label Encoding is a form of elementary preprocessing of data for application in machine learning where 
the data is categorical in text format and converts the same to numerical form. Most machine learning 
algorithms operate on numbers. For example, column values like ["Low", "Medium", "High"] will now be 
converted to [0, 1, 2] using label encoding. This processing allows models to use the data properly. 
However, this can end up causing an undesired order/priority for the categories. Therefore, it will be the 
best to use it for categories bearing a natural ranking or for models that properly handle categorical data. 
VII. MODEL BUILDING 
Some of the classical machine learning methods have found their primary applicability in classification 
and regression, and these are among those implemented in the project. All methods and techniques that 
one may call classical ways in predictive modeling. Random Forest combines an ensemble of decision 
trees for prediction outcomes, allowing for enhanced accuracy and robustness. It is geared towards 
handling large data sets and difficult variable interactions.[13] KNN works by searching for similar 
examples (neighbors) to make a prediction. This keeps prediction very simple but often computationally 
inefficient with larger datasets. Naive Bayes interprets probability as per Bayes’ theorem with an added 
assumption of feature independence and is usually applied to text classification problems. Linear 
Regression is traditionally used for continuous outcomes but can be informative about linear patterns of 
association within the data. AdaBoost is an ensemble technique which can be seen as sequentially 
combining several weak classifiers to form a strong classifier, emphasizing instances that the previous 
model misclassified. They are efficient, highly interpretable models that serve as strong baselines in 
comparative studies, giving insight as to which techniques best suit the nature of 5G data.[14] 
They have played a very important role in this study for the StackingClassifier and VotingClassifier. Those 
two techniques are advanced methods for improving prediction performance, through which strengths 
in many base models are drawn to perform better predictions. A Voting Classifier essentially combines 
the predictions of several different models through majority voting for classification and averaging for 
regression, ensuring that the ensemble output is somewhat more stable and precise than individual 
predictions. This will be particularly useful when the individual models are diverse and make uncorrelated 
errors. The Stacking Classifier takes the process a step further, where the base learners' predictions 
become inputs to a higher-level meta-model, which learns how best to combine them for improved 
generalization. These methods endear themselves towards reducing the likelihood of overfitting and 
increasing robustness for complex interactions of features within the model. In the area of 5G coverage 
prediction, ensemble methods could be especially powerful because they model aspects that may be strong 
in one's particular time granularity, space granularity, or environmental conditions, and together add up 
to better prediction accuracy while improving adaptability to different network scenarios. Therefore, these 
two become the favored candidates for real-world implementation in network optimization tasks.[15] 
To enhance model performance further, Voting Classifier and Stacking Classifier were employed. These 
ensemble methods are particularly useful in stabilizing predictions when the dataset presents complex 
feature interactions. In hard voting, the final prediction is selected as the mode: 

 
• y^: Final predicted class label. 
• y1,y2,...,yn: Predictions from nnn different base classifiers. 
• mode: Most frequent prediction (majority vote). 
while soft voting involves averaging the predicted probabilities. Stacking goes a step further: base models 
make predictions that are used as inputs to a meta-model. Formally, if are the outputs of base learners, 
then the meta-model is trained on: 

 
• y^: Final prediction from the meta-model. 
• h1(x),h2(x),...,hn(x): Predictions from base learners. 
• g: Meta-model (e.g., logistic regression, SVM) that learns from base outputs. 
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On top of regular and ensemble analysis models, this project encompasses using techniques like 
Convolutional Neural Networks (CNN) and Multi-Layer Perceptron (MLP) and also LSTM to explain 
complex and non-linear phenomena in 5G signal data. CNNs are notoriously talented in capturing spatial 
patterns and have been commonly used in image processing as well as in signal processing. When applying 
5C data in terms of spectrograms or I/Q data, CNNs can hierarchically extract features characterized by 
high precision in coverage classification. MLPs are a type of feedforward artificial neural network that is 
numerically robust in modeling general-purpose non-linear functions. They are very effective when input 
data is tabular and linear separability cannot explain relationships among the features. Long Short-Term 
Memory networks (LSTM) are a special kind of RNN architecture that is perfect for sequential data. 
Example scenarios are those where signal strength measurements are time-dependent. Temporal 
dependencies can be modeled to enable future predictions of 5G signal coverage. These plurality of deep 
learning models are data-hungry and computationally costly but superior in understanding complex 
relationships for data. Such studies add up quality models to accommodate scenarios where traditional 
models go wrong.[16] 
To capture non-linearities and temporal patterns in RF signal data, deep learning architectures were 
introduced. Convolutional Neural Networks (CNNs) are especially suited for spatial data and excel in 
extracting local dependencies. In mathematical terms, a CNN layer computes: 

 
• yi,j: Output at position (i,j) in the feature map. 
• xi+m,j+n: Input pixel value at position (i+m,j+n). 
• wm,n: Weight of the filter (kernel) at position (m,n). 
• b: Bias term. 
• σ: Activation function (e.g., ReLU: max(0,x)). 
• M, N: Dimensions of the kernel/filter. 
where σ is the activation function, w are convolutional weights, and x is the input. Multi-Layer 
Perceptrons (MLPs), structured as fully connected networks, generalize well to non-linear tabular data. 
Long Short-Term Memory (LSTM) networks model sequential dependencies: 

 
• ht: Output (hidden state) at time t. 
• xt: Input at time t. 
• ht−1: Previous hidden state. 
• ct−1: Previous cell state (memory). 
• LSTM: A function comprising input, forget, and output gates, managing memory flow across time 

steps. 
A variety of models have been integrated, from conventional machine learning models to deep neural 
networks, creating a rich framework for identifying the best model for predicting 5G coverage. Each 
algorithm exhibits its own merits and, in comparison, allows researchers to ascertain not only the accuracy 
of prediction but also the efficiency, scalability, and adaptability of the model to real-world situations. As 
an example, Random Forest and KNN may attain high accuracies, while running slower during the 
prediction phase or displaying less scaleability. Naive Bayes can be said to be fast and efficient models but 
unlikely to provide good performance when dealing with feature interactions. Ensembling methods like 
Stacking and Voting act as natural middle grounds in that they combine the upside features of the base 
models to improve robustness and lower variance. Deep learning models demand significantly large 
resources and perform well for large and complex datasets, especially when such datasets relate in space 
or time.[17] The continuous benchmarking of these models under common metrics demonstrates, from 
the start, that there exist trade-offs among interpretability, accuracy, and ease of deployment. Such a multi-
model strategy guarantees that the model selected at last would not only be statistically superior but also 
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practically feasible for integration into 5G network drafting tools for the benefit of telecom service-
providers in optimizing and guaranteeing coverage. 

 
• P(C∣X): Posterior probability of class C given features X. 
• P(X∣C): Likelihood of features X given class C. 
• P(C): Prior probability of class C. 
• P(X): Probability of observing features X across all classes. 

VII. Performance Metrics 
One of the most extensive metrics of evaluation for classification models with a number of algorithms, 
for instance, Random Forest, the SVM, CNN, and ensemble models, pertains to standard metrics that 
take the consideration of some specifics beyond just the accuracy of the models against each other. To 
make it in short, the confusion matrix and the classification report are popular choices among the indices 
viewed in comparison with accuracy. Using a table, the confusion matrix compares the actual class labels 
with those predicted through the model outputs. The numbers are presented in each category to indicate 
how many predictions got placed therein. It has an overall feature of four: true positives (predicted 
positive, or correctly predicted as belonging to this class), true negatives (predicted negative, or correctly 
predicted as not belonging to this class), false positives (predicted as positive but incorrect), and false 
negatives (predicted as negative but incorrect). In essence, for multi-class problems, there could be an 
extension of the matrix in a way that brings in correct and incorrect counts over each class label. 
Understanding this matrix reveals either the strength of the model or the determination of specific classes 
often misclassified, in turn providing feedback to improve or add features.[18] 
The classification report accompanying the confusion matrix serves as a summary highlighting precision, 
recall, F1-score, and support per class. Precision denotes the percentage of predicted positives that were 
correct and therefore matters more when the cost of false positives is high. Recall, by contrast, represents 
the ability of the model to detect actually positive cases and is extremely important in cases where serious 
consequences may arise if a positive prediction is missed. The F1 score gives equal weight to precision 
and recall and becomes significantly more useful in the presence of an imbalanced distribution of classes. 
Support means the actual number of occurrences of each class in the test data. Hence, the full report 
creates a clearer picture of how well a model is doing across all classes as opposed to simply evaluating an 
overall accuracy score. Here, the very same metrics become helpful while presenting the most reliable and 
generalizable model for studies such as 5G coverage prediction, where different factors could have an 
impact on quality in the signal. 

 

 
This endeavor will develop a multi-model prediction framework for 5G coverage using RF signal, 
bandwidth, and other related data. Though the intended system criterion is benchmarking through 
tradition or advanced-use machine learning technique, it evaluates the computational feasibility and 
deployment potential alongside evaluation against geography. This study is beneficial for a telecom 
operator implementing intelligent, data-driven coverage planning tools. Next-generation mobile 
infrastructures are developing further; hence, the real-time deployments of such models can be an asset 
to network optimization and a definite engineering of high-quality connectivity. 
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IV. RESULTS AND DISCUSSION 

 
Figure 8 Confusion Matrix for Voting Classifier 
The matrix is dominantly diagonal since all the significant values concentrate on the diagonal, thus 
indicating no sign of intervention or correlation between any pairs of off-diagonal elements. The values 
on the diagonal range between 18,939.00 and 19,292.00, only slight variations are observed, but the 
general magnitude is still fairly consistent across all elements. The color gradient aptly conveys diagonal 
dominance whereby lighter shades indicate higher values, thereby making the structure of the matrix 
visible. This structure might either be variances in a covariance matrix or a system with highly 
independent components where only diagonal terms will be important. The similar values of the diagonal 
elements indicate stable measurements or processes which may be under controlled conditions or similar 
data collection methods.  

 
Figure 9 Stacking Classifier Confusion Matrix 
A maximum value of 7927 indicates a prominent point in the dataset. It could be indicative of increased 
concentration or importance pertaining the matrix dimensions. These are the lowest value which ranges 
from 51 to 85 and indicates clear differentiation that could probably be due to outliers or not very 
influential areas in the matrix. Most of the values cluster in the mid to high range and this suggests 
possible patterns or correlations within the data. Visualization thus increases interpretation capability by 
allowing quick identification of anomalies and extreme values. Color mapping thus becomes an effective 
channel for numerical variation which helps in revealing complex relationships within the matrix. This 
kind of dataset can be used to find trends, predict patterns, and make data-based decisions from the 
observed distributions. 
The performance analysis of various algorithms used in predicting coverage of 5G shows that there are 
wide variances with models when it comes to their accuracies. Of all, it is the Voting Classifier (which is 
also referred as VTC) that has the best performance by having a 100% accuracy, indicating that this 
algorithm is very much capable of generalizing and combining abilities from various base models to very 
accurate prediction forms. The other two which performed relatively well are the Convolutional Neural 
Network (CNN) and Stacking Classifier (STC) with accuracies of 16.85%. and 16.63%, respectively. 
Again, they still prove effectiveness in capturing the most of the complex patterns in the data. Traditional 
algorithms such as Random Forest (0.17%), Support Vector Machine (0.165%), Linear Regression 
(0.165%), K-Nearest Neighbors (0.165%), and Naive Bayes (0.166%) showed lower predictive 
performance, as few of them are found to have very limited capability to handle the complexity concerning 
the nature of the dataset. LightGBM (0.162%) and AdaBoost (0.167%) also showed moderate results out 
of boosting methods. Among deep learning models, Multi-Layer Perceptron (0.168%) and LSTM 
(0.164%) showed slightly better performance than most traditional models. However, they still failed to 
surpass the ensemble-based Voting Classifier. These results clearly show the way in which ensemble 
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methods, particularly Voting, will score significantly higher in realizing increased performance in the 
prediction of 5G coverage using different individual model strengths. 
V. CONCLUSION 
In this comparative research paper on different machine learning and deep learning algorithms, 5G 
coverage prediction, the importance of choosing the right model with respect to the complexity and 
nature of the dataset is clearly demonstrated. Ensemble techniques, especially the ones that can be 
characterized as "brideg" or "most popular" methods, have proven superior in capturing patterns and 
providing powerful predictions. It has been concluded that traditional models break down when dealing 
with examples as high-dimensional and complex. Simultaneously, research has exposed and substantiated 
further possibility in improving prediction credibility using deep learning and hybrid approaches. More 
importantly, performing evaluation of various algorithms would give better scope to researchers looking 
toward model selection strategy, which is capable of adding value to safe building of 5G networks. A 
positive effect on different categories of networks may be generated for better planning of future networks 
to assist knowledge-based decision-making for deployments in last-mile wireless access connectivity, user 
experience enhancement, and optimized resource utilization in next-generation wireless communication 
systems. 
 
VI. FUTURE SCOPE 
This study aims to upscale the use of advanced machine-learning and deep-learning methodologies toward 
more dynamic and real-time predictions of 5G coverage. With 5G networks evolving under increasing 
user density, device diversity, and environmental variability, there arises the need to allow such models to 
adapt very quickly to the ambient conditions. Future work may incorporate real-time data streams, 
including mobile signal logs and satellite inputs, for the fast response and accuracy of models. The 
integration of spatial-temporal modeling strategies with advanced geospatial analysis can only entice better 
predictions of coverage if put to test in very dynamic or complicated terrains. Another option that holds 
promise is federated learning, whereby training happens in a distributed manner across different devices 
without having to give away any data privacy; ideal for telecom providers wishing to analyze coverage 
across different regions without having a centralized repository for data at one location. The 
implementation of XAI techniques will enhance the interpretability of complex models that support a 
decision-making process and build trust among network engineers. Recent advancements in deep-learning 
architectures like transformers and graph neural networks may offer novel possibilities regarding the 
interactions of signal features, location, and user behavior, thus providing a viable foundation for more 
intelligent and efficient 5G networks. 
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