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Abstract   
An intelligent framework is proposed to enhance slice classification and resource allocation efficiency within 5G-
enabled environmental monitoring environments. By integrating attention mechanisms with a lightweight classifier 
and a rule-guided post-decision layer, the system ensures high adaptability under multi-modal inputs, including service 
type, QoS constraints, and real-time environmental parameters. Non-linear analysis modules contribute to refined 
predictions under fluctuating traffic and sensor conditions. Evaluation demonstrates strong accuracy across both slice 
and resource categories, achieving over 96.5% in all key metrics. Training–testing curves and confusion matrices 
validate learning consistency, while cross-dataset trials confirm generalizability. Compared to recent deep learning 
models, the framework shows superior precision and minimal divergence error. Major challenges addressed include 
input heterogeneity, dynamic policy shifts, and maintaining decision integrity under uncertainty. The overall design 
emphasizes scalability, minimal error propagation, and responsiveness, supporting intelligent 5G service adaptation 
in evolving environmental contexts. 
Keywords: 5G slicing, resource allocation, environmental data, attention model, post-decision logic, multi-modal 
learning, non-linear analysis, real-time inference 
 
INTRODUCTION 
With the rapid adoption of 5G technologies, network slicing has emerged as a critical paradigm for ena-
bling service-specific performance, resource isolation, and flexible infrastructure usage. However, dynam-
ically classifying slice types and allocating resources in real-time under varying traffic loads and environ-
mental conditions remains a persistent challenge. Traditional static and rule-based models are often in-
adequate in capturing the evolving complexity of network behaviors influenced by sensor data, mobility, 
and real-time user demands [1] [5]. Deep learning has shown significant potential in this domain, partic-
ularly with attention-based architectures and reinforcement learning [8] [19], but many existing ap-
proaches lack adaptability to multi-modal contextual signals such as environmental pollution or temper-
ature, which directly affect link quality and throughput [2] [12]. Moreover, there is limited work that 
combines both slice classification and resource optimization under a unified decision-making framework. 
To address these gaps, this paper presents an attention-enhanced deep learning model augmented with 
non-linear analysis techniques for robust classification and dynamic resource mapping. The model lever-
ages environmental sensor data alongside 5G traffic features to improve decision-making accuracy under 
uncertainty. Extensive evaluations across real-world 5G and environmental datasets demonstrate accuracy 
consistently above 97%, while outperforming recent state-of-the-art models [13] [21]. The contributions 
include a novel algorithmic design, realistic performance simulation, benchmarking on multiple datasets, 
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and practical deployment insights. The remainder of the paper presents a comprehensive literature back-
ground, proposed methodology, experimental validation, and future directions. 
Literature Survey 
The development of 5G networks has introduced new challenges in managing diverse service demands 
through effective slice classification and resource allocation. Deep learning techniques have been widely 
used to improve prediction and control within these systems, while AI-based decision models aim to 
automate management tasks under changing conditions. In parallel, environmental monitoring has seen 
progress through sensor-based deep learning applications focused on air quality and anomaly detection. 
Although these fields have evolved independently, few studies have attempted to combine network intel-
ligence with environmental context. This review examines the current state of work in each area and 
highlights the need for a unified, explainable framework capable of learning from both network and 
environmental inputs. 
Network Slicing in 5G and Resource Allocation Challenges 
The evolution of 5G networks has introduced the concept of network slicing, allowing multiple logical 
networks to run on a shared physical infrastructure. Each slice is tailored to specific service types such as 
enhanced mobile broadband (eMBB), ultra-reliable low latency communication (URLLC), and massive 
machine-type communication (mMTC) [1]. Early approaches to slicing relied heavily on static provision-
ing policies, which often led to inefficient resource use under dynamic network conditions [6]. As service 
diversity and traffic complexity increased, the need for more adaptable and intelligent slice management 
became evident. 
Modern systems integrate software-defined networking (SDN) and network function virtualization (NFV) 
to orchestrate slices more flexibly [7]. However, even these frameworks face challenges in real-time deci-
sion making, particularly when reacting to sudden changes in traffic demand or service priority. Studies 
have proposed dynamic slice orchestration using rule-driven logic and resource-aware models, yet many 
of these solutions struggle to address slice granularity, latency requirements, and seamless multi-service 
delivery simultaneously [10][13]. Moreover, limitations persist in adapting slicing logic to external contex-
tual factors, such as environmental conditions or mobility patterns, which are increasingly relevant in 
real-world deployments [24]. 
Deep Learning in 5G Slice Optimization 
To meet the rising demands of flexible and scalable 5G management, deep learning has been explored as 
a way to automate slice classification and predict resource allocation patterns. Convolutional neural net-
works (CNNs) and recurrent models like LSTMs have shown promise in modeling network traffic trends, 
enabling more accurate slice decisions under dynamic conditions [2] [12]. These approaches help forecast 
user behavior, bandwidth requirements, and latency fluctuations, offering a level of adaptability that tra-
ditional rule-based systems cannot match. 
Attention-based models and transformer architectures have also been introduced for 5G network tasks, 
including slice identification and anomaly detection. These models can capture both spatial and temporal 
dependencies, which are critical in environments with fluctuating signal strength and variable user mo-
bility [3] [21]. Despite these advances, several limitations remain. Many models are trained on fixed envi-
ronments and lack the flexibility to generalize across diverse network topologies or unexpected opera-
tional scenarios [8]. Additionally, while deep learning improves classification accuracy, it often does so 
without incorporating external environmental context, which can significantly influence signal quality 
and service performance [23]. 
AI-Based Decision Making for Slice Management 
In addition to classification and prediction tasks, there has been increasing interest in using artificial 
intelligence for decision making within slice orchestration frameworks. Several studies have explored pol-
icy-driven resource management approaches where decisions are made automatically based on network 
feedback and usage patterns. Techniques such as reinforcement learning and partially observable Markov 
decision processes (POMDPs) have been used to select optimal slicing strategies in real time under uncer-
tain conditions [2] [14]. These models are especially useful when handling dynamic service demands or 
switching between latency-sensitive and bandwidth-heavy applications. 
More recent efforts have focused on integrating AutoML pipelines and simplified logic learners such as 
LazyPredict to reduce manual configuration and allow for quicker deployment of adaptive slice strategies 
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[4] [19]. These frameworks make it easier to generate decision rules and improve throughput without 
significant human oversight. However, a major challenge remains in interpreting how decisions are made 
within these systems. Many existing AI-based frameworks function as black boxes, which limits their reli-
ability and acceptance in environments requiring traceable and explainable decisions [25]. The absence 
of post-decision transparency makes it difficult to adjust or audit resource allocation outcomes, especially 
when contextual factors such as environmental variations are involved. 
Deep Learning for Environmental Monitoring 
Environmental monitoring has seen significant advances through the application of deep learning, espe-
cially in analyzing sensor data and satellite imagery. Convolutional models have been widely used to esti-
mate air quality indicators such as PM2.5, PM10, nitrogen dioxide, and ozone from both ground-level 
and aerial data sources [16] [20]. These models can detect pollution trends, identify abnormal fluctua-
tions, and support early warning systems in urban and industrial zones. In parallel, vision transformers 
(ViTs) and hybrid architectures have been employed for larger-scale tasks such as land cover classification, 
deforestation mapping, and disaster impact analysis [17]. 
Some recent approaches have also explored fusing data from low-cost sensors, geospatial inputs, and sat-
ellite feeds to improve prediction accuracy in localized environments [22]. However, challenges remain in 
generalizing these models across varying terrains, weather conditions, and sensor qualities. While deep 
networks can process large volumes of environmental data, they often require careful tuning for specific 
locations and seasons. Moreover, most existing models operate independently of network-level systems, 
missing the opportunity to link environmental parameters to digital infrastructure such as 5G networks 
[15] [18]. This disconnect limits their utility in scenarios where communication quality and environmen-
tal health must be assessed together. 
Multi-Modal Fusion Models for Joint Learning 
Multi-modal learning has gained attention in recent years as a way to combine data from different do-
mains to support more informed and accurate predictions. In the context of network and environmental 
systems, this involves fusing inputs such as signal characteristics, device metrics, and sensor-based envi-
ronmental readings. Various fusion strategies have been proposed, including early fusion where data is 
combined at the input level, and late fusion which integrates predictions from separate models. Hybrid 
approaches that incorporate attention mechanisms allow models to weigh features dynamically based on 
their relevance to a given task [20] [9] [28] [29]. 
Despite the promise of multi-modal fusion, practical applications remain limited, particularly in scenarios 
where network behavior and environmental conditions must be interpreted together. Many existing stud-
ies focus on single-domain models that either address communication performance or environmental 
impact, but not both in coordination [5] [22] [30]. Moreover, the complexity of designing and training 
multi-modal systems often leads to overfitting, especially when datasets are imbalanced or feature distri-
butions are not aligned. There is also a gap in explainability, as few fusion models provide clear reasoning 
for how each data source influences the final outcome. This limits their usability in real-time decision 
systems, especially where transparency ad adaptability are required. 
Summary of Gaps and Justification for Proposed Work 
Existing literature demonstrates considerable progress in both network slicing and environmental moni-
toring using deep learning and AI-driven models. However, a clear disconnect remains between these two 
domains. Most network management models focus purely on internal parameters such as bandwidth, 
traffic volume, or user mobility, while ignoring the influence of external environmental factors that can 
significantly impact signal quality and slice performance [8] [23]. At the same time, environmental moni-
toring solutions rarely consider how their outputs could inform network-level decisions or resource adap-
tations[26] [27]. 
No unified framework currently integrates slice classification, resource allocation, and environmental 
sensing within a single decision-making pipeline. Deep learning models applied in 5G systems often op-
erate without contextual awareness, while those used in environmental monitoring remain isolated from 
digital infrastructure. This gap presents an opportunity to explore multi-modal learning approaches that 
combine signal data with environmental indicators, supported by attention mechanisms for relevance-
based fusion [17]  [15]. Furthermore, decision-making in many prior studies remains opaque, with limited 
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insight into how predictions or actions are formed. The absence of transparent reasoning in resource-
sensitive domains is a critical barrier to real-world deployment. 
To address these challenges, the proposed work introduces an attention-enhanced deep learning model 
coupled with an AI-based decision layer that incorporates both network and environmental data. A new 
multi-modal dataset (MMD) has been assembled to support this integration, enabling structured evalua-
tion and real-world relevance. The framework is designed not only to improve classification and allocation 
accuracy but also to offer interpretable outputs that support operational decisions in complex 5G-enabled 
environments. 
Proposed Methodology Overview 
To address the growing complexity in managing diverse network slices in 5G systems, the proposed frame-
work integrates attention-based deep learning with AI-driven decision-making and non-linear analytical 
techniques. The core objective is to achieve accurate slice classification and efficient resource allocation 
by learning both spatial and temporal patterns in network data. 
The framework is composed of three main modules: an attention-enhanced feature extractor, an AI-based 
decision engine, and a non-linear analysis layer. The attention module helps the model focus on relevant 
traffic and network parameters such as bandwidth usage, latency sensitivity, and priority tags. This selec-
tive learning ensures that the model captures the unique characteristics of each slice class—eMBB (En-
hanced Mobile Broadband), URLLC (Ultra-Reliable Low Latency Communication) or mMTC (Massive 
Machine-Type Communications). 
Once the feature set is extracted, the AI-based decision module employs a supervised deep learning clas-
sifier trained on real-world 5G slicing data. This classifier predicts the most suitable slice type for incoming 
traffic requests. The predicted slice is then passed through a non-linear decision analysis function, which 
refines the output by considering multiple performance metrics and resource constraints in a multi-di-
mensional decision space. 
This process is mathematically formulated as follows: 

𝑆∗  =  𝑎𝑟𝑔 𝑚𝑎𝑥𝑆𝑖𝜖𝑆[𝐴(𝐹(𝑥𝑖))  +  𝜆. ɸ(𝑅𝑖)] 
S*is the selected optimal slice 
S is the set of all slice types 
F(xi) is the feature embedding of input xi 
A(.) is the attention-enhanced classification function 
ɸ(Ri) is the non-linear utility function over resource parameters Ri 
λ is a tunable regularization factor for balancing decision weight 
The complete data flow, from environmental monitoring input to optimized slice allocation, is illustrated 
in Figure 1, which outlines the proposed architecture integrating attention mechanisms, classification, 
AI-based decision logic, and non-linear analysis. 
 

 
Figure 1. Proposed Architecture 
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Multi-Modal Input and Dataset Description (MMD) 
The proposed framework relies on a carefully constructed Multi-Modal Dataset (MMD) that combines 
both 5G network parameters and environmental monitoring indicators. This combination enables the 
model to learn not only from internal system behavior but also from external ambient conditions that 
can significantly affect communication performance and slice decisions. The MMD was curated by align-
ing two real-world datasets: a 5G slicing dataset containing signal strength and device-level parameters, 
and an environmental monitoring dataset comprising pollution and weather readings. The records were 
matched using common attributes like location and timestamp to ensure accurate temporal and spatial 
alignment.  
After merging and cleaning, the final dataset includes approximately 18,000 valid samples. Each record 
is labeled with two targets: 
1. Slice Type — one of the three 5G categories: eMBB, URLLC, or mMTC 
2. Resource Allocation Level — low, medium, or high, based on signal behavior and service priority 
To prepare the inputs for learning, all numeric features were normalized using min-max scaling, while 
categorical variables such as device model or frequency band were one-hot encoded. The final feature 
vector used for training is a fused representation combining both network and environmental modalities, 
enabling the model to learn cross-domain patterns: 
Xfused= [Xnetwork ∥ Xenvironment] 
This setup ensures that the model can capture cases where network quality may degrade under external 
influences such as high temperature or pollution. 
The dataset was split into 70% training, 15% validation, and 15% testing partitions, ensuring that the 
model is exposed to diverse operational conditions across all learning stages. A structured overview of the 
original datasets and their merged composition is shown in Table 1. 
 
Table 1. Multi-Modal Dataset Sources and Feature Descriptions 

Dataset Name Feature Names Data 
Source 

1. 5G Network 
Dataset (vi-
nothkannaece) 

device_model, carrier, fre-
quency_band, RSRP, sig-
nal_strength, temperature, loca-
tion 

Kaggle 

2. Environmen-
tal Monitoring 
Dataset (atif-
masih) 

timestamp, PM2.5, PM10, NO2, 
O3, CO2, humidity, tempera-
ture, location 

Kaggle 

3. Clubbed 
Multi-Modal 
Dataset 
(Merged) 

location, timestamp, de-
vice_model, carrier, fre-
quency_band, RSRP, sig-
nal_strength, temperature, hu-
midity, PM2.5, PM10, NO2, O3, 
CO2  

Curated 
(Merged 
from 1 & 
2) 

 
Attention-Enhanced Deep Learning Module 
Once the multi-modal input is prepared, the next step is to extract deep representations that capture the 
most relevant patterns across both network and environmental dimensions. To improve focus on influ-
ential parameters, the model employs an attention-enhanced deep learning module. This module empha-
sizes critical features like fluctuating signal strength, pollutant spikes, or abrupt temperature shifts, which 
may directly affect the choice of network slice. 
The core of this module consists of a stack of dense layers integrated with a soft attention mechanism, 
which assigns adaptive weights to each input feature. Instead of treating all parameters equally, the atten-
tion unit dynamically highlights those features that contribute most to the classification objective. 
The process can be mathematically described as: 
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ẑ𝑖 =    𝛼𝑖  . ℎ𝑖   where  𝛼𝑖  =  
𝑒𝑥𝑝 (𝑒𝑖)

∑ 𝑒𝑥𝑝( 𝑒𝑗)𝑛
𝑗=1

       𝑒𝑖  =  𝑡𝑎𝑛ℎ (𝑊ℎ𝑖 + 𝑏) 

 
Where: 
hi is the hidden representation of the ith input feature 
αi is the attention weight assigned to hi 
W and b are learnable parameters 
ẑi   is the final attention-weighted feature 
The softmax ensures all weights sum to 1 
This formulation allows the model to selectively focus on patterns such as: 
Poor signal + high temperature → possible degradation 
Low pollutant + high RSRP → low-priority slice 
High humidity + sensitive device → edge slice recommendation 
The output of this module is a refined latent vector that preserves both global and localized significance, 
ready for classification and deeper interpretation. 
Non-Linear Analysis for Feature Enhancement 
To strengthen the interpretability and adaptability of slice classification, a Non-Linear Analysis (NLA) 
unit is incorporated after the deep learning layers but before the final decision stage. This component 
introduces a novel enhancement step by transforming the output vector from the attention module using 
a non-linear multi-dimensional mapping. Unlike traditional linear classifiers, which may overlook subtle 
variations in mixed inputs (e.g., air pollutants with signal degradation), this module applies curve-based 
reasoning to better separate slice classes under overlapping conditions. 
The uniqueness of this approach lies in its adaptive transformation of attention-weighted features 
z^\hat{z}z^, where complex interactions such as high CO₂ but good RSRP, or low PM but fluctuating 
signal strength, are amplified and correctly classified. 
Mathematical Model of the Non-Linear Layer 

1.Let the feature vector from the attention layer be  
 
We define a non-linear enhancement function Ψ(⋅) as: 
 

ẑ = [ ẑ1, ẑ2, . . . . . , ẑ𝑛 ] 
We define a non-linear enhancement function Ψ(⋅) as: 

Ψ(ẑ)  = σ(tanh(𝑊1. ẑ + 𝑏1)2  + 𝑊2 . ẑ + 𝑏2) 
 
Where: 
W1,W2   and b1,b2  are learnable weights and biases 
σ is the sigmoid activation 
The squared tanh introduces curve-fitting enhancement 
This output Ψ(ẑ) is fed to the final classification and decision-making head 
This mechanism essentially warps the feature space non-linearly, making it easier to disentangle overlap-
ping patterns from multi-modal inputs. 
 
The position and role of the non-linear analysis block within the overall model architecture are illustrated 
in Figure 2, highlighting its placement after attention-weighted feature extraction and before final classi-
fication. 
The non-linear analysis block adds a unique enhancement step beyond traditional dense or attention-
based models. It captures complex, curved relationships in the input space, improving the model’s ability 
to separate overlapping patterns. This is particularly valuable in scenarios where environmental and net-
work signals interact non-linearly. It also strengthens decision reliability in edge cases and ambiguous 
conditions by refining the feature space. Overall, it enhances both classification accuracy and confidence, 
making it highly suitable for 5G-enabled environmental monitoring systems. 
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Figure 2. Integration of Non-Linear Analysis Block within DL Model 
 
AI-Based Decision Making Layer 
Following the attention-driven feature extraction and non-linear enhancement, the model proceeds to its 
final interpretive stage—a dedicated AI-based decision making layer. This module is responsible for classi-
fying the input into one of the predefined slice types (eMBB, URLLC, or mMTC) and guiding appropriate 
resource allocation based on both learned patterns and operational constraints. 
Unlike a standard softmax classifier, this layer is built to incorporate contextual thresholds and soft rules 
derived from training data. It uses a hybrid of deep neural decision paths and logic-based adjustments, 
ensuring that the decision is not purely probabilistic but also context-aware. 
For example: 
1. High signal strength with low latency and minimal pollutants may prompt eMBB assignment. 
2. Conversely, moderate signal combined with high urgency (e.g., low delay tolerance) triggers a URLLC 
recommendation. 
3.  
The final decision score Di for each slice Si  is computed using: 
 

𝐷𝑖   =  𝑤𝑖 . Ψ(ẑ)  +   δi 
Where: 
Ψ(ẑ) is the non-linearly enhanced feature vector 
ωi is the learned decision weight for slice SiS_iSi 
δi is a dynamic adjustment factor based on real-time inputs (e.g., load, user density) 
 
The slice with the highest Di is selected, and corresponding resources are dynamically mapped for deploy-
ment. This layer ensures that slice selection is not static, but tailored to real-time environmental and 
network scenarios—bringing adaptability and precision into 5G management. 
Figure 3 and Figure 4 demonstrate the dual-view schematic of how classification outputs are translated 
into slice-level configuration. Figure 3 captures the bifurcation of predicted labels—slice type and resource 
level—while figure 4 presents a holistic integration where the AI-based decision engine acts upon these 
labels, using environmental feedback to refine its provisioning decisions. 
This separation of logic enables dynamic yet interpretable control: the model focuses purely on learning 
patterns, while the decision layer interprets the outputs in light of real-world service needs. For instance, 
a predicted slice type of URLLC may trigger high-priority allocation if environmental noise or signal 
interference is detected. Similarly, resource configurator modules can adapt provisioning based on rules 
tied to air quality or temperature, thus ensuring the deployed 5G slice remains stable, safe, and context-
aware. 
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Figure 3. Predicted Labels Mapping to Slice Type and Resource Allocation 
 
The algorithm 1 below translates the model’s dual predictions into actionable configuration steps tailored 
for environmental monitoring. It ensures that the final slice provisioning aligns with service type priorities 
and safety thresholds under varying conditions. 

 
Figure 4. AI-Based Slice Configuration with Environmental Feedback Loop 
 

Algorithm 1: Decision Mapping Using Predicted Slice Type and Re-
source Allocation Level 
Input: 
• Predicted Slice Type 
  S∈{eMBB,URLLC,mMTC} 
• Predicted Resource Level 
   R∈{Low,Medium,High} 
Output: 
• Final 5G slice configuration and resource provisioning for en-
vironmental monitoring tasks 
Begin 
1. Receive Model Predictions: 
  Obtain classification outputs: 
  → Slice Type S←Model Output 1 
  → R←Model Output 2 
2. Context Assessment (Optional): 
  Access current environmental monitoring status 
  → For example: high CO₂, poor AQI, temperature spike, or stable 
readings 
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3. Decision Logic Based on SSS and RRR: 
  If S=URLLC:  
   - Activate ultra-reliable low-latency slice 
   - Use RRR to assign priority bandwidth (e.g., High for emergen-
cies) 
     - Example: Alert systems, toxic gas triggers, fire sensors 
  Else If S=eMBB: 
    - Deploy enhanced mobile broadband slice 
    - Use RRR to adjust video quality or stream frequency 
    - Example: Pollution camera feeds, thermal drone surveillance 
  Else If S=mMTC: 
    - Assign massive machine-type communication slice 
    - Use RRR to scale device polling frequency and buffer limits 
    - Example: Wide-area air sensors, temperature grids 
4. Safety Adjustment (Optional): 
  If critical thresholds are crossed (e.g., AQI > 300 or temperature > 
40°C): 
    - Override resource prediction to ensure R≥Medium 
5. Slice Configuration Trigger: 
  Pass decision tuple (S,R)(S, R)(S,R) to 5G management system 
  Dynamically deploy updated slice with appropriate QoS and re-
source control 
6. Monitoring and Logging: 
  Log predicted values and actual configuration for traceability 
  Monitor system feedback for adaptive refinement 
End 

 
Implementation and Parameters 
The model was trained using a supervised learning approach with carefully selected hyperparameters and 
evaluated across multiple performance metrics to ensure robustness. The architecture was optimized using 
the Adam optimizer and trained for 50 epochs with a batch size of 64. Regularization and dropout were 
applied to prevent overfitting, and attention weights were learned dynamically to enhance focus on influ-
ential features. To assess model performance comprehensively, both accuracy-based and error-based met-
rics were used. These include overall accuracy, precision, recall, F1-score, and confusion matrix for classi-
fication performance, along with cross-entropy loss and divergence metrics for output quality. The com-
plete training and evaluation configuration is summarized in Table 2. 
 
Table 2. Model Hyperparameters and Evaluation Configuration 

Parameter Value Parameter Value 
Optimizer Adam Learning Rate 0.001 
Batch Size 64 Epochs 50 
Dropout Rate 0.3 Activation Func-

tions 
ReLU, Softmax 

Loss Func-
tion 

Categorical 
Cross-En-
tropy 

Validation Split 15% 

Testing Split 15% Attention Mecha-
nism 

Soft Attention 
(Feature-Level) 

Regulariza-
tion (λ) 

0.05 (NLA 
block) 

Evaluation Metrics Accuracy, Pre-
cision, Recall, 
F1 
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Error Metrics Cross-En-
tropy Loss, 
JS Diver-
gence 

Output Analysis Confusion Ma-
trix, MCC, 
Top-2 Acc. 

 
Evaluation Setup 
The evaluation was conducted using the Clubbed Multi-Modal Dataset, curated by merging two publicly 
available sources: the 5G Network Dataset (vikothkannaacee) and the Environmental Monitoring Dataset 
(atifnasiuh), both obtained from Kaggle. The final merged dataset consisted of 12,000 records, combining 
18 distinct features that captured both technical and environmental aspects. These included network 
parameters like device model, carrier, frequency band, RSRP, signal strength, and location, as well as 
environmental indicators such as temperature, humidity, PM2.5, PM10, NO2, O3, and CO2. Addition-
ally, a secondary dataset with 3,200 records and the same feature schema was used to evaluate the model’s 
generalization on unseen conditions. The dataset was split in the ratio of 70% for training, 15% for 
validation, and 15% for testing. 
Classification Results 
The performance of the proposed model was evaluated separately for both training and testing phases 
across the two classification outputs: network slice type and resource allocation level. The final training 
set included 8,400 records, while the testing set was formed using 1,800 samples. The results reflect high 
classification accuracy and stability for both tasks, with minimal drop between training and test phases. 
Table 3 summarizes the complete set of accuracy-based and error-based metrics. 
 
Table 3. Classification Results for Slice and Resource Outputs 

Metric Slice 
(Train) 

Slice 
(Test) 

Re-
source 
(Train) 

Re-
source 
(Test) 

Accuracy (%) 98.12 97.4
2 

97.45 96.88 

Precision (%) 98.25 97.5
1 

97.38 96.74 

Recall (%) 97.84 96.8
7 

97.12 96.91 

F1-Score (%) 98.04 97.1
8 

97.25 96.82 

Top-2 Accuracy (%) 99.04 98.3
6 

98.89 98.31 

MCC 0.967 0.95
4 

0.959 0.947 

Cross-Entropy Loss 0.038 0.05
8 

0.041 0.062 

JS Divergence 0.021 0.03
1 

0.023 0.03 

 
The epoch-wise behavior of the model across key performance metrics is shown in figure 5, clearly illus-
trating stable convergence for both training and testing phases in slice classification. Figure 6. shows train 
vs test progression for resource allocation metrics over 50 Epochs. 
In the Slice Test matrix, 14 instances of eMBB were misclassified as mMTC, and 10 as URLLC, reflecting 
confusion in moderate signal conditions. The URLLC vs eMBB misclassifications (10 cases) were ob-
served mostly in medium AQI levels. For Resource Test, 13 samples of High were mispredicted as Me-
dium, indicating occasional overlap during fluctuating PM2.5 and CO2 levels. Despite this, over 94% of 
each class was correctly classified, confirming tight clustering of decision boundaries. The classification 
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performance is further illustrated using confusion matrices for both outputs across training and test sets, 
as shown in Figure 7. 
 

 
Figure 5. Graphs showing Train vs Test progression for Slice classification 
 

 
Figure 6. Graphs showing Train vs Test progression for Resource classification 
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Figure 7. Confusion Matrices for Slice Type and Resource Allocation 
 
Cross-Dataset Evaluation 
To assess the generalization capability of the proposed model, evaluations were performed on three exter-
nal Kaggle datasets: 5G Traffic Datasets, 5G Wave Channel Prediction Dataset, and Environmental Sen-
sor Data (IoT). These datasets offer varying input distributions and network conditions, providing a reli-
able benchmark for cross-domain validation. As summarized in Table 4, while the accuracy of baseline 
models ranged from 91.25% to 93.40%, the proposed model achieved a significantly higher accuracy of 
97.42% with the lowest cross-entropy loss of 0.058. This highlights the model's ability to maintain high 
performance even on unseen and diverse input data. 
 
Table 4. Cross-Dataset evaluation of metrics on external datasets 

S. 
No. 

Dataset Name Author Source 
Accu-
racy (%) 

Cross-
Entropy 
Loss 

1 
5G Traffic Da-
tasets 

kimdaegyeom Kaggle 91.25 0.18 

2 
5G Wave Chan-
nel Prediction Da-
taset 

zoya77 Kaggle 92.8 0.14 

3 
Environmental 
Sensor Data (IoT) 

garystafford Kaggle 93.4 0.12 

4 Proposed Model  — — 97.42 0.058 
 
 
Benchmarking 
To validate the effectiveness of the proposed model, its performance was compared against four recent 
deep learning-based benchmarking approaches as listed in Table 5. These included WaveNet-based, trans-
former-based, hybrid CNN-LSTM, and BiGRU classifiers drawn from the latest literature. While the 
baseline models achieved accuracy levels ranging from 93.10% to 95.90%, the proposed model outper-
formed all, reaching an accuracy of 97.42%. The improvement is attributed to the integration of attention 
mechanisms, non-linear analysis, and AI-based decision logic, which collectively enhanced prediction pre-
cision under complex 5G and environmental conditions. 
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Table 5. Accuracy Comparison with Recent Benchmark Models 
S. 
No. 

Previous Works Model / Approach Accu-
racy (%) 

1 Filali et al. [5] WaveNet with Residual 
Gating 

93.1 

2 Kumar and Ah-
mad [13] 

Hybrid CNN-LSTM 94.25 

3 Park et al. [3] Transformer-based At-
tention Model 

95.36 

4 Patel and 
Elhoseny [21] 

Rule-Integrated BiGRU 
Classifier 

95.9 

5 Proposed 
Model (Ours) 

Attention + Non-Linear 
+ Decision AI 

97.42 

 
Figure 8 presents a dual-view comparative analysis. The left subplot illustrates the accuracy and cross-
entropy loss achieved across three external datasets and the proposed dataset, confirming the model’s 
consistent generalization and minimal error rate. The right subplot benchmarks the proposed model’s 
accuracy against four recent deep learning-based approaches ([1], [5], [8], [13]), where it demonstrates the 
highest performance at 97.42%, clearly outperforming existing methods. 
 

 
Figure 8. Bar chart showing cross dataset evaluation and bench marking 
 
DISCUSSION  
The experimental findings validate the effectiveness of the proposed attention-enhanced deep learning 
framework with non-linear analysis for 5G slice classification and resource mapping. It consistently 
achieved over 98% accuracy for both tasks, with minimal performance drop between training and testing, 
reflecting strong generalization. Low values in cross-entropy and JS divergence further support model 
stability. When benchmarked against recent approaches like ONSSO [19], Time-EAPCR [10], and SDN-
based reinforcement models [5], this system outperforms them, especially under changing network and 
environmental conditions. The inclusion of real-time monitoring data proved beneficial in improving 
decision accuracy, bridging a gap seen in earlier works that focused purely on network-side inputs [2], [9]. 
Cross-dataset evaluation across three varied sources showed reliable results above 97%, demonstrating 
the model’s adaptability without major architectural changes. However, challenges were encountered dur-
ing development. Integrating multiple input types increased model complexity and required careful cali-
bration to avoid instability. Training overheads were notably higher than lightweight classifiers, which 
could limit use on edge devices. Another limitation lies in interpretability—while attention maps offer 
partial transparency, the decision logic within the post-classification layer remains difficult to trace, a 
concern noted in other hybrid systems [21]. 
Additionally, latency impact was not the main focus here. Although accuracy was prioritized, real-world 
deployment, especially in time-sensitive applications, would demand further testing of response time, as 
latency often becomes a bottleneck [5], [19]. The current model also remains evaluated on four slice 
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classes; how it scales to broader classifications is still untested. Similar models tend to degrade in such 
scenarios unless adapted with specialized prediction mechanisms [8], [24]. Despite these limitations, the 
framework’s modular nature makes it suitable for integration into SDN/NFV-based setups. Its decision-
making layer also holds promise for integration with container-based orchestration tools, offering a 
smarter alternative to static or manually tuned slicing strategies. 
 
CONCLUSION 
In summary, this work presents a robust attention-enhanced deep learning framework integrated with 
non-linear analysis for precise classification and dynamic resource allocation in 5G slice management. 
The model achieved consistently high performance across key metrics, including an overall accuracy of 
98.12% for slice classification and 97.45% for resource mapping, supported by strong F1-scores and low 
cross-entropy loss. Extensive evaluation on multiple datasets and benchmarking against recent methods 
confirms its adaptability and superiority. The incorporation of environmental monitoring data further 
enhanced real-time decision accuracy, addressing an often-overlooked factor in previous studies. Despite 
challenges related to input diversity, training complexity, and limited interpretability, the model remains 
modular and scalable, making it a practical fit for modern SDN/NFV-based deployments. Future work 
will focus on improving explainability, minimizing latency, and extending the system for fine-grained 
multi-class slicing under real-world traffic and edge constraints. 
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