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Abstract: This paper describes an organized approach that is used to identify and categorize crop diseases through
deep learning and uses image data (taken on crop leaves). The paper uses an investigation to examine how
convolutional neural networks (CNNs) and especially the transfer learning practice can be used to improve disease
detection across various crop species. The model was able to be precise in identifying disease patterns through training
on crop-based data and subsequently displaying a high accuracy in classification with a fairly small quantity of training
samples. Rotation, flipping, and zooming augmentation methods are strategically used to reinforce the model
performance and the ability to handle more datasets with consistency and therefore counter the effects of smallscale
and unbalanced datasets. The paper also explores real-time location of disease using state-of-the-art object detection
models such as YOLO so that infected areas in leaf images can be accurately identified and annotated to have fine-
grained management of the disease. Such a thorough comparison of different deep learning architectures and the
measure of their performances is implemented to conclude which of the deep learning architectures is the most viable
in practical implementation in precision agriculture. As the findings show, the CNN-based models, especially those
with the use of the transfer learning, are more accurate and efficient when it comes to both the predictive qualities
and the efficiency of the models. These results point to the scalability and feasibility of deep learning to detect and
then interfere early in the disease and to achieve lasting crop management practices. Finally, the study contributes to
the body of agricultural automation research which enables farmers to seek proactive approaches to crop protection.
Keywords: Deep learning, crop disease detection, convolutional neural networks, transfer learning, leaf images,
precision agriculture, disease classification, object detection.

1. INTRODUCTION

One of the most important industries in the world is agriculture, which supplies food, raw materials and
a job to billions of individuals. Nevertheless, diseases in crops are a major concern on the world food
security as there has been an economic imbalance in most areas because of shrinking harvests. Historically,
identification and management of crop diseases has been achieved through manual means by farmers,
and this is a costly, time-consuming and labor-intensive process which is not particularly effective since it
may lead to huge losses in terms of yield. The world is experiencing a rising pressure on food demand
raised by a population rise and it is therefore, important to consider creative ways that can enhance
agricultural productivity. The idea that will be discussed as one of the solutions is the incorporation of
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the modern technology, especially the deep learning technology, into automating the crop disease
detection process, thus having faster and more accurate disease management.

Artificial intelligence (AI) and machine learning (ML) have changed the games in different industries in
recent years and agriculture is no exception. Deep learning is a subfield of machine learning with
incredible capabilities applied in tasks of image recognition where Convolutional Neural Networks
(CNNps) also come to play. CNNs have proved to be powerful in learning spatial hierarchies of features
on raw pixels data which makes them of great value when it comes to applications like image classification
issues, object discovery, and segmentation. These functions are specifically applicable in agriculture where
the detection of the disease requires analysis of images of plant leaves, stems and fruits.

Some of the conventional ways of detecting crop diseases require the help of an expert to look through
the crops or undertake some chemical analysis, which is tedious to undertake and requires experts in the
field. A potent alternative to this is the development of deep learning models, the CNNs. The models are
able to scan photos of crop leaves as if they were humans themselves to detect evidence of illness, and can
in many cases be more competent than their human counterparts in speed and precision. Moreover,
CNNs can be trained on huge numbers of labeled data, which enables CNNs to identify diseases in a
large number of crops and with varying environmental conditions. The current research paper, titled
AgroVision: Deep Learning-Based Crop Disease Detection of Leaf Images, is meant to address the viability
of deep learning and more specifically CNNs in computer automatizing crop diseases identification using
leaf photos.

The main aim of this study would be to come up with a fast and effective deep learning model that could
precisely distinguish the various forms of crop diseases using the images of the leaves. This research
attempts to enhance the performance of the proposed model in disease recognition, which is particularly
limited in extant datasets, by relying on a transfer learning approach, wherein pre-trained models are fine-
tuned through using domain-specific datasets. One application of transfer learning has been its use in
image classification; it has been demonstrated that models which have been trained on very large-scale
image classifications (including ImageNet) can be fine-tuned to render more specialised, specific uses
(including crop disease detection). This method allows combating the difficulties associated with the
insufficient amount of data, which is usually an issue in agricultural research.

Early detection of diseases is vital in the case of disease detection of crops. Identification at an early stage
ensures that solutions are put in place in time before the spread of infections, and even chemicals that
can cause negative environmental and economic effects will be minimized. Nevertheless, disease
symptoms may be low prompting them to be noticeable especially before they become conspicuous and
evident. CNN Deep learning models are able to deal with this challenge in terms that they can
automatically learn to detect these faint edges, and indicators of illness. Training the deep learning model
on a large set of labeled images of leaves, the model can be specifically trained to distinguish between
healthy and diseased leaves infected with a wide range of diseases, bacterial, fungal, viral infections, etc.
One of the main merits of the approach based on deep learning to the detection of crop diseases is its
applicability to complex and high-dimensional data. Feature extraction is a domain-expert-requiring,
manual and error-prone process in conventional image analysis methods. Deep learning models such as
CNNg, in contrast, automatically uncover the pertinent features of the images in the course of the training
and are therefore extremely capable of detecting advanced trends in the information. This removes any
opportunity of manual feature engineering so time and effort are also saved with the sensitivity of the
model increasing.

The other notable benefit of disease detection by deep learning is scalability. A well-trained model will
allow a deep learning algorithm to analyze a substantial amount of crop images, with which the farmer
will be able to check on the crop health in real-time. This is especially significant to the large scale farming
facilities, where it might not be possible to conduct manual inspection. Also, deep learning models could
be incorporated into other existing technologies, including drones, and mobile applications, enabling
farmers to receive immediate information about the condition of their crops. This can help them make
better decisions so that farmers can act to safeguard their crops even before they suffer serious losses due
to diseases.
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There are various adversities associated with deep learning in crop disease identification that should be
met. Such variability of crop images is among the primary challenges. The lighting, quality of the camera,
and even the environment under which these images are taken may influence the quality of the pictures
and how the pictures will look like hence the model does not have easy time generalizing things in
different settings. To address this fact, augmented data methods are usually used. Data augmentation
refers to the generation of variations to the initial training images using the transformations which include
rotation, scaling and flipping. This will further enhance diversity of the training data and make the model
learn to diagnose diseases in different settings.

The second issue is on availability of labelled data. To work, deep learning models must have a lot of
labeled training data. With the context of crop disease detection, a large and highly varying dataset of
labeled leaf images takes a lot of time and costs money. Here transfer learning would come in very handy.
Transfer learning allows improving the research performance on less data by reusing intermediate-level
experts to obtain high performance and utilizing crop-specific data instead of using the entire pool of
data. The said method has been proved very successful across numerous fields such as plant disease
identification.

Also, automating the detection of crop diseases is not always easy, particularly in the field run under
imperfect image conditions. When that happens the application of the tiny models, which may be
executed fairly well on mobile devices or edge computing frameworks, is essential. It is possible to use
such computationally efficient models as MobileNet and EfficientNet to detect crops diseases in real-time
on the field and allow farmers to get immediate feedback concerning the well-being of their crops. The
models are efficient and accurate hence possible in environments where resources are scarce.

The wider implication of this study cannot be underemphasized given the ways that it can collectively
change the entire agricultural practices in the whole globe. Deep learning model will fail to detect the
diseases through manual means, thereby enabling an earlier detection of diseases, less use of pesticides of
harmful nature, and ultimate crop yields by automating the process of disease detection. It could result
in more sustainable agriculture, since it avoids as much damage to the environment as the treatment of
crops with chemicals, at the same time it will curtail the extent of economic losses through crop illness.
In addition, combining deep learning and precision agriculture tools together may provide farmers with
an opportunity to make sound data-driven decisions, thus acting on their resources and achieving better
efficiency of overall agricultural processes.

Finally, this paper will show that deep learning strategies such as CNNs have proven helpful in automating
the identification of crop diseases using images of the crops. The research is aimed at training a powerful
model capable of accurate classification and detection of a varied set of crop diseases using transfer
learning and data augmentation paving the way towards a good crop disease detection suite to benefit
farmers all over the world. The opportunity to transform the way crop diseases are handled through deep
learning are immense as this promises greater efficiency, sustainability, and data-driven farming methods
to address the food security in future.

2. RELATED WORK

Deep learning approaches to crop disease detection have become trendy in the recent years. Plant diseases
are usually identified using the traditional methods which are either through visual identification by an
expert or by conducting chemical tests which are both labor intensive and costly. Nevertheless, the
introduction of deep learning, especially the Convolutional Neural Networks (CNNs), has led to the
major enhancement of accuracy, efficiency, and scale of detecting diseases in crops. With these
innovations of machine learning, identification and classification of diseases can now be automated which
made it extremely applicable to the contemporary agriculture.

Among the most frequent models of deep learning applied in detecting crop diseases, there is
Convolutional Neural Networks (CNNs). CNNs were widely used in image based task of object
recognition and classification. They have proven to be very successful in diagnosing crop diseases on the
basis of leaf images, because of their capability of acquiring self-supervised hierarchical features of
representations of raw images, without explicit feature extraction. CNN models are capable of identifying
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complex patterns of the plant leaves that might be difficult to identify by human experts. CNN application
has proved great results in identification of diseases on different crop species such as tomatoes, maize and
apples among others. The CNN-based models have great performance but they need a lot of data to train
it and this might not be easy to get in the agricultural environment.
In reaction to this problem, transfer learning has become an excellent strategy to enhance the execution
of the deep learning models, particularly under limited information. Transfer learning is a technique in
which is takes an already trained model, which usually has been trained on a very large, non-specific
dataset (ImageNet, in this case) and then modifies and customizes it to a desired task, which would be
crop disease detection in this case. Transfer learning uses the knowledge obtained through the large
dataset to be used in a smaller crop peculiar dataset so as to arrive at a high accuracy. This method, by

far, saves much time and computer power with training a model in its model set before, and thus, it is
more practical in the field of agriculture. Coupled together with transfer learning, CNNs have brought
about highly effective models that classify diseases of multi-crops. Table 1 describes some of the CNN
implemented approaches and models, their strengths, and limitations in the discussion of crop disease

detection.

Table 1: Summary of Deep Learning Models Used in Crop Disease Detection

Application

Model Type Methodology Advantages Challenges Domain

Convolutional | Utilizes Highly effective | Requires large | General crop

Neural convolutional layers | for  image-based | datasets, sensitive to | disease

Networks to extract features | tasks, automatic | image quality. detection

(CNNs) and classify diseases | feature learning.
from leaf images.

Transfer Fine-tuning pre- | Reduces training | Transfer from | Multi-crop

Learning (CNN- | trained models (e.g., | time,  performs | unrelated domains | disease

based) ResNet, VGG) on | well with limited | can lead to | classification
crop-specific datasets | data. suboptimal results.
for better accuracy.

Recurrent Used for sequence- | Effective in | Computationally Disease

Neural based disease | temporal  data, | expensive, requires | progression

Networks prediction, where | detects  disease | time-series data. prediction

(RNNG) images are analyzed | progression.
over time.

YOLO (You | Real-time object | Fast, real-time | May be less accurate | Real-time field

Only Look | detection framework | detection, can | in detecting small | disease

Once) for identifying and | locate diseases in | disease patches. detection
localizing diseases in | images.
crop images.

Faster R-CNN Combines  region | High  accuracy, | Requires high | Field-based
proposal networks | fast detection in | computational disease
with CNNs for faster | complex images. | resources, sensitive | localization
and more accurate to dataset variety.
disease localization.

EfficientNet Utilizes lightweight | Efficient and | Lower performance | Mobile-based
architectures for | scalable, ideal for | on small or highly | crop  disease
real-time disease | mobile and edge | specific datasets. detection
detection in | devices.
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Application

Model Type Methodology Advantages Challenges Domain

resource-constrained

environments.
Generative Generates synthetic | Augments limited | Training is complex, | Data
Adversarial data to augment | datasets, improves | requires careful | augmentation
Networks training sets for rare | model tuning. for rare
(GANG) diseases. generalization. diseases

As an example, pre trained networks such as ResNet and VGG have been commonly allocated to perform
transfer learning in crop disease classification. High classification accuracy is delivered by fine-tuning these
models to classify diseases through leaf images. Moreover, transfer learning enables the model to
generalize more between crops and so, it can be used to mitigate the waste product of many different
crops. Multi-crop disease classification The capacity to classify disease in multi crops comes in handy in
areas that consist of more than one crop categories in the sense that, it would allow farmers to utilize one
model on different crops instead of developing a different model on each crop. Nevertheless,
notwithstanding the assistance of transfer learning to settle the problem of the lack of data, the solution
still needs well-thought-out and marked datasets concerning crops. Such a requirement may become a
bottleneck in areas where there is no access to large, annotated datasets.

Recurrent Neural Networks (RNNs) is another famous model that is applied to detect crop diseases,
specifically Long Short-Term Memory (LSTMs), and Gated Recurrent Units (GRUs). RNNs are meant to
be used in sequential data, and these are suitable in cases where there is an element of time, including
the progression of a disease. Whereas CNNs are most suitable to extract spatial features of images, RNNs
are applied to time-series data or sequential image so that they were acquired during the plant growth at
different times. This may be especially applicable in tracking the transmission and growth of diseases,
which can give one an indication of how a certain disease evolves and transmits itself throughout the
years. But RNN-based models are computationally demanding and sometimes demanding to train with a
lot of time and resource, which is not always feasible in the real-time field applications.

Another big field where the deep learning models can be used is in the real-time detection and localization
of diseases. Object detection architecture such as YOLO (You Only Look Once) and Faster R-CNN has
demonstrated potential to not only predict the classification of the disease but also to identify affected
area of the plant leaves. This will be very important in precision agriculture where farmers will only know
the precise location of the disease on the plant just to administer specific treatment. Specifically, YOLO
has managed to perform well in real-time detection tasks because it is fast and efficient. The models can
be used on mobile phones or drones to take pictures of the crops in the field and give direct feedback of
knowing the presence and location of disease. As indicated in Table 1, object detection techniques such
as YOLO and Faster R-CNN are being used to detect the location of the disease both of which is critical
to the accurate and effective management of crop diseases.

Although object detection models such as the YOLO are handy and very quick to compute, when it comes
to small spots of the diseases on the leaves; they pose difficulties. Faster R-CNNs are however more precise
to detect lesions smaller in size and are more specific to localizing it, but they are computationally more
intensive and may not be as useful when real time fast- paced functions need to be carried out.
Nevertheless, when it comes to disease localization and classification, both models will bring tremendous
results when applied together with CNNs, creating a complete package in detecting diseases in farmlands.
Another important problem in crop disease detection is the difficulty to deal with the data quality and
image variability. The field photograph pictures can be widely different because of alterations in lighting,
camera, and environmental conditions. This unpredictability has the power of affecting the performance
of the deep learning models negatively as they are known to be very sensitive to these factors. In order to
resolve this problem, the methods of data augmentation are typically applied. Data Augmentation refers
to the act of using transformations to the training images, which may include rotation, flipping and
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scaling, to make a dataset more diverse and resilient. Deep learning models can learn increased
generalizability by boosting the data enabling them to perform optimally in varied conditions.
Augmentation of data also reduces overfitting which occurs in training deep learning models with small
datasets. This method has been successful in enhancing the accuracy of training deep learning models
used in detecting crops diseases particularly with a combination of transfer learning.

Table 2: Performance Comparison of Deep Learning Techniques in Crop Disease Detection

F1 Training
Model Accuracy | Precision | Recall | Score | Time Data Requirements
CNN (VGG, | 85%- 80%- 85%- | 82%- | High Large, labeled image
ResNet) 95% 92% 93% 92% dataset
Transfer Learning | 88%- 85%- 88%- 86%- | Moderate | Moderate, crop-
(ResNet, VGG) 97% 95% 96% 95% specific data
RNN (LSTM, | 75%- 70%- 75%- 72%- | Very high | Time-series crop
GRU) 85% 83% 85% 83% health data
YOLO 80%- 78%- 80%- 79%- | Low Real-time data, large
90% 88% 90% 89% set of images
Faster R-CNN 85%- 83%- 86%- 84%- | High Large, varied dataset
93% 91% 92% 91% for localization
EfficientNet 80%- 77%- 79%- 78%- | Low to | Large dataset,
90% 88% 89% 88% moderate mobile-optimized
images
GANs (for data | N/A N/A N/A N/A Very high Synthetic dataset
augmentation) generation

Another important situation that determines the extensive use of deep learning models in agriculture is
scalability. With such models trained, they may then be rolled out to analyze crop assemblages of larger
amounts in real-time monitoring of crop health. It would especially come in handy in farms with large
farming operations where it would be impractical to perform manual inspections. Lightweight and
efficient architectures such as EfficientNet can also be run on mobile computers or edge systems, and
thus they can be deployed where resource limitations are required. Through deep learning models, the
use of deep learning models in precision agricultural tools, including drones, remote sensors, and mobile
applications, the farmers may be in a position to manage and monitor their crops efficiently. Such devices
give immediate information to farmers about the condition of their crops so that they can take action
against the disease outbreaks before they become rampant.

Although the outcomes of deep learning models are promising, there are still issues to be addressed when
adapting these models to make possible their implementation in the agricultural environment.
Availability of good quality labeled data is a major set-back in areas where accessibility of large dataset is
not high. Also, using deep learning models in a setting is associated with the limitations of the
computational resources and real-time operation. To solve these problems, studies are more increasingly
finding ways of having more efficient models that will run on either mobile devices or cheaper hardware.
MobileNets and EfficientNets are lightweight architectures that have been promising on these
requirements, compromising between accuracy and computational costefficiency.

Comparative analysis of the performance of different deep learning models in crop disease detection is
shown in Table 2 with the focus on the following metrics: accuracy, precision, recall, F1 score, and the
training time. Such a comparison assists in the realization of the advantages and constraints of various
models that can be considered during identifying the most appropriate approach to different agricultural
uses. As an example, CNN-based models (e.g. VGG, ResNet) exhibit a high accuracy and precision
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however tend to have a high need of a large dataset and long training process. Since transfer learning
models work well with smaller amounts of data, they are more suitable to practical uses. On the same
note, real-time detection and localization will be performed well by models such as YOLO and Faster R-
CNN whereas tracking the progression of the disease over time will be carried out better by models based
on RNN.

3. PROPOSED METHODOLOGY

The way the given crop disease detection system, AgroVision: Deep Learning-Based Crop Disease
Detection from Leaf Images, is going to be made is as follows: the proposal implies the combination of
modern computer vision tools with deep learning. The aim is basically to build an effective system that
can be used to determine and group the diseases in crops by using their leaves images. The system is
trained on the convolutional neural network (CNN) framework with transfer learning, and the optimal
data preprocessing and augmentation procedures are used in order to create a model which is effective in
terms of differentiating the various environmental conditions and crop types.

Collect Crop Leaf Images

- " o’
‘.

)

Preprocess Images (Aesize, Normailze, Augment)

4
1

i -

Split Dataset into Traln and Test

)
Traln CNN Model (Transfer Leaming)

1

)

Evaluate Model Performance (Accuracy, Precision, Recall

‘.

)

Fine-tune Mode!

+ J
1

+

Deploy Model for Real-Time Disease Detaction

Figure 1: Flowchart of the proposed model

The methodology of the section is detailed and consists of six major stages, namely, the collection of data,
preprocessing of data, making the model, the training and assessment of the model, fine-tuning the
model, and the real-time deployment. Figure 1 represents the general layout of the methodology through
a form of a flowchart of the suggested strategy. All the sub-sections discuss these stages and elaborate on
the reasoning, procedures, and technicalities involved in the methodology.

1. Data Collection

The initial procedure under the suggested methodology is the acquisition of images of crop leaves. Quality
and a diverse dataset used to train any deep learning model are important. This is so because in the given
case, the dataset must be broad in terms of crop species and diseases, and include variations in the shape,
size, and the diseases on the leaf. A prime resource is currently available in the form of existing publicly
available datasets, any of which can be used as the main resource, e.g., PlantVillage dataset with leaf images
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capturing multiple crops with annotated diseases. Other pictures can be gathered in the nearby farms or
agricultural research centers to make the dataset more diverse and complete.
Every picture in the dataset is marked by the group of the disease it represents (bacterial spot, powdery
mildew, or Healthy, etc.). The labels are essential to the supervised learning process and they shall be
exploited in the training process of the model. The dataset obtained should also contain the change in
the environment, i.e., difference in lighting, the quality of the camera, and the angle at which the camera
captures to ensure that the model will be able to tolerate the real-life situation.
2. Data Preprocessing
Preprocessing of data is an important element in deep learning whereby raw images need to be cleaned
up. Images that are acquired can be crude and might have noise in them or range in scale, color, and
orientation and this would reduce the performance of the model. Therefore, it is required to normalize
the dataset and adapt it to be consistent by preprocessing.
Algorithm 1: Image Preprocessing for Crop Disease Detection
Input: Raw crop leaf images
Output: Preprocessed images ready for model training
1. Start
2. For each image in the dataset:
a. Resize the image to a standard size (e.g., 224x224 pixels).
b. Normalize the pixel values of the image to the range [0, 1] by dividing by 255.
c. Apply image augmentation techniques:
i. Rotate the image by a random angle (e.g., between -20 to 20 degrees).
ii. Flip the image horizontally with a probability of 50%.
iii. Apply random zoom to the image.
iv. Apply random shifts (height and width) to increase diversity in data.
d. Store the augmented image for training.
3. Return the preprocessed images.
4. End
The image preprocessing consists of resizing, normalization and augmentation. These preprocessing
techniques are described in algorithm 1. First, all the images should be downsized to a standardized size,
e.g. 224x224 pixels, as it is another typical input size of several pre-trained CNN models, e.g. ResNet and
VGGQG. Resizing is also useful in standardizing the information by making each of the pictures to have an
equal size and this is vital in feeding the pictures into the neural network.
Thereafter, normalization is used to adjust the pixel values of the images which go between [0-255] to
[0,1] range by dividing by 255. It will help to keep the input data within the consistent range thus avoiding
numerical instability whenever training the model.
Lastly, data augmentation strategies are used to artificially generate more diversity of the training set. Data
augmentation is the process of making the random transformations of the images, which may include
rotation, flipping, and zooming. This makes the size and variability of the dataset larger and leads to a
model being less exposed to overfitting. The particular augmentation techniques, used to stabilize the
model to variation in the input data, can be found in Algorithm 1. The pre-processed images are further
standardized into the training, validation, and the test groups, in such a way that during training and
tuning, the model is assessed using the unseen data.
3. Model Design
The design of the model is aimed at developing a deep learning model that allows to identify and classify
various diseases of crops based on images of the leaves. To undertake this work, Convolutional Neural
Networks (CNNs) would prove best as they are best at classification of images because they individually
learn the spatial hierarchies of features. This work is founded on the use of a transfer learning model,
where a pre-trained CNN model (e.g. ResNet, VGG, or EfficientNet) is used, where an already trained
model is trained on a very large dataset like the ImageNet dataset.
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The features of the CNN are initial trained to know the features peculiar to crop diseases. The first four
layers of the pre-trained model remain frozen and the last three layers are learnt on the crop disease
dataset. The procedure enables the model to remember the learned generalized features in ImageNet
dataset and uses it to identify crop diseases. The last output layer of the model is swapped by a fully
connected layer that computes a probability distribution over the potential disease classes (a class of
"healthy" is added).

The transfer learning strategy is beneficial since there is low demand of the enormous quantity of marked
data required since the model already comprehends low-level features such as edges and textures in big-
range ImageNet information base. With the use of a transfer learning procedure, the model would be
able to perform well in the case of a smaller crop-specific data sample.

4. Evaluation and Training

Training strategy and evaluation metrics used when training a deep learning model should be done with
great consideration. The inputs then pass through the preprocessed data to the CNN section whereby the
model unravels connections between the input images and output labels (diseases). The training
mechanism utilities the loss and an optimiser, as well as evaluation metrics.

Algorithm 2: Model Training Using Transfer Learning for Disease Classification
Input: Preprocessed crop leaf images, labeled dataset
Output: Trained deep learning model

1. Start
2. Load a pre-trained model (e.g., ResNet or VGG) with pre-trained weights.
3. Modify the final layers of the pre-trained model to match the number of disease classes in the dataset.
a. Replace the last fully connected layer with a new one that has the same number of neurons as the
disease categories.
b. Add a softmax activation function to output the probability for each class.
4. Freeze the layers of the pre-trained model (except for the newly added layers).
5. Compile the model with:
a. Loss function: Categorical Cross-Entropy (for multi-class classification).
b. Optimizer: Adam (or any other suitable optimizer).
c. Metrics: Accuracy, Precision, Recall.
6. Split the preprocessed images into training and validation sets.
7. Train the model:
a. Input the training set to the model.
b. Use the validation set to monitor performance and adjust hyperparameters.
c. Save the best performing model based on validation accuracy.
8. Fine-tune the model by unfreezing some of the earlier layers and retraining with a lower learning rate.
9. Return the trained model.
10. End

The loss function employed is Categorical Cross-Entropy that is suitable when the classification problem
is multi-class. The Adam optimizer is employed in performing effective weight updates involving the back
propagation process. The key metrics that will be applied to identify the performance of a model during
training include accuracy, precision, recall, and Fl-score since the primary goal of using these measures is
to understand the level of the models being used to differentiate among different classes of diseases. These
parameters are useful in checking overfitting, underfitting and steering model parameters accordingly.
To train the model, the training dataset is exploited and to test the model at every epoch, the validation
set is exploited. The model with the highest validation accuracy score is stored in order to be fine-tuned
further and tested on a test set. The next phase of data processing uses Algorithm 2 to suggest how to
check the performance of the model and select the best hyperparameters to classify the disease.
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5. Precision to the Model

The final process of improving the model is fine-tuning. The model may not be optimized after the initial
round of training and therefore some further optimization is required. Fine tuning implies unfreezing
the upper layers of the pre-trained model to enable the model to further learn against the crop disease
dataset.

In this stage, the model has a lower learning rate that tries to avoid losing the features that it has learnt
during moderate changes. Fine-tuning can enable the model to recapture peculiarities of crop diseases to
enhance classification results in more challenging, or under-represented, disease classes. The results of
the model performance are once again checked by the validation set and the most performing version of
the model will be stored.

6. Real-Time Deployment

The trained and optimized model is ready to be utilized in real-time detection of the disease. In the
suggested approach, the model can be embedded in a convenient system that is able to process the images
of crop leaves on-site, using mobile devices, drones, or even field-based static cameras. The deployment
in real-time needs the optimization of the model to be in performance and efficiency.

A lighter weight variant of the model like MobileNet or EfficientNet is deployed. These models have a
low computation cost, and hence they are appropriately applied in mobile or edge computing applications
since these environments have few computational resources. The trained model can be applied to
diagnose the disease present on the leaves in real-time thereby giving real-time feedback to the farmers so
that they can take proper actions in time. The real-time disease detection system may also be combined
with the farm management software to monitor the outbreaks and assist the farmers with making data-
oriented decisions related to using pesticides and taking care of their crops.

Figure 1 presents the entire methodology of the process of data collection to real-time deployment, and
the flow of the suggested approach is represented. Automating the process of detecting the disease reduces
the time and manpower that are used in monitoring the crop and it increases the efficiency in detection
of diseases.

4. RESULTS AND DISCUSSION

The evaluation of the proposed deep learning based model of crop disease is captured. The findings
demonstrate the advantage of the transfer learning methodology, namely ResNet50 model, to accomplish
high levels of accuracy, efficiency, and optimization of resources in crop disease detection. The
performance of a model is measured using different scores including model accuracy, precision, recall,
and F1 score. Also, a comparison with other baseline models, as well as the consideration of time and
resources used during the inference, is given.

1. The performance measures of models

The given ResNet50 model showed its superior results in the disease identification of crops, as presented
in Figure 2 and Table 3. The model had diagnostic accuracy of 94.5 percent which implies that it is very
reliable in the identification of the diseases. This came with an accuracy rate of 92.7 percent and a recall
of 93.2 percent indicating that the model is able to make the least possible cases of false positives and the
false negatives. The precision and recall-balancing metric, F1 score achieved 92.9%, which confirmed the
fact that the model is both accurate and efficient in detecting diseases without too much loss of precision
or recall values.
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Figure 2: Model Performance Metrics Comparison

The ResNet50 model performed better when compared to the other models by giving an accuracy of
91.44 as compared to the accuracy of 90.1 and 91.8 of VGG 16 and EfficientNet respectively. InceptionV3
obtained the worst results with an accuracy of 88.4, and the custom CNN model obtained the worst
results, with the accuracy of 82.3. The outcomes of Table 3 prove that ResNet50 is a model that is
optimized to be utilized in the crop disease detection project and has the best trade-off between the
performance and resource consumption.

Table 3: Model Performance Metrics

Model Accuracy (%) | Precision (%) | Recall (%) | F1 Score (%)
ResNet50 (Proposed) 94.5 92.7 93.2 92.9
VGG16 (Transfer Learning) | 90.1 89.2 88.5 88.8
EfficientNet (Base Model) 91.8 90.5 90.9 90.7
InceptionV3 88.4 87.5 85.9 86.7
Custom CNN Model 82.3 80.1 81.2 80.6

2. Confusion Matrixing Analysis

The use of confusion matrix in Figure 3 divulges the capability of the proposal in distinguishing between
healthy leaves and the specific diseases classes. As could be seen, most of the predictions are on the
diagonal, which means that they are accurate. There were more accurate predictions situated in the
Healthy category (500) and the Bacterial Spot and Powdery Mildew ones with quite a few
misclassifications.

Confusion Matrix for Disease Classification
Heoalthy 5 ‘o 5
Nacterial Spot

£ Powdery Mildew
4

Leaf Blight

Earty Blight

Eatly Big

=
2
- s
¥ x
.é
&

Procictea

Figure 3: Confusion Matrix for Disease Classification
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There were however small cases of misclassification between Bacterial Spot and Powdery Mildew in 12
and 6 cases respectively. In spite of the above, the model demonstrated a good score in all the disease
categories and the minimal misclassification cases suggest that the model could be an effective solution
to handling similar diseases.

Table 4: Confusion Matrix for Disease Classification

Predicted \ Actual | Healthy | Bacterial Spot | Powdery Mildew | Leaf Blight | Early Blight
Healthy 500 15 10 8 7

Bacterial Spot 12 480 5 3 6

Powdery Mildew | 7 6 490 8 9

Leaf Blight 6 4 8 480 2

Early Blight 5 3 7 4 490

3. Hyperparameter Optimization

Table 5 also indicates the hyperparameters selection affecting the model performance. To adjust the
training procedure, a learning rate of 0.0001 was employed that is common to fine-tune pretrained
models. The batch size was chosen as 32 which would give an optimum balance of computation and
memory and 50 epochs were chosen to be sufficient in training. To prevent over training that would have
influenced the capacity of the model to generalize on unseen data, a drop out rate of 0.5 was placed.

Table 5: Hyperparameter Settings for Model Training

Hyperparameter Value

Learning Rate 0.0001

Batch Size 32

Epochs 50

Optimizer Adam

Dropout Rate 0.5

Input Image Size 224x224

Activation Function ReLU for hidden layers, Softmax for output
Loss Function Categorical Cross-Entropy

Early Stopping Patience | 10

These hyper parameters were chosen by considering the results of the preliminary tests, so that an optimal
efficiency of the model was implemented, as well as a lack of over fitting. Adam optimizer was used to
achieve faster convergence, whereas categorical cross-entropy loss function was adopted, which performs
best with multi-class classification issues. The early stopping criteria, whose value of patience was set to
10, avoided overfitting, and it was efficient to spare the pointless epochs.

5.Time of inference and real-time efficiency

The critical factor in the reality implementation of the model is the time it takes to detect the disease,
which is one of the primary factors when the search is finalized in real life situation. In Figure 4, it is
possible to note that the ResNet50 model with the highest accuracy realized within a special segment is
not capable of real-time work, as its inference time of one image has reached 0.12 seconds. Comparatively,
VGG 16 and InceptionV3 needed 0.14 and 0.15 seconds respectively per image. The MobileNet model
achieved the quickest inference time at 0.08 seconds but it reduced the level of accuracy someway as
compared to ResNet50.
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Figure 4: Hyperparameter Settings for Model Training

The outcomes of these show the following trade-off when considering the selection of the right model to
be used, the faster models such as MobileNet may be used to detect diseases in real-time and hence suitable
where the work is to achieve the most accuracy in the detection of diseases but models such as ResNet50
offer the best balance between speed and high accuracy above all considerations, which makes them more
applicable where greater accuracies are required to detect the crop disease. The high performance that is
exhibited by ResNet50 without a marked deterioration in the inference is quite feasible about its
application into the field.

5. Time ad Cost Efficiency of Training

The deep learning model needs a lot of computation to train a model to detect crop diseases. The crystal
clear summary of time and resource consumption in the training process is provided in Figure 5 and
Table 6 levels regarding the various models. Training the ResNet50 model in a GPU used 16 GB of
memory, and it was trained within 10 hours. Comparatively, VGG16 required 12 hours as well as 18 GB
of memory, whereas EfficientNet needed 8 hours and 14 GB of memory.

Model Inference Time for Disease Detection
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Figure 5: Model Inference Time for Disease Detection

On the other side, MobileNet was the least demanding model, only using 7 hours and a 8 GB memory.
This proves that even though ResNet50 is the more computationally demanding model, it provides an
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improved accuracy and robustness, which pays off in resources deployment. The findings also highlight
the scalability nature of the model since it is capable of large volumes of data but efficient performance
can be achieved without a lot of computational budget needed.

Table 6: Comparison of the Proposed Model with Baseline Models

Model Type Accuracy (%) | Precision (%) | Recall (%) | F1 Score (%)
Proposed (ResNet50) 94.5 92.7 93.2 92.9
Support Vector Machine (SVM) | 82.3 80.2 81.0 80.6
k-Nearest Neighbors (KNN) 79.5 71.3 78.0 717.6
Random Forest (RF) 83.9 81.5 83.2 82.3

6. Model Training Time and Resources Efficiency

Time and resource efficiency of training models also becomes important aspects to consider in practice
to make large scale adoption in agriculture. Figure 6 compares the training time and the memory usage
of various models. As it was seen, ResNet50 model, although resource intensive, offers excellent accuracy
and generalization and is thus a good trade-off where high performance is demanded. Nevertheless,
MobileNet is the model that is the tiniest in terms of resource consumption and training time, which is
why it would be the best fit to be used in a resource-limited environment, even though there is a minor
compromise made in its accuracy.

The findings show that, in the large-scale and high-performance applications in this field, despite the
larger number of resources needed, models, such as ResNet50 and EfficientNet, provide the most optimal
results due to their ability to increase by large measures the accuracy of disease classification. Conversely,
MobileNet works well in terms of its balance between performance and speed when used in
mobile/resource-constrained situations in which real-time applications are needed.
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Figure 6: Time and Resource Efficiency for Model Training

5. CONCLUSION

The described research indicates that deep learning and, in particular, transfer learning with the ResNet50
network works well when it comes to crop disease detection using pictures of leaves. The new approach,
AgroVision, implies a synthesis of advanced computer vision algorithms and real-time applicability in the
agricultural setting. With the benefit of the strength of convolutional neural networks (CNNs) and the
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keyword feature of ResNet50, the model was able not only to perform well in terms of accuracy and
robustness but also deliver an efficient solution to the agricultural environment in a real-world application
of disease detection.

According to the results of the research, it can be stated that the proposed ResNet50-based model is more
efficient than classic machine learning models and lighter CNN architectures, including VGG16 and
EfficientNet regarding accuracy, precision, recall, and F1 score. These measures affirm that the model can
significantly detect crop diseases, as well as classify the diseases efficiently, despite the fact that two or
more diseases manifest themselves in a similar way on the leaves. The model had impressive values of
accuracy 94.5, precision 92.7, and recall 93.2 indicating high reliance in the identification of the healthy
and diseased plants. The confusion matrix also shows how well the model is capable of differentiating
among different illnesses, with little misclassifications and therefore it is capable of being adapted to field
work of managing crops.

The researchers have also noted the benefits of applying transfer learning where the model would
capitalise on experience expected of large-scale image databank, i.e. ImageNet, to improve classification
results. It drastically decreases the volume of the labeled crop-specific data needed with the help of which
the model is trained, thus letting the model to maintain its performance even when the amount of data
is low. Such flexibility and scalability are guaranteed by the possibility to fine-tune a pre-trained model on
the data particular to crops and particular types of diseases. Freezing the lower stages of ResNet50 model
and training only the upper layers, we could capture the necessary characteristics of the model and reduce
the training cost of calculation.

Among the main advantages of the proposed system, it can provide real-time results which are very
important in the deployment in the field where the immediate feedback is required. This 0.12 second of
inference per image that was attained by the ResNet50 model will guarantee that the task of identification
of diseased plants can be conducted consequently fast and can enable farmers to respond with efficiency.
Although the MobileNet model resulted in shorter inference times, a trade-off in the accuracy was
significant, and ResNet50 was therefore chosen to be used in the mentioned application due to its
superior performance and the longer expected inference time, which is also acceptable in practice.
Besides, the work shows that despite the computational demands of the ResNet50 model, it qualifies to
be a potent solution in precision agriculture. It is reasonable to use the model training process which
consumed 10 h on a GPU and 16 GB of memory since the high accuracy and good generalization
obtained with it. Although such models as MobileNet are more resourceful and quicker to train, they are
not as accurate as ResNet50. This point places a very important choice regarding real-life application: the
ResNet50 model is the most accurate when there are enough computational resources available. But
lightweight models such as MobileNet might be more appropriate in situations that the application is
deployed in the field in real time, as long as there is a minor trade-off in terms of performance.
Although the findings are encouraging, there remain some challenges and the areas that have to be
improved on in the future. A disadvantage of the present model is that it uses pre-trained models and
demands a lot of computational resources during the training. Future work might look at compression
methods applied to models, including pruning or quantization, to compression the size of the model to
enable it to be more efficient without losing accuracy. That would especially help mobile and low-power
machines, and the model could be applied at more agricultural environments.

The other task to improve is the processing of real-world variation to environmental settings, example,
the lighting, leaf texture, and disease symptoms. This model has worked effectively with controlled data,
but with the data in the field, there are usually some more problems. Future research may aim at gathering
more different datasets in numerous agricultural areas to enhance the quality of generalization of the
model. Also, to increase the model robustness in the real world, data augmentation tactics, including the
imitation of the lighting and the background alteration, might be employed.

Moreover, although the proposed model demonstrates advanced in performance regarding the ability to
identify a wide range of common crop diseases, the opportunity to extend the ability of the model to
identify other diseases, in particular, less common or the ones that have milder symptoms, should be
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considered. The inclusion of the data belonging to other crops and diseases in the training set would
provide the model with the capacity to deal with various agricultural conditions and types of diseases.
To sum up, the suggested AgroVision system is a complete and effective system of crop disease detection
based on deep learning. High accuracy, real time and resources efficiency of the system make it an optimal
tool of modern precision agriculture. With the automated process of detecting the disease, farmers will
be able to recognize the problems and accordingly deal with them in time, thus limiting the losses on
crops and using fewer toxic pesticides. With more and more agriculture turning to technological
solutions, adoption of Alliterate disease detection technologies, such as AgroVision, will become
important to increasing food security and sustainable agricultural practices globally.

Increased accessibility of the deep learning models created in the agricultural sector can be researched
and optimized in future studies and methods used to increase model efficiency and generalization and
add more diverse data to their datasets, which will create valuable dividends to farmers and other
agricultural branches around the world.
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