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ABSTRACT 

This study presents a comparative analysis of the photocatalytic degradation efficiency of modified and commercial Gd ₂O₃, ZnO, 

and TiO₂ metal oxide catalysts for the removal of polyethylene (PE) microplastics under controlled laboratory conditions. Among 

the tested catalysts, modified ZnO exhibited the highest degradation efficiency of 78% under optimum conditions: 10 ppm PE 

concentration, 3-4 g/L catalyst dosage, pH 7, visible light irradiation for 2 hours at 303 K. This was followed by modified Gd₂O₃ 
(68%) and modified TiO₂ (58%) under the same conditions. All modified catalysts outperformed their commercial counterparts, 

while the photolysis control experiment showed less than 5% degradation. The enhanced photocatalytic activity is attributed t o 

improved charge separation, greater generation of reactive oxygen species (ROS), and increased surface adsorption capacity 

introduced by defect engineering and structural modifications. Negligible degradation in the absence of light confirms the do minance 

of photocatalytic mechanisms over photolysis or dark reactions. These findings underscore the potential of surface-modified ZnO as 

a highly effective catalyst for the remediation of microplastic pollution. 
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1. INTRODUCTION 

Microplastic pollution has become a pressing environmental concern, particularly in aquatic ecosystems, 

where it poses significant risks to biodiversity and human health. Among various microplastic pollutants, 

polyethylene (PE) microplastics are the most prevalent due to the widespread use of PE in packaging, 

consumer products, and industrial applications [1,2]. These microplastics are chemically stable, 

hydrophobic, and highly resistant to biodegradation, allowing them to persist in the environment for 

extended periods. Once introduced into aquatic systems, PE microplastics can adsorb and transport toxic 

chemicals, be ingested by aquatic organisms, and enter the food chain, thus threatening both ecological 

integrity and public health [3]. 

Conventional methods for removing microplastics such as filtration, coagulation, and sedimentation; 

mainly rely on physical separation and are often insufficient for complete removal. These techniques can 

be energy-intensive, generate secondary pollutants, and fail to degrade microplastics into harmless 

byproducts [4]. Hence, there is an urgent need for innovative, sustainable technologies capable of 

degrading microplastics at the molecular level [5]. Photocatalysis, which utilizes light energy to produce 

reactive oxygen species (ROS) for the breakdown of organic contaminants, has emerged as a promising 

and eco-friendly approach for microplastic remediation [6]. 

Metal oxide semiconductors, including titanium dioxide (TiO₂), zinc oxide (ZnO), and gadolinium oxide 

(Gd₂O₃), have been widely investigated as photocatalysts due to their chemical stability, low toxicity, and 

ROS-generating capabilities under light irradiation [7-9]. TiO₂ is the most extensively studied, though its 

wide bandgap restricts its activity mainly to the ultraviolet (UV) range. ZnO offers a similar bandgap but 

provides improved light absorption in the UV-visible region. Meanwhile, rare-earth metal oxides like 

Gd₂O₃, although less explored, possess distinctive electronic structures; particularly partially filled 4f 

orbitals that promote efficient charge separation and prolong the lifetime of photogenerated electron-hole 

pairs [10,11]. 
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Recent advancements have shown that surface modification, doping, and defect engineering can 

significantly enhance the photocatalytic performance of these metal oxides [7,12,13]. Such modifications 

aim to introduce oxygen vacancies, tune the band structure, and improve pollutant adsorption, thereby 

increasing ROS production. However, comparative studies evaluating the photocatalytic performance of 

different modified metal oxide catalysts under identical conditions especially for PE microplastic 

degradation remain limited. 

This study addresses this gap by systematically evaluating and comparing the photocatalytic degradation 

efficiency of modified and commercial Gd₂O₃, ZnO, and TiO₂ catalysts for PE microplastic removal. The 

investigation was conducted under controlled laboratory conditions, focusing on key parameters such as 

light exposure, pH, catalyst dosage, and pollutant concentration to ensure consistent and meaningful 

comparisons. 

The findings offer valuable insights into the performance of rare-earth-based photocatalysts relative to 

more conventional systems, highlighting the potential of surface-modified ZnO and Gd₂O₃ in 

microplastic remediation. This work contributes to the advancement of photocatalytic technologies for 

environmental sustainability and provides guidance for future catalyst development aimed at addressing 

the global microplastic crisis. 

 

2. MATERIALS AND METHODS 

2.1 Materials 

Gadolinium oxide (Gd₂O₃), zinc oxide (ZnO), and titanium dioxide (TiO₂) (all from MACKLIN) were 

employed as the primary metal oxide photocatalysts in this study. Polyethylene (PE) microplastic powder 

(MACKLIN) served as the model pollutant. Tween 80 (Chemiz) was added to facilitate uniform dispersion 

of microplastics in aqueous solutions. N,N-Dimethylformamide (DMF; ChemAR) was used as a solvent 

during catalyst modification. Nile Red dye (MACKLIN) was utilized for fluorescence-based quantification 

of residual microplastics, with dimethyl sulfoxide (DMSO; Merck) acting as a co-solvent for dye dissolution 

and microplastic detection. The pH of reaction mixtures was adjusted using 0.1 M hydrochloric acid (HCl) 

and 0.1 M sodium hydroxide (NaOH), both from QReC™. All chemicals were of analytical grade and 

used without further purification. Deionized water was used for all solution preparations and 

experimental procedures. 

2.2 Preparation of catalyst 

The modified Gd₂O₃, ZnO, and TiO₂ catalysts were synthesized via a combined microwave-assisted and 

impregnation method. For each metal oxide, the precursor powder was suspended in N,N-Dimethylformamide 

(DMF), selected for its chemical stability and effective dispersing properties. The suspension was subjected to 

microwave irradiation at 450 W for 15 minutes to promote particle activation and uniform energy distribution. 

This was followed by ultrasonication for 15 minutes to ensure homogeneous dispersion of the metal oxide 

particles within the solvent. The resulting suspension was gently heated at 60–80 °C under continuous stirring 

to evaporate excess DMF, forming a paste-like material. This paste was then dried at 105 °C for 24 hours to 

remove residual solvent and moisture. The dried product was subsequently calcined at 550 °C for 3 hours in 

air, using a controlled heating rate of 5 °C/min, to enhance crystallinity and eliminate remaining organic 

residues. The modified catalysts were allowed to cool naturally to room temperature and stored in airtight 

containers until further use [14,15]. 

2.3 Preparation of microplastics 

Polyethylene (PE) microplastics were selected for this study due to their widespread use, environmental 

persistence, and unique physicochemical properties that influence degradation mechanisms [2]. For 

spectrophotometric monitoring and visual tracking, the microplastics were stained with Nile Red, a 

lipophilic fluorescent dye known for its strong affinity to hydrophobic polymer surfaces [16]. A working 

dye solution (0.005 g/L) was prepared by a tenfold dilution of a 0.05 g/L Nile Red stock solution in 

acetone using n-hexane as the diluent. Approximately 200 mg of PE microplastics were immersed in 15 mL 

of the dye solution and incubated at 60 °C for 2 hours. A visible pink-to-violet coloration indicated 

successful dye adsorption onto the polymer surface. To enhance dispersion in aqueous media, Polysorbate 

80 (TWEEN 80) was added at a concentration of 100 mg/L [17]. This non-ionic surfactant reduced 
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interfacial tension, thereby improving the suspension of the low-density PE particles in water. The stained 

and surfactant-stabilized microplastics were subsequently diluted to final concentrations of 10, 20, 30, 40, 

50, 70, and 100 ppm representing contamination levels commonly detected in environmental samples. 

This standardized preparation enabled reproducible and environmentally relevant conditions for 

photocatalytic degradation experiments under visible light irradiation. 

2.4 Photocatalytic reaction testing 

The photocatalytic activity of the modified Gd₂O₃, ZnO, and TiO₂ catalysts was assessed based on their 

ability to degrade polyethylene (PE) microplastics. In each experiment, a specific amount of catalyst 

(corresponding to 3 g/L or 4 g/L, depending on the experimental condition) was dispersed in 50 mL of a 

10 ppm PE microplastic suspension. Tween 80 was added as needed to facilitate uniform dispersion of 

microplastics. Prior to irradiation, the suspension was magnetically stirred in the dark for 2 hours to 

establish adsorption–desorption equilibrium. Following equilibration, the system was exposed to light 

using a 300 W mercury vapor fluorescent lamp (or an equivalent visible/UV light source) positioned 

approximately 15 cm above the solution surface. The reaction temperature was maintained at 303 K 

throughout the experiment. At predetermined time intervals, aliquots were withdrawn from the reaction 

mixture, filtered to remove catalyst particles, and analyzed using a UV–Visible spectrophotometer 

(Thomas Edison LSS-U2900 Double Beam). Absorbance was measured at 243 nm to quantify the residual 

microplastic concentration. The degradation efficiency (%) was calculated to evaluate the photocatalytic 

performance, and to examine the effects of catalyst type, light conditions, and surface modification. 

2.5 Simple batch photoreactor system 

Photocatalytic experiments were carried out in a custom-designed batch photoreactor system. Illumination 

was provided by a Philips Lifemax TLD 18W/54 fluorescent lamp (13,000-hour lifespan; 6200 K), 

emitting in the 280–315 nm wavelength range. The lamp was positioned approximately 15 cm above the 

reaction flask, as illustrated in Fig. 1. Reactions were conducted in 50 mL Pyrex conical flasks placed 

within a light-tight chamber lined with aluminum foil to enhance light reflection and ensure uniform 

irradiation. Continuous stirring was maintained using a magnetic stirrer to achieve consistent catalyst 

dispersion throughout the reaction. The temperature within the reactor was regularly monitored to ensure 

stable and uniform thermal conditions during the photocatalytic tests [12,18]. 

 

 

Fig. 1. Photodegradation Batch Reactor System 

 

2.6 Determination of microplastic concentration 

The concentration of polyethylene (PE) microplastics was determined using a UV–Visible 

spectrophotometer (Thomas Edison LSS-U2900 Double Beam) by measuring the absorbance at 243 nm, 

corresponding to the characteristic peak of the TWEEN 80/PE complex. At predetermined time intervals, 

1.5 mL aliquots were withdrawn from the reaction mixture and centrifuged to remove residual catalyst 
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particles. The photocatalytic degradation efficiency (%) was calculated using the following equation: 

 

Degradation (%) = (C0 − Ct) x 100 

(1) 

where Co signifies the initial concentration and Ct represents a changing concentration. 

 

3. RESULTS AND DISCUSSION 

3.1 Photocatalytic performance of Gd₂O₃ 
The photocatalytic activity of gadolinium oxide (Gd₂O₃) in degrading polyethylene (PE) microplastics was 

evaluated under controlled experimental conditions: pH 7, catalyst dosage of 3 g/L, PE concentration of 

10 ppm, temperature of 303 K, and a reaction time of 2 hours. Both modified Gd₂O₃ (M-Gd) and 

commercial Gd₂O₃ (C-Gd) were assessed. The results indicate that M-Gd achieved a significantly higher 

degradation efficiency (68%) under visible light irradiation, compared to only 20% for C-Gd (Fig. 2a). In 

the absence of light, both catalysts exhibited minimal degradation activity (approximately 10%), while the 

photolysis control (light without catalyst) accounted for just 1%, confirming the negligible effect of direct 

photodegradation (Fig. 2b). The time-dependent degradation profile showed a rapid initial phase within 

the first 60 minutes, followed by a plateau, likely due to the saturation of active sites or the formation of 

low-molecular-weight PE fragments that are more resistant to further oxidation. 
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Fig. 2. Degradation efficiency of polyethylene microplastics: (a) comparison between modified 

Gadolinium (M-Gd) and commercial Gadolinium (C-Gd) catalysts, and (b) effect of lighting conditions 

(light, no light, and photolysis control) [pH = 7; W = 3 g/L; C = 10 ppm; t = 2 h; T = 303 K] 

 

The enhanced performance of M-Gd is attributed to the presence of Gd*⁺ ions and the structural 

improvements induced by the modification process [7,10,19]. Gadolinium’s partially filled 4f orbitals 

effectively trap photogenerated electrons, thereby reducing the recombination rate of electron–hole pairs 

and increasing the yield of reactive oxygen species (ROS), including hydroxyl radicals (•OH) and 

superoxide radicals (•O₂⁻), which facilitate the oxidative cleavage of PE polymer chains [7,10,19,20]. 

Furthermore, the modification is believed to have introduced oxygen vacancies and improved surface 

morphology, thereby increasing the catalyst’s surface area and adsorption capacity for microplastics 

[7,10,19,20]. The low efficiency observed in the photolysis and dark conditions underscores the necessity 

of photocatalytic activation for effective PE degradation. 

3.2 Photocatalytic performance of ZnO 

Figure 3 illustrates the photocatalytic performance of zinc oxide (ZnO) catalysts in degrading polyethylene 

(PE) microplastics. Experiments were conducted under acidic conditions (pH 3), using a catalyst dosage 
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of 3 g/L, PE concentration of 10 ppm, a reaction time of 2 hours, and a temperature of 303 K. The 

evaluation compares modified ZnO (M-Zn) and commercial ZnO (C-Zn) under various lighting 

conditions. Under visible light irradiation, M-Zn exhibited the highest degradation efficiency at 78%, 

significantly outperforming C-Zn, which achieved 50% (Fig. 3a). In the absence of light, degradation 

dropped to 19%, while photolysis alone resulted in only 4% degradation (Fig. 3b). The degradation rate 

was most rapid during the first 60 minutes, followed by a plateau phase likely caused by reduced availability 

of reactive oxygen species (ROS) or limited accessibility of the remaining microplastics. 
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Fig. 3. Degradation efficiency of polyethylene microplastics: (a) comparison between modified ZnO (M- 

Zn) and commercial ZnO (C-Zn) catalysts, and (b) effect of lighting conditions (light, no light, and 

photolysis control) [pH = 3; W = 3 g/L; C = 10 ppm; t = 2 h; T = 303 K] 

 

ZnO's strong photocatalytic performance is attributed to its effective generation of ROS under visible light 

[8,12,21]. The enhanced activity of M-Zn is likely due to defect engineering specifically, the introduction 

of oxygen vacancies and structural defects that function as electron traps, improving charge separation 

and boosting ROS production [22,23]. Additionally, the acidic pH may have facilitated proton-coupled 

electron transfer reactions and increased surface interactions between the catalyst and PE microplastics, 

thereby accelerating degradation [24]. The superior performance of M-Zn over C-Zn highlights the 

effectiveness of surface modification strategies in enhancing both photocatalytic reactivity and pollutant 

adsorption. Moreover, ZnO's relatively higher degradation efficiency under no-light conditions, compared 

to Gd₂O₃, may be attributed to the presence of residual surface-bound redox-active oxygen species capable 

of sustaining slow oxidative processes even in the absence of direct illumination. 

3.3 Photocatalytic performance of TiO₂ 
The photoatalytic efficiency of titanium dioxide (TiO₂) catalysts in degrading polyethylene (PE) 

microplastics is presented in Figure 4. Experiments were conducted at pH 3, using a catalyst dosage of 

4 g/L, PE concentration of 10 ppm, reaction time of 2 hours, and temperature of 303 K. Both modified 

TiO₂ (M-Ti) and commercial TiO₂ (C-Ti) were tested under light, no-light, and photolysis conditions. 

Under light irradiation, M-Ti achieved a degradation efficiency of 58%, slightly higher than C-Ti at 47% 

(Fig. 4a). In the absence of light, degradation dropped to 20%, while photolysis alone accounted for only 

4%. The time-dependent degradation curve (Fig. 4b) shows a steady but slower degradation trend 

compared to ZnO. TiO₂’s photocatalytic activity is well established and primarily attributed to its ability 

to generate reactive oxygen species (ROS) upon UV light excitation. However, its relatively wide bandgap 

(~3.2 eV) restricts light absorption to the UV region, resulting in lower efficiency under visible light 

compared to ZnO [8,9,22]. The modification process may have introduced surface defects or slightly 

narrowed the bandgap, but the improvement in performance was modest relative to ZnO [8,9,22,25]. The 
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20% degradation observed without light may be due to the presence of chemisorbed oxygen species or 

enhanced surface interactions under acidic conditions. Nevertheless, the process remains predominantly 

reliant on photocatalytic ROS generation. The slower degradation kinetics further reflect TiO₂’s 

comparatively lower ROS yield under the tested conditions. 
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Fig. 4. Degradation efficiency of polyethylene microplastics: (a) comparison between modified TiO₂ (M- 

Ti) and commercial TiO₂ (C-Ti) catalysts, and (b) effect of lighting conditions (light, no light, and 

dark/photolysis) [pH = 3; W = 4 g/L; C = 10 ppm; t = 2 h; T = 303 K] 

 

4. CONCLUSION 

This study systematically compared the photocatalytic degradation performance of modified and 

commercial Gd₂O₃, ZnO, and TiO₂ catalysts for the removal of polyethylene (PE) microplastics under 

controlled conditions. Among the tested materials, modified ZnO exhibited the highest degradation 

efficiency (78%) under light irradiation, followed by modified Gd₂O₃ (68%) and modified TiO₂ (58%). 

In all cases, the modified catalysts significantly outperformed their commercial counterparts, confirming 

that surface modification and defect engineering are critical for enhancing photocatalytic activity by 

improving charge separation and promoting reactive oxygen species (ROS) generation. The results also 

emphasized the essential role of light in activating photocatalysts. Degradation efficiencies dropped 

markedly in the absence of light, while photolysis alone was negligible. This highlights the predominance 

of ROS-driven photocatalytic mechanisms over non-photocatalytic or direct photolytic pathways. Notably, 

Gd₂O₃ demonstrated competitive performance, suggesting its potential as a viable alternative or 

complementary material to traditional semiconductors for microplastic degradation. The comparative 

data generated offer valuable insights into catalyst design and selection for environmental remediation 

targeting microplastics. Modified ZnO, with its superior efficiency and cost-effectiveness, emerges as a 

strong candidate for further development and scale-up. Meanwhile, the unique electronic properties of 

Gd₂O₃ merit further investigation, particularly in hybrid or composite systems where synergistic 

interactions could enhance photocatalytic performance. Future studies should focus on optimizing catalyst 

formulations, developing visible-light-active systems to improve energy efficiency, and evaluating catalyst 

stability and reusability under realistic environmental conditions. Additionally, mechanistic investigations 

involving intermediate identification and toxicity assessments are crucial to ensure the environmental 

safety of photocatalytic degradation products. Overall, this research provides a foundation for advancing 

practical and sustainable approaches to mitigate microplastic pollution in aquatic environments. 
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