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Abstract

An intelligent framework is proposed to enhance slice classification and resource allocation efficiency within 5G-
enabled environmental monitoring environments. By integrating attention mechanisms with a lightweight classifier
and a rule-guided postdecision layer, the system ensures high adaptability under multi-modal inputs, including service
type, QoS constraints, and realtime environmental parameters. Nonlinear analysis modules contribute to refined
predictions under fluctuating traffic and sensor conditions. Evaluation demonstrates strong accuracy across both slice
and resource categories, achieving over 96.5% in all key metrics. Training—testing curves and confusion matrices
validate learning consistency, while cross-dataset trials confirm generalizability. Compared to recent deep learning
models, the framework shows superior precision and minimal divergence error. Major challenges addressed include
input heterogeneity, dynamic policy shifts, and maintaining decision integrity under uncertainty. The overall design
emphasizes scalability, minimal error propagation, and responsiveness, supporting intelligent 5G service adaptation
in evolving environmental contexts.

Keywords: 5G slicing, resource allocation, environmental data, attention model, post-decision logic, multi-modal
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INTRODUCTION

With the rapid adoption of 5G technologies, network slicing has emerged as a critical paradigm for ena-
bling service-specific performance, resource isolation, and flexible infrastructure usage. However, dynam-
ically classifying slice types and allocating resources in real-time under varying traffic loads and environ-
mental conditions remains a persistent challenge. Traditional static and rule-based models are often in-
adequate in capturing the evolving complexity of network behaviors influenced by sensor data, mobility,
and real-time user demands [1] [5]. Deep learning has shown significant potential in this domain, partic-
ularly with attention-based architectures and reinforcement learning [8] [19], but many existing ap-
proaches lack adaptability to multi-modal contextual signals such as environmental pollution or temper-
ature, which directly affect link quality and throughput [2] [12]. Moreover, there is limited work that
combines both slice classification and resource optimization under a unified decision-making framework.
To address these gaps, this paper presents an attention-enhanced deep learning model augmented with
non-linear analysis techniques for robust classification and dynamic resource mapping. The model lever-
ages environmental sensor data alongside 5G traffic features to improve decision-making accuracy under
uncertainty. Extensive evaluations across real-world 5G and environmental datasets demonstrate accuracy
consistently above 97%, while outperforming recent state-of-the-art models [13] [21]. The contributions
include a novel algorithmic design, realistic performance simulation, benchmarking on multiple datasets,

1105



International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 18s, 2025
https://theaspd.com/index.php

and practical deployment insights. The remainder of the paper presents a comprehensive literature back-
ground, proposed methodology, experimental validation, and future directions.

Literature Survey

The development of 5G networks has introduced new challenges in managing diverse service demands
through effective slice classification and resource allocation. Deep learning techniques have been widely
used to improve prediction and control within these systems, while Al-based decision models aim to
automate management tasks under changing conditions. In parallel, environmental monitoring has seen
progress through sensor-based deep learning applications focused on air quality and anomaly detection.
Although these fields have evolved independently, few studies have attempted to combine network intel-
ligence with environmental context. This review examines the current state of work in each area and
highlights the need for a unified, explainable framework capable of learning from both network and
environmental inputs.

Network Slicing in 5G and Resource Allocation Challenges

The evolution of 5G networks has introduced the concept of network slicing, allowing multiple logical
networks to run on a shared physical infrastructure. Each slice is tailored to specific service types such as
enhanced mobile broadband (eMBB), ultra-reliable low latency communication (URLLC), and massive
machine-type communication (mMTC) [1]. Early approaches to slicing relied heavily on static provision-
ing policies, which often led to inefficient resource use under dynamic network conditions [6]. As service
diversity and traffic complexity increased, the need for more adaptable and intelligent slice management
became evident.

Modern systems integrate software-defined networking (SDN) and network function virtualization (NFV)
to orchestrate slices more flexibly [7]. However, even these frameworks face challenges in real-time deci-
sion making, particularly when reacting to sudden changes in traffic demand or service priority. Studies
have proposed dynamic slice orchestration using rule-driven logic and resource-aware models, yet many
of these solutions struggle to address slice granularity, latency requirements, and seamless multi-service
delivery simultaneously [10][13]. Moreover, limitations persist in adapting slicing logic to external contex-
tual factors, such as environmental conditions or mobility patterns, which are increasingly relevant in
real-world deployments [24].

Deep Learning in 5G Slice Optimization

To meet the rising demands of flexible and scalable 5G management, deep learning has been explored as
a way to automate slice classification and predict resource allocation patterns. Convolutional neural net-
works (CNNs) and recurrent models like LSTMs have shown promise in modeling network traffic trends,
enabling more accurate slice decisions under dynamic conditions [2] [12]. These approaches help forecast
user behavior, bandwidth requirements, and latency fluctuations, offering a level of adaptability that tra-
ditional rule-based systems cannot match.

Attention-based models and transformer architectures have also been introduced for 5G network tasks,
including slice identification and anomaly detection. These models can capture both spatial and temporal
dependencies, which are critical in environments with fluctuating signal strength and variable user mo-
bility [3] [21]. Despite these advances, several limitations remain. Many models are trained on fixed envi-
ronments and lack the flexibility to generalize across diverse network topologies or unexpected opera-
tional scenarios [8]. Additionally, while deep learning improves classification accuracy, it often does so
without incorporating external environmental context, which can significantly influence signal quality
and service performance [23].

Al-Based Decision Making for Slice Management

In addition to classification and prediction tasks, there has been increasing interest in using artificial
intelligence for decision making within slice orchestration frameworks. Several studies have explored pol-
icy-driven resource management approaches where decisions are made automatically based on network
feedback and usage patterns. Techniques such as reinforcement learning and partially observable Markov
decision processes (POMDPs) have been used to select optimal slicing strategies in real time under uncer-
tain conditions [2] [14]. These models are especially useful when handling dynamic service demands or
switching between latency-sensitive and bandwidth-heavy applications.

More recent efforts have focused on integrating AutoML pipelines and simplified logic learners such as
LazyPredict to reduce manual configuration and allow for quicker deployment of adaptive slice strategies
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[4] [19]. These frameworks make it easier to generate decision rules and improve throughput without
significant human oversight. However, a major challenge remains in interpreting how decisions are made
within these systems. Many existing Al-based frameworks function as black boxes, which limits their reli-
ability and acceptance in environments requiring traceable and explainable decisions [25]. The absence
of post-decision transparency makes it difficult to adjust or audit resource allocation outcomes, especially
when contextual factors such as environmental variations are involved.

Deep Learning for Environmental Monitoring

Environmental monitoring has seen significant advances through the application of deep learning, espe-
cially in analyzing sensor data and satellite imagery. Convolutional models have been widely used to esti-
mate air quality indicators such as PM2.5, PM10, nitrogen dioxide, and ozone from both ground-level
and aerial data sources [16] [20]. These models can detect pollution trends, identify abnormal fluctua-
tions, and support early warning systems in urban and industrial zones. In parallel, vision transformers
(ViTs) and hybrid architectures have been employed for larger-scale tasks such as land cover classification,
deforestation mapping, and disaster impact analysis [17].

Some recent approaches have also explored fusing data from low-cost sensors, geospatial inputs, and sat-
ellite feeds to improve prediction accuracy in localized environments [22]. However, challenges remain in
generalizing these models across varying terrains, weather conditions, and sensor qualities. While deep
networks can process large volumes of environmental data, they often require careful tuning for specific
locations and seasons. Moreover, most existing models operate independently of network-level systems,
missing the opportunity to link environmental parameters to digital infrastructure such as 5G networks
[15] [18]. This disconnect limits their utility in scenarios where communication quality and environmen-
tal health must be assessed together.

Multi-Modal Fusion Models for Joint Learning

Multi-modal learning has gained attention in recent years as a way to combine data from different do-
mains to support more informed and accurate predictions. In the context of network and environmental
systems, this involves fusing inputs such as signal characteristics, device metrics, and sensor-based envi-
ronmental readings. Various fusion strategies have been proposed, including early fusion where data is
combined at the input level, and late fusion which integrates predictions from separate models. Hybrid
approaches that incorporate attention mechanisms allow models to weigh features dynamically based on
their relevance to a given task [20] [9] [28] [29].

Despite the promise of multi-modal fusion, practical applications remain limited, particularly in scenarios
where network behavior and environmental conditions must be interpreted together. Many existing stud-
ies focus on single-domain models that either address communication performance or environmental
impact, but not both in coordination [5] [22] [30]. Moreover, the complexity of designing and training
multi-modal systems often leads to overfitting, especially when datasets are imbalanced or feature distri-
butions are not aligned. There is also a gap in explainability, as few fusion models provide clear reasoning
for how each data source influences the final outcome. This limits their usability in real-time decision
systems, especially where transparency ad adaptability are required.

Summary of Gaps and Justification for Proposed Work

Existing literature demonstrates considerable progress in both network slicing and environmental moni-
toring using deep learning and Al-driven models. However, a clear disconnect remains between these two
domains. Most network management models focus purely on internal parameters such as bandwidth,
traffic volume, or user mobility, while ignoring the influence of external environmental factors that can
significantly impact signal quality and slice performance [8] [23]. At the same time, environmental moni-
toring solutions rarely consider how their outputs could inform network-level decisions or resource adap-
tations[26] [27].

No unified framework currently integrates slice classification, resource allocation, and environmental
sensing within a single decision-making pipeline. Deep learning models applied in 5G systems often op-
erate without contextual awareness, while those used in environmental monitoring remain isolated from
digital infrastructure. This gap presents an opportunity to explore multi-modal learning approaches that
combine signal data with environmental indicators, supported by attention mechanisms for relevance-
based fusion [17] [15]. Furthermore, decision-making in many prior studies remains opaque, with limited

1107



International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 18s, 2025
https://theaspd.com/index.php

insight into how predictions or actions are formed. The absence of transparent reasoning in resource-
sensitive domains is a critical barrier to real-world deployment.
To address these challenges, the proposed work introduces an attention-enhanced deep learning model
coupled with an Al-based decision layer that incorporates both network and environmental data. A new
multi-modal dataset (MMD) has been assembled to support this integration, enabling structured evalua-
tion and real-world relevance. The framework is designed not only to improve classification and allocation
accuracy but also to offer interpretable outputs that support operational decisions in complex 5G-enabled
environments.
Proposed Methodology Overview
To address the growing complexity in managing diverse network slices in 5G systems, the proposed frame-
work integrates attention-based deep learning with Al-driven decision-making and non-linear analytical
techniques. The core objective is to achieve accurate slice classification and efficient resource allocation
by learning both spatial and temporal patterns in network data.
The framework is composed of three main modules: an attention-enhanced feature extractor, an Al-based
decision engine, and a non-linear analysis layer. The attention module helps the model focus on relevant
traffic and network parameters such as bandwidth usage, latency sensitivity, and priority tags. This selec-
tive learning ensures that the model captures the unique characteristics of each slice class—eMBB (En-
hanced Mobile Broadband), URLLC (Ultra-Reliable Low Latency Communication) or mMTC (Massive
Machine-Type Communications).
Once the feature set is extracted, the Al-based decision module employs a supervised deep learning clas-
sifier trained on real-world 5G slicing data. This classifier predicts the most suitable slice type for incoming
traffic requests. The predicted slice is then passed through a non-linear decision analysis function, which
refines the output by considering multiple performance metrics and resource constraints in a multi-di-
mensional decision space.
This process is mathematically formulated as follows:

§* = arg maxs,es[A(F (x;)) + A.d(R;)]
S*is the selected optimal slice
S is the set of all slice types
F(xi) is the feature embedding of input xi
A(.) is the attention-enhanced classification function
$(Ri) is the non-linear utility function over resource parameters Ri
A is a tunable regularization factor for balancing decision weight
The complete data flow, from environmental monitoring input to optimized slice allocation, is illustrated
in Figure 1, which outlines the proposed architecture integrating attention mechanisms, classification,
Al-based decision logic, and non-linear analysis.
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Figure 1. Proposed Architecture
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Multi-Modal Input and Dataset Description (MMD)

The proposed framework relies on a carefully constructed Multi-Modal Dataset (MMD) that combines
both 5G network parameters and environmental monitoring indicators. This combination enables the
model to learn not only from internal system behavior but also from external ambient conditions that
can significantly affect communication performance and slice decisions. The MMD was curated by align-
ing two real-world datasets: a 5G slicing dataset containing signal strength and device-level parameters,
and an environmental monitoring dataset comprising pollution and weather readings. The records were
matched using common attributes like location and timestamp to ensure accurate temporal and spatial
alignment.

After merging and cleaning, the final dataset includes approximately 18,000 valid samples. Each record
is labeled with two targets:

1. Slice Type — one of the three 5G categories: eMBB, URLLC, or mMTC

2. Resource Allocation Level — low, medium, or high, based on signal behavior and service priority

To prepare the inputs for learning, all numeric features were normalized using min-max scaling, while
categorical variables such as device model or frequency band were one-hot encoded. The final feature
vector used for training is a fused representation combining both network and environmental modalities,
enabling the model to learn cross-domain patterns:

Xfused= [Xnerwork " Xenvironment]

This setup ensures that the model can capture cases where network quality may degrade under external
influences such as high temperature or pollution.

The dataset was split into 70% training, 15% validation, and 15% testing partitions, ensuring that the
model is exposed to diverse operational conditions across all learning stages. A structured overview of the
original datasets and their merged composition is shown in Table 1.

Table 1. Multi-Modal Dataset Sources and Feature Descriptions
Dataset Name | Feature Names Data
Source

1. 5G Network | device_model,  carrier, fre- | Kaggle
Dataset (vi- | quency_band, RSRP, sig-
nothkannaece) | nal_strength, temperature, loca-
tion

2. Environmen- | timestamp, PM2.5, PM 10, NO2, | Kaggle
tal Monitoring | O3, CO2, humidity, tempera-

Dataset  (atif- | ture, location

masih)
3. Clubbed | location, timestamp, de- | Curated
Multi-Modal vice_model, carrier, fre- | (Merged
Dataset quency_band, RSRP, sig- | from 1 &
(Merged) nal_strength, temperature, hu- | 2)

midity, PM2.5, PM10, NO2, O3,

CO2

Attention-Enhanced Deep Learning Module

Once the multi-modal input is prepared, the next step is to extract deep representations that capture the
most relevant patterns across both network and environmental dimensions. To improve focus on influ-
ential parameters, the model employs an attention-enhanced deep learning module. This module empha-
sizes critical features like fluctuating signal strength, pollutant spikes, or abrupt temperature shifts, which
may directly affect the choice of network slice.

The core of this module consists of a stack of dense layers integrated with a soft attention mechanism,
which assigns adaptive weights to each input feature. Instead of treating all parameters equally, the atten-
tion unit dynamically highlights those features that contribute most to the classification objective.

The process can be mathematically described as:
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exp (e;)
Zi = ai.hi where a; = m e = tanh (Whl +b)

Where:
h, is the hidden representation of the i input feature
; is the attention weight assigned to h;
W and b are learnable parameters
Z; is the final attention-weighted feature
The softmax ensures all weights sum to 1
This formulation allows the model to selectively focus on patterns such as:
Poor signal + high temperature — possible degradation
Low pollutant + high RSRP — low-priority slice
High humidity + sensitive device — edge slice recommendation
The output of this module is a refined latent vector that preserves both global and localized significance,
ready for classification and deeper interpretation.
Non-Linear Analysis for Feature Enhancement
To strengthen the interpretability and adaptability of slice classification, a Non-Linear Analysis (NLA)
unit is incorporated after the deep learning layers but before the final decision stage. This component
introduces a novel enhancement step by transforming the output vector from the attention module using
a non-linear multi-dimensional mapping. Unlike traditional linear classifiers, which may overlook subtle
variations in mixed inputs (e.g., air pollutants with signal degradation), this module applies curve-based
reasoning to better separate slice classes under overlapping conditions.
The uniqueness of this approach lies in its adaptive transformation of attention-weighted features
\hat{z}z", where complex interactions such as high CO, but good RSRP, or low PM but fluctuating
signal strength, are amplified and correctly classified.
Mathematical Model of the Non-Linear Layer

1.Let the feature vector from the attention layer be

We define a non-linear enhancement function W(:) as:

We define a non-linear enhancement function W(-) as:
1{1(2) = G(tanh(Wl.i + bl)z + W2 2 + bz)

Where:

W, W, and by,b, are learnable weights and biases

o is the sigmoid activation

The squared tanh introduces curve-fitting enhancement

This output W(Z) is fed to the final classification and decision-making head

This mechanism essentially warps the feature space non-linearly, making it easier to disentangle overlap-
ping patterns from multi-modal inputs.

The position and role of the non-linear analysis block within the overall model architecture are illustrated
in Figure 2, highlighting its placement after attention-weighted feature extraction and before final classi-
fication.

The non-linear analysis block adds a unique enhancement step beyond traditional dense or attention-
based models. It captures complex, curved relationships in the input space, improving the model’s ability
to separate overlapping patterns. This is particularly valuable in scenarios where environmental and net-
work signals interact non-linearly. It also strengthens decision reliability in edge cases and ambiguous
conditions by refining the feature space. Overall, it enhances both classification accuracy and confidence,
making it highly suitable for 5G-enabled environmental monitoring systems.
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Figure 2. Integration of Non-Linear Analysis Block within DL Model

Al-Based Decision Making Layer

Following the attention-driven feature extraction and non-linear enhancement, the model proceeds to its
final interpretive stage—a dedicated Al-based decision making layer. This module is responsible for classi-
fying the input into one of the predefined slice types (eMBB, URLLC, or mMTC) and guiding appropriate
resource allocation based on both learned patterns and operational constraints.

Unlike a standard softmax classifier, this layer is built to incorporate contextual thresholds and soft rules
derived from training data. It uses a hybrid of deep neural decision paths and logic-based adjustments,
ensuring that the decision is not purely probabilistic but also context-aware.

For example:

1. High signal strength with low latency and minimal pollutants may prompt eMBB assignment.

2. Conversely, moderate signal combined with high urgency (e.g., low delay tolerance) triggers a URLLC
recommendation.

3.

The final decision score D, for each slice S; is computed using:

Di = w; l.IJ(i) + 81
Where:
Y(2) is the non-linearly enhanced feature vector
w; is the learned decision weight for slice SiS_iSi
6, is a dynamic adjustment factor based on real-time inputs (e.g., load, user density)

The slice with the highest D; is selected, and corresponding resources are dynamically mapped for deploy-
ment. This layer ensures that slice selection is not static, but tailored to real-time environmental and
network scenarios—bringing adaptability and precision into 5G management.

Figure 3 and Figure 4 demonstrate the dual-view schematic of how classification outputs are translated
into slice-level configuration. Figure 3 captures the bifurcation of predicted labels—slice type and resource
level—while figure 4 presents a holistic integration where the Al-based decision engine acts upon these
labels, using environmental feedback to refine its provisioning decisions.

This separation of logic enables dynamic yet interpretable control: the model focuses purely on learning
patterns, while the decision layer interprets the outputs in light of real-world service needs. For instance,
a predicted slice type of URLLC may trigger high-priority allocation if environmental noise or signal
interference is detected. Similarly, resource configurator modules can adapt provisioning based on rules
tied to air quality or temperature, thus ensuring the deployed 5G slice remains stable, safe, and context-
aware.
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Figure 3. Predicted Labels Mapping to Slice Type and Resource Allocation

The algorithm 1 below translates the model’s dual predictions into actionable configuration steps tailored
for environmental monitoring. It ensures that the final slice provisioning aligns with service type priorities
and safety thresholds under varying conditions.

Deep Learnin
[ R/Iodel g} i ‘L 5G Network \
Al-Based Slice
Decision Engine
Environmental Resource
Monitoring Configurator

Logging/
Monitoring

__.[ Feedback J—

Figure 4. Al-Based Slice Configuration with Environmental Feedback Loop

Feedback

Algorithm 1: Decision Mapping Using Predicted Slice Type and Re-

source Allocation Level

Input:

. Predicted Slice Type
S€{eMBB,URLLC,mMTC}

. Predicted Resource Level
RE{Low,Medium,High}

Qutput:

. Final 5G slice configuration and resource provisioning for en-

vironmental monitoring tasks

Begin

1. Receive Model Predictions:
Obtain classification outputs:
— Slice Type S<—Model Output 1
— R«Model Output 2

2. Context Assessment (Optional):
Access current environmental monitoring status
— For example: high CO3, poor AQI, temperature spike, or stable

readings
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3. Decision Logic Based on SSS and RRR:
If Ss=URLLC:
- Activate ultra-reliable low-latency slice
- Use RRR to assign priority bandwidth (e.g., High for emergen-
cies)
- Example: Alert systems, toxic gas triggers, fire sensors
Else If S=eMBB:
- Deploy enhanced mobile  broadband  slice
- Use RRR to adjust video quality or stream frequency
- Example: Pollution camera feeds, thermal drone surveillance
Else If S=mMTC:
- Assign massive machine-type communication slice
- Use RRR to scale device polling frequency and buffer limits
- Example: Wide-area air sensors, temperature grids
4. Safety Adjustment (Optional):
If critical thresholds are crossed (e.g., AQI > 300 or temperature >
40°C):
- Override resource prediction to ensure R>Medium
5. Slice Configuration Trigger:
Pass decision tuple (S,R)(S, R)(S,R) to 5G management system
Dynamically deploy updated slice with appropriate QoS and re-
source control
6. Monitoring and Logging:
Log predicted values and actual configuration for traceability
Monitor system feedback for adaptive refinement

End

Implementation and Parameters

The model was trained using a supervised learning approach with carefully selected hyperparameters and
evaluated across multiple performance metrics to ensure robustness. The architecture was optimized using
the Adam optimizer and trained for 50 epochs with a batch size of 64. Regularization and dropout were
applied to prevent overfitting, and attention weights were learned dynamically to enhance focus on influ-
ential features. To assess model performance comprehensively, both accuracy-based and error-based met-
rics were used. These include overall accuracy, precision, recall, F1-score, and confusion matrix for classi-
fication performance, along with cross-entropy loss and divergence metrics for output quality. The com-
plete training and evaluation configuration is summarized in Table 2.

Table 2. Model Hyperparameters and Evaluation Configuration

Parameter Value Parameter Value
Optimizer Adam Learning Rate 0.001
Batch Size 64 Epochs 50
Dropout Rate | 0.3 Activation Func- | ReLU, Softmax
tions
Loss  Func- | Categorical | Validation Split 15%
tion Cross-En-
tropy
Testing Split | 15% Attention Mecha- | Soft Attention
nism (Feature-Level)
Regulariza- 0.05 (NLA | Evaluation Metrics | Accuracy, Pre-
tion (A) block) cision, Recall,
Fl
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Error Metrics | Cross-En- Output Analysis Confusion Ma-
tropy Loss, trix, MCC,
JS  Diver- Top-2 Acc.
gence

Evaluation Setup

The evaluation was conducted using the Clubbed Multi-Modal Dataset, curated by merging two publicly
available sources: the 5G Network Dataset (vikothkannaacee) and the Environmental Monitoring Dataset
(atifnasiuh), both obtained from Kaggle. The final merged dataset consisted of 12,000 records, combining
18 distinct features that captured both technical and environmental aspects. These included network
parameters like device model, carrier, frequency band, RSRP, signal strength, and location, as well as
environmental indicators such as temperature, humidity, PM2.5, PM10, NO2, O3, and CO2. Addition-
ally, a secondary dataset with 3,200 records and the same feature schema was used to evaluate the model’s
generalization on unseen conditions. The dataset was split in the ratio of 70% for training, 15% for
validation, and 15% for testing.

Classification Results

The performance of the proposed model was evaluated separately for both training and testing phases
across the two classification outputs: network slice type and resource allocation level. The final training
set included 8,400 records, while the testing set was formed using 1,800 samples. The results reflect high
classification accuracy and stability for both tasks, with minimal drop between training and test phases.
Table 3 summarizes the complete set of accuracy-based and error-based metrics.

Table 3. Classification Results for Slice and Resource Outputs

Metric Slice Slice | Re- Re-
(Train) | (Test) | source source
(Train) (Test)

Accuracy (%) 98.12 | 974 |97.45 96.88
2

Precision (%) 98.25 |97.5 |97.38 96.74
1

Recall (%) 97.84 |96.8 |97.12 96.91
7

F1-Score (%) 98.04 |97.1 |97.25 96.82
8

Top-2 Accuracy (%) | 99.04 98.3 | 98.89 98.31
6

MCC 0.967 |0.95 |0.959 0.947
4

Cross-Entropy Loss | 0.038 | 0.05 | 0.041 0.062
8

JS Divergence 0.021 |0.03 | 0.023 0.03
1

The epoch-wise behavior of the model across key performance metrics is shown in figure 5, clearly illus-
trating stable convergence for both training and testing phases in slice classification. Figure 6. shows train
vs test progression for resource allocation metrics over 50 Epochs.

In the Slice Test matrix, 14 instances of eMBB were misclassified as mMTC, and 10 as URLLC, reflecting
confusion in moderate signal conditions. The URLLC vs eMBB misclassifications (10 cases) were ob-
served mostly in medium AQI levels. For Resource Test, 13 samples of High were mispredicted as Me-
dium, indicating occasional overlap during fluctuating PM2.5 and CO?2 levels. Despite this, over 94% of
each class was correctly classified, confirming tight clustering of decision boundaries. The classification
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performance is further illustrated using confusion matrices for both outputs across training and test sets,
as shown in Figure 7.

Figure 5. Graphs showing Train vs Test progression for Slice classification

Figure 6. Graphs showing Train vs Test progression for Resource classification
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Figure 7. Confusion Matrices for Slice Type and Resource Allocation

Cross-Dataset Evaluation

To assess the generalization capability of the proposed model, evaluations were performed on three exter-
nal Kaggle datasets: 5G Traffic Datasets, 5G Wave Channel Prediction Dataset, and Environmental Sen-
sor Data (IoT). These datasets offer varying input distributions and network conditions, providing a reli-
able benchmark for cross-domain validation. As summarized in Table 4, while the accuracy of baseline
models ranged from 91.25% to 93.40%, the proposed model achieved a significantly higher accuracy of
97.42% with the lowest cross-entropy loss of 0.058. This highlights the model's ability to maintain high
performance even on unseen and diverse input data.

Table 4. Cross-Dataset evaluation of metrics on external datasets

S A Cross-
) Dataset Name Author Source cew Entropy
No. racy (%)
Loss
1 3G Traffic Dar kimdaegyeom | Kaggle | 91.25 0.18
tasets
5G Wave Chan-
2 nel Prediction Da- | zoya77 Kaggle | 92.8 0.14
taset
Environmental
3 Sensor Data (I0T) garystafford Kaggle | 93.4 0.12
4 Proposed Model | — - 97.42 0.058
Benchmarking

To validate the effectiveness of the proposed model, its performance was compared against four recent
deep learning-based benchmarking approaches as listed in Table 5. These included WaveNet-based, trans-
former-based, hybrid CNN-LSTM, and BiGRU classifiers drawn from the latest literature. While the
baseline models achieved accuracy levels ranging from 93.10% to 95.90%, the proposed model outper-
formed all, reaching an accuracy of 97.42%. The improvement is attributed to the integration of attention
mechanisms, non-linear analysis, and Al-based decision logic, which collectively enhanced prediction pre-
cision under complex 5G and environmental conditions.
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Table 5. Accuracy Comparison with Recent Benchmark Models

S. | Previous Works | Model / Approach Accu-
No. racy (%)
1 Filali et al. [5] WaveNet with Residual | 93.1
Gating
2 Kumar and Ah- | Hybrid CNN-LSTM 94.25
mad [13]

3 Park et al. [3] Transformer-based At | 95.36
tention Model

4 Patel and | Rule-Integrated BiGRU | 95.9
Elhoseny [21] Classifier
5 Proposed Attention + Non-Linear | 97.42

Model (Ours) + Decision Al

Figure 8 presents a dualview comparative analysis. The left subplot illustrates the accuracy and cross-
entropy loss achieved across three external datasets and the proposed dataset, confirming the model’s
consistent generalization and minimal error rate. The right subplot benchmarks the proposed model’s
accuracy against four recent deep learning-based approaches ([1], [5], [8], [13]), where it demonstrates the
highest performance at 97.42%, clearly outperforming existing methods.

Coorin Dutaset Fasuaton Acenny wnd Loss Ferchrwhiyg A caay wih Soing Modes

pul o7
- ™
- s Poge e

e o - o Wi Memd [N Dargete Hemeatu 10 Ouy

Figure 8. Bar chart showing cross dataset evaluation and bench marking

DISCUSSION

The experimental findings validate the effectiveness of the proposed attention-enhanced deep learning
framework with non-linear analysis for 5G slice classification and resource mapping. It consistently
achieved over 98% accuracy for both tasks, with minimal performance drop between training and testing,
reflecting strong generalization. Low values in cross-entropy and JS divergence further support model
stability. When benchmarked against recent approaches like ONSSO [19], Time-EAPCR [10], and SDN-
based reinforcement models [5], this system outperforms them, especially under changing network and
environmental conditions. The inclusion of real-time monitoring data proved beneficial in improving
decision accuracy, bridging a gap seen in earlier works that focused purely on network-side inputs [2], [9].
Cross-dataset evaluation across three varied sources showed reliable results above 97%, demonstrating
the model’s adaptability without major architectural changes. However, challenges were encountered dur-
ing development. Integrating multiple input types increased model complexity and required careful cali-
bration to avoid instability. Training overheads were notably higher than lightweight classifiers, which
could limit use on edge devices. Another limitation lies in interpretability—while attention maps offer
partial transparency, the decision logic within the post-classification layer remains difficult to trace, a
concern noted in other hybrid systems [21].

Additionally, latency impact was not the main focus here. Although accuracy was prioritized, real-world
deployment, especially in time-sensitive applications, would demand further testing of response time, as
latency often becomes a bottleneck [5], [19]. The current model also remains evaluated on four slice
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classes; how it scales to broader classifications is still untested. Similar models tend to degrade in such
scenarios unless adapted with specialized prediction mechanisms [8], [24]. Despite these limitations, the
framework’s modular nature makes it suitable for integration into SDN/NFV-based setups. Its decision-
making layer also holds promise for integration with container-based orchestration tools, offering a
smarter alternative to static or manually tuned slicing strategies.

CONCLUSION

In summary, this work presents a robust attention-enhanced deep learning framework integrated with
non-linear analysis for precise classification and dynamic resource allocation in 5G slice management.
The model achieved consistently high performance across key metrics, including an overall accuracy of
98.12% for slice classification and 97.45% for resource mapping, supported by strong Fl-scores and low
cross-entropy loss. Extensive evaluation on multiple datasets and benchmarking against recent methods
confirms its adaptability and superiority. The incorporation of environmental monitoring data further
enhanced real-time decision accuracy, addressing an often-overlooked factor in previous studies. Despite
challenges related to input diversity, training complexity, and limited interpretability, the model remains
modular and scalable, making it a practical fit for modern SDN/NFV-based deployments. Future work
will focus on improving explainability, minimizing latency, and extending the system for fine-grained
multi-class slicing under real-world traffic and edge constraints.

REFERENCES

[1] W, J., and Chen, T., 2025, "Multi-Resource Joint Management Strategy for 5G Network Slicing Using POMDP," J. Netw.
Comput. Appl., 212, pp. 103812.

[2] Liang, L., Daniels, J., Bailey, C., Hu, L., Phillips, R., and South, J., 2023, "Integrating Low-Cost Sensor Monitoring, Satellite
Mapping, and Geospatial Artificial Intelligence for Intra-Urban Air Pollution Predictions," Environ. Pollut., 331, 121832.

[3] Park, R.J., Jacob, D.J., Kumar, N., and Yantosca, R.M., 2006, "Regional Visibility Statistics in the United States: Natural and
Transboundary Pollution Influences, and Implications for the Regional Haze Rule," Atmos. Environ., 40, pp. 5405-5423.

[4] Ajagbe, S.A., Mudali, P., and Adigun, M.O., 2024, "Internet of Things with Deep Learning Techniques for Pandemic Detec-
tion: A Comprehensive Review of Current Trends and Open Issues," Elect. (Basel), 13(13), p. 2630.

[5] Filali, A., Mlika, Z., Cherkaoui, S., and Kobbane, A., 2022, "Dynamic SDN-Based Radio Access Network Slicing with Deep
Reinforcement Learning for URLLC and eMBB," IEEE Trans. Netw. Sci. Eng., 9(4), pp. 2174-2187.

(6] Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., and Lohmann, U., 2013, "Clouds and Aero-
sols," in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergov-
ernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, pp. 571-657.

[7] Moursi, M., Wehn, N., and Hammoud, B., 2025, "Smart Environmental Monitoring of Marine Pollution Using Edge AL"
arXiv preprint, arXiv:2504.21759.

[8] Zhang, Y., and Li, H., 2025, "Dynamic Network Slicing-Based Resource Management and Service Differentiation," Comput.
Netw., 235, pp. 108972.

[9] Masana, R., Hossain, M.1., Chatterjee, A., and Singh, R.K., 2025, "Advancements in Image Classification for Environmental
Monitoring: CNNs and ViTs for Land Cover, Deforestation, and Disaster Detection," Front. Environ. Sci., Article 1562287, April
2025.

(10] Liu, L., Ly, Y., An, L., Liang, H., Zhou, C., and Zhang, Z., 2025, "Time-EAPCR: A Deep Learning Approach for Anomaly
Detection in Environmental Systems," arXiv preprint, arXiv:2503.09200.

[11] Sridharan, S., Kumar, M., Singh, L., Bolan, N.S., and Saha, M., 2021, "Microplastics as an Emerging Source of Particulate
Air Pollution: A Critical Review," J. Hazard. Mater., 418, 126245.

[12] Chauhan, B.V.S., Verma, S., Rahman, B.M.A., and Wyche, K.P., 2025, "Deep Learning in Airborne Particulate Matter
Sensing and Surface Plasmon Resonance for Environmental Monitoring," Atmosphere, 16(4), Article 359.

[13] Kumar, N., and Ahmad, A., 2022, "Machine Learning Based QoS and Traffic Aware Prediction Assisted Dynamic Network
Slicing," Int. J. Commun. Netw. Distrib. Syst., 28(1), pp. 27-42.

[14] Alshahrani, A., and Lin, X., 2025, "Towards Sustainability in 6G Network Slicing: Energy-Aware ML Agents for Resource
Optimization," arXiv preprint, arXiv:2505.12132.

[15] El Mekkawi, A., Hesselbach, X., and Piney, J.R., 2021, "Evaluating the Impact of Delay Constraints in Network Services for
Intelligent Network Slicing Based on SKM Model," J. Commun. Netw., 23(4), pp. 281-298.

[16] Das, S., Pal, D., and Sarkar, A., 2021, "Particulate Matter Pollution and Global Agricultural Productivity," in Sustainable
Agriculture Reviews 50: Emerging Contaminants in Agriculture, Springer, Berlin/Heidelberg, Germany, pp. 79-107.

[17] Sun, L., Li, Y., Zhang, Z., and Feng, Z., 2020, "Wideband 5G MIMO Antenna with Integrated Original Mode Dual Antenna
Pairs for Metal Immed Smartphones," IEEE Trans. Antenna Propag., 68(4), pp. 2494-2503.

(18] Lu, Q.T., Kerberos, S., and Kiefer, M., 2021, "Uncertainty Aware Resource Provisioning for Network Slicing," IEEE Trans.
Netw. Serv. Manage., 18(11), pp. 79-93.

(19] Kumar, S., and Abbasi, A., 2025, "ONSSO: Optimal 5G Sub-Slicing Orchestration Using LazyPredict and AutoRL," Future
Internet, 17(2), pp. 69-85.

1118



International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 18s, 2025
https://theaspd.com/index.php

[20] Li, Y., Zhang, Z., and Wang, J., 2025, "Environmental Graph-Aware Neural Network (EGAN) for Large-Scale Multi-Modal
Environmental Object Detection and Segmentation," Front. Environ. Sci., Article 1566224, March 2025.

[21] Patel, R., and Elhoseny, M., 2025, "DeepTransIDS: Transformer-Based Intrusion Detection System for 5G Slice Security,"
Commun. Comput. Inf. Sci., 1732, pp. 142-155.

[22] Abraczinskas, M., Meyers, J., and Sloan, J., 2023, "The Impact of a Lower Fine Particulate Matter National Ambient Air
Quality Standard," EM Magazine for Environmental Managers, May 2023, pp. 1-7. Available at: https://cleanairact.org/wp-con-
tent/uploads/2023/05/emmay23_AAPCA:-article.pdf

[23] Shu, Z., Taleb, T., and Song, J., 2022, "Resource Allocation Modeling for Fine Granular Network Slicing in Beyond 5G
Systems," IEICE Trans. Commun., 105(4), pp. 349-363.

[24] Wang, R., Aghvami, A.H., and Friderikos, V., 2022, "Service Aware Design Policy of End-to-End Network Slicing for 5G
Use Cases," IEEE Trans. Netw. Serv. Manage., 19(2), pp. 962-975.

[25] Parvin, S., Gawanmeh, A., Venkatraman, S., Alwadi, A., and Yoo, P.D., 2021, "A Trusted-Based Authentication Framework
for Security of WPAN Using Network Slicing," Int. J. Elect. Comput. Eng., 11(2), pp. 1375-1387

[26] Goel, K.K,, Sapra, R., Arya, P.K.: Mapping the ESG-corporate finance literature in India: systematic literature review, bibli-
ometric analysis and future directions. J. Indian Bus. Res. 17(2), 135-163 (2025)

[27] Agarwal, A., Arya, P.K,, Patil, H., Laheri, V.K.: Assessment of market performance and influencing factors of Indian initial
public offerings (IPOs). Indian J. Finance 19(4), 40-59 (2025)

[28] Laheri, V.K,, Lim, W.M., Arya, P.K., Kumar, S.: A multidimensional lens of environmental consciousness: towards an
environmentally conscious theory of planned behavior. J. Consum. Mark. 41(3), 281-297 (2024)

[29] Sharma, H., Arya, P.K., Agarwal, A.: Business intelligence systems’ effect on start-up companies’ decision-making and excel-
lence management processes. In: Proc. [EEE KHI-HTC 2024, Tandojam, Pakistan, pp. 1-6 (2024).

[30] Nigam, N.K,, Singh, K., Arya, P.: Impact of gender diversity in boardroom on risk-return profile of Indian corporates. J.
Indian Bus. Res. 14(3), 213-230 (2022)

1119


https://cleanairact.org/wp-content/uploads/2023/05/emmay23_AAPCA-article.pdf
https://cleanairact.org/wp-content/uploads/2023/05/emmay23_AAPCA-article.pdf

