

An Enhanced Model Of Efficientnet Convolution Neural Networks (Cnns) To Predict Brain Tumor Segmentation

¹Dr. A. Muthusamy, ²Dr. S. Maheswari, ³Dr. S. Anitha, ⁴Dr. C. P. Thamil Selvi, ⁵Dr. N. Vanitha and ⁶Dr. G. Saravanan

¹Assistant Professor, Department of Computer Technology, Kongu Engineering College, Perundurai, Erode, Tamil Nadu, India

²Associate professor, Department of Computer Science and Engineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Tiruchirappalli, Tamil Nadu, India

³Associate Professor, Department of Computer Science and Engineering (Cyber Security), Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India

⁴Associate Professor, Department of Artificial Intelligence & Data Science, Rathinam Technical Campus, Coimbatore, Tamil Nadu, India

⁵Assistant Professor, Department of Artificial Intelligence and Machine Learning, Coimbatore Institute of Technology, Coimbatore, Tamil Nadu, India

⁶Professor, Department of Artificial Intelligence and Data Science, Erode Sengunthar Engineering College, Thudupathi, Tamil Nadu, India

¹muthusamy.arumugam@gmail.com, ²bosedivyakannan@gmail.com, ³anithas@siet.ac.in,

⁴cptamil.selvi72@gmail.com, ⁵vanitha@cit.edu.in and ⁶gsaravanan.pacet@gmail.com

¹ORCID: 0000-0003-1889-0630, ²ORCID: 0000-0002-0296-4896, ³ORCID: 0000-0002-7954-6940,

⁴ORCID: 0009-0001-6151-9813, ⁵ORCID: 0000-0003-4142-0135 and ⁶ORCID: 0000-0001-8403-6606

ABSTRACT

Tumor forecast is as yet trying for the redesigned and current clinical innovation. Indeed, even now the explanation and all out restoring treatment or method of tumor isn't developed, after exploration performed on part of individuals influenced by cerebrum tumor some broad indications and its belongings are recognized. In view of finding it is anything but crucial to anticipate treatment. The entirety of the sorts of cerebrum tumor is formally renamed by the WHO. More than 120 kinds of mind tumors are identified, practically every type is having same manifestations and it's hard to foresee the analysis. We have proposed tumor expectation framework dependent on Deep Learning innovation utilizing the hybrid method of Convolution Neural Networks (CNNs) with EfficientNET CNNs. The calculation of this method is to take care of tumor forecast issues with the current image dataset. Thus the datasets with the manifestations and impacts are dissected and to give the previous admonition to the patients and it is likewise a lifeline to the patients.

Keywords: Mind Tumors, Brain Tumors, Segmentation, EfficientNet, Convolution Neural Networks (CNNs).

1. INTRODUCTION

Foreseeing the Brain tumor in beginning phase is preposterous in checking methods, for example, CT scan, MRI scan, X-Ray and so forth, Using CNNs Algorithm anticipating the mind tumor in beginning phase is conceivable. In CNNs Algorithm there are many shrouded layers which will extricate the little spores in the cerebrum utilizing this we can fix mind tumor in beginning phase itself [10]. It is identified that, a mind tumor will occurs were unreliable cell formation found innermost section of the cerebrum. The side effects may incorporate migraine, retching, issue with vision and mental changes. More explicit issues may remember trouble for strolling, talking, and with sensation. As the infection progress unconsciousness may happen. There are a few mind tumors in individual, gliomas is the most widely identified as vigorous tumors. The low level glioma is little vigorous than high level glioma as of now, medical procedure, radiotherapy, chemo therapy / a synthesis of them is utilized to cure the sick people.

The Nuclear Magnetic Resonance Imaging (NMRI) used for imaging procedure to distinguish such tumors effectively.

The precise segmentation of this tumor is significant for handling and assessing the patients at the time of treatment. Be that as it may, manual division is very tedious since the information delivered by MRI is enormous.

Thus, for the most part doctors utilize unpleasant measures to assess such tumors [12]. In addition, the division of mind tumor has done by various master raters utilizing the MR pictures.

There are varieties in the intra-tumoral structure, shape and once in a while in the area of the tumor revealed by various master doctors. So the researchers need some technical strategies for doing the division precisely within the limited amount of time. By utilizing CNNs the researchers partition the sorts of tumor for additional treatment [14].

In general, CNNs are used for pictures assertion. It is comprised of cell body with learnable weights and bias. Every cell body is obtained from few repositories to return an adequate value and force it to inception and reacts with output as various tested images [11]Convolution Layer is primary building square of a CNNs. The working of the convolution layer is clarified beneath. We characterize a channel and slide it over the total picture and en route take spot item between the channel and the pieces of the picture of create another picture. For each spot item taken, the outcome is a scalar (Each speck item gives a pixel of the new picture). Channel consistently broadens the full profundity of the information volume [13].The convolution layer includes a lot of autonomous channel. Each channel is freely convolved with the picture. There are a few convolution layer is successive request then the convolution will occur as appeared in the fig 1.

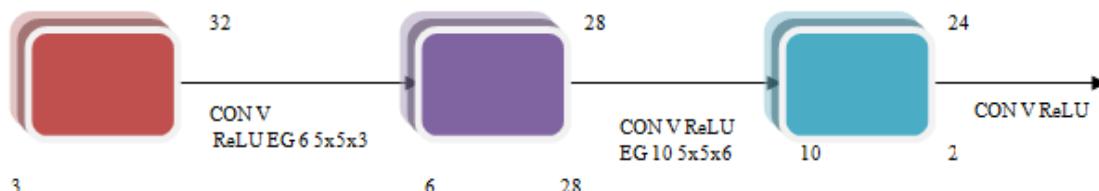


Figure 1: Convolution Layer

2. LITERATURE SURVEY

The researcher [1] proposed the cascade of fully CNNs to partition the overview of Magnetic Resonance Imaging (MRI) with mind tumor and enlarge with the section of tumor core. It is clearly summarized that using a rapid scheme of segmentation for ordered design are simple to train. It will minimize the over fitting portions of the images. The researcher [2] proposed segmentation of mind tumors using MRI based on CNNs consisting of Pre-processing, Classification and Post-processing phases. The researcher [3] compares the segmentation of a mind tumor with MRI and presents the results, issues, and challenges through BraTS 2018, consist of 210 high level and 75 low level glioma. In [4] the researcher demonstrated the mind tumor segmenting with its sub portions. By predicting the patient continuity using features of the images with an desirable output results in a complicated tasks. The researcher [5] proposed the automatic mind tumor segmentation method based on Deep Nets technique. The researcher [6, 9] evaluates and presents the results for brain, respiratory system, hepatic system etc. The researcher use MRI images to diagnose the tumor. The researcher [7] proposed an emerging technique of CNNs for segmenting the mind tumor. The researcher [8] has evaluated the intelligence of U-Net to detect the infected regions and evaluate the stability of the tumor.

CNN might quantify size of the mind tumors for patients, physical manifestations differ from patient to understanding .Some patients don't show general indications MRI sweeps of patients are more dependable than physical symptoms [9-14]. The researchers represent this issue as, From MRI check

pictures, programmed recognition and naming of the tumor districts, pixel-wise previous works utilizes physically manufacture highlights which are then use to identify tumor locales For some sort of tumors like gliomas and glioblastomas, discovery is exceptionally hard as perceiving highlights are uncommon. In addition to being diverse on each instance of the challenge, the multi-institutional mpMRIBraTS dataset has been continuously expanding and growing, making it difficult to determine the optimum machine learning methods for each of these jobs. This challenge was covered in [15]. A z-score normalization and long short-term memory wind turbine (LSTM)-based wind direction forecasting technique was presented in [16]. Before feeding the normalized data to the LSTM neural network for training, wind direction data is preprocessed using z-score normalization.

The usefulness of a unique Attention Gate Residual U-Net model and at present, the attention gate module for brain tumor segmentation work was investigated in [17]. This model takes into account the knowledge about small-scale brain tumors in addition to extracting a wealth of semantic information to improve feature learning capabilities. So such nonexclusive highlights are more averse to work out. To handle this issue, researchers entitled "Brain Tumor Segmentation with Deep Neural Networks" to propose start to finish profound learning pipeline which learns the highlights in cycles for better execution on the given undertaking. The association of the task will examine about, the writing overview of cerebrum tumor expectation venture, programming needed for the usage, and the general model implantation.

3. METHOD

There are various layers of open fields in the CNN hybrid when combined with EfficientNet. A CNNs design with excellent efficiency is the suggested approach. For efficiency, it equally scales depth, width, and image size. They are little neuron assortments of cycle bit information image yields the information districts cover to acquire a superior portrayal of the first picture; this is revised for each layer. The cerebrum displayed by neural network is essentially utilized for Vector Quantization (VQ), Opinion, Classification and Scaling etc. The Central Nervous System (CNS) is partitioned into input, feedback and intervals. It is separated into particular layer and multilayer network. It is identified that in single layer network the shrouded layer is never introduced. Despite of the multilayer network consist of information, concealed and outcome. The closest circle built the inception network named as alternate way of approach. In the ordinary neural network system the images are not able to change. In CNNs the images might be adaptable i.e. accepts 3D input volume to yield volume with width and height of the 3D images. The CNNs comprises of information, convolution, Rectified Linear Unit (ReLU) layer, pooling and completely associated layer in which the image is separated into various light weight sections. The component savvy enactment task is finished in ReLU layer; the pooling phase is flexible and it is mainly utilized for downward examining. The associated layers are utilized to create the class, score or mark based on the likelihood lies between 0 & 1 as shown in figure 2.

- **Step 1: MRI Pre-processing:** The issue employed with MRI information in managing antiques delivery both analogies in the attractive realm through patient in observation. Regularly bias above the subsequent outputs can control the effects of the division especially while configuring of PC models. A 4ITK inclination rectification is utilized on all kinds of (T1 & T1C) images available in the position of dataset are eliminated on all output stage. In addition, extra image pre-handling process requires normalization in which the pixel of MRI is communicated through self-assertive components and might be a gap between the utilization of machine and their examination time.
- **Step 2: Patch Extraction:** The following stage for determination is to extricate highlights. Feature extraction is the path toward describing a game plan of segments of the image attributes most adequately addresses the true information i.e. about the examination basics. Highlights can delegate the pixel control based on the features determined by the pixel strength, edge and surface based highlights. The component extraction methodologies like, histogram, robust features, Local Binary Pattern (LBP) etc. are used for object identification. In LBP the neighborhood double is an example for basic, speedy, and exceptionally productive technique for extracting the features from the surface

of image. By applying this technique the initial neighborhood portion of an image is chosen. At that point, the power focused in this portion is contrasted along with the pixel strength, a paired code is considered for every pixel indicated in the formulae. In-order to make the computation revolution with invariant pixels directions were not positioned at neighborhood which results in interpolation. Where, P speaks to the quantity of neighborhood pixels, R represents the local sweep, g_i refers to the local pixel strength, and g_c refers to the power of the central pixel.

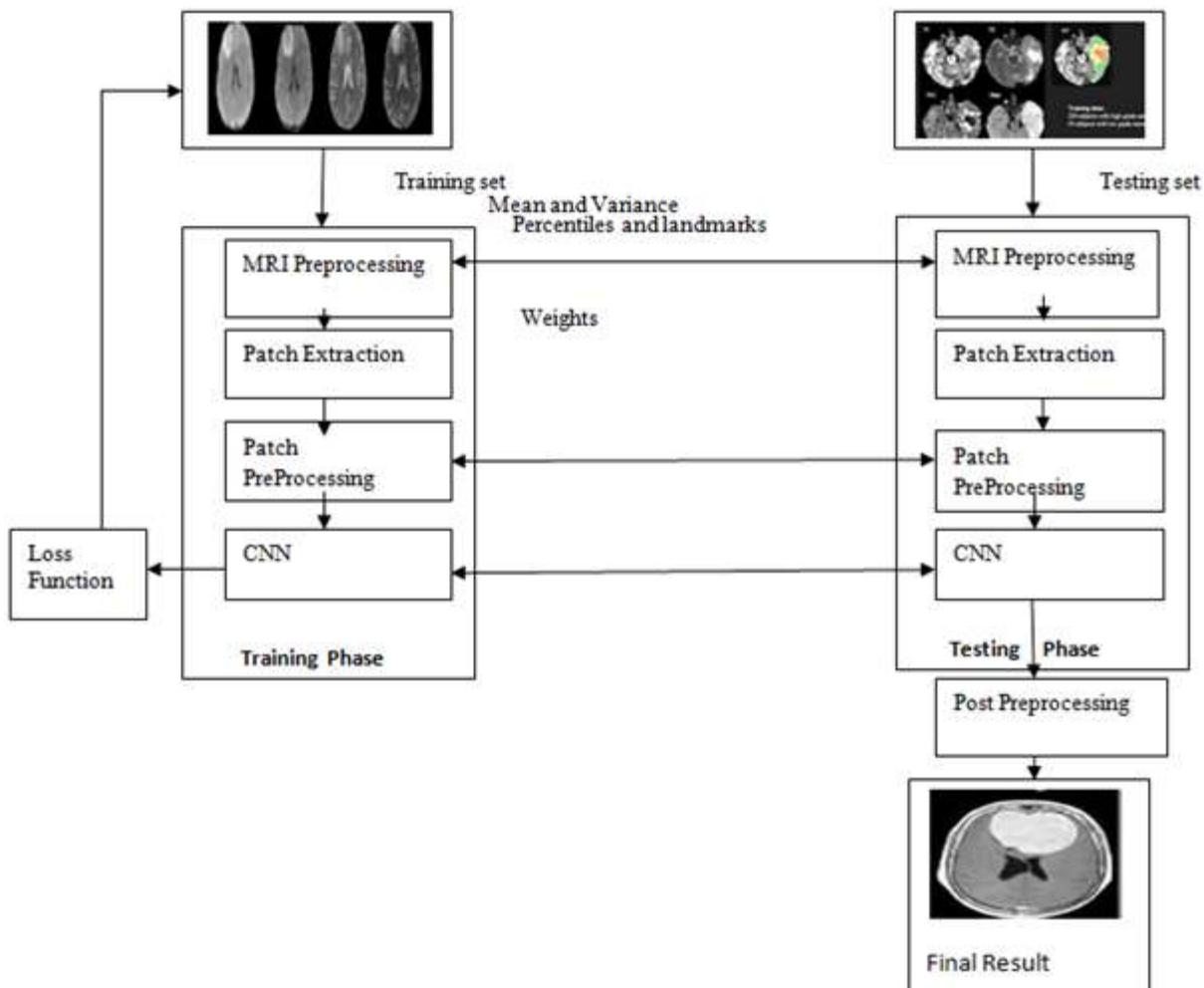


Figure.2: Brain tumor prediction using CNNs

- **Step 3: Patch Preprocessing:** The trained model was randomly selected 32 x 32 bits. The objective is to classify the midpoint of the pixel. The input has four channels assigned one for each image classification and the remaining can learn about the relative pixel intensities of each given class. The model is well trained and consisting of 50000 bits for six era. The trained model generally begins to over-fit for every six epochs and the accuracy on balanced class is estimated as 55%. In future, more training phases and updated methods will include for bits selection process.
- **Step 4: CNNs:** The CNN provides some advancement results with notable challenges to the researchers. The use of convolutional layers includes notations or an image in terms of bits / bytes of the data. The component in an element image is associated with the layers via the loads of the portions which are adjusted during preparation step by posterior engendering process, so as to improve the qualities of the information CNN are simple to prepare and low in over fitting.
- **Step 5 – Hybrid CNNs with EfficientNet:** Using the EfficientNet architecture as its encoder, the modified version of CNN that is used in the proposed technique. Efficiency and depth feature

extraction are combined with this proposed system. It has a reputation for retaining top performance with a small number of parameters and calculations.

- **Step 6 - Error Function:** Misfortune work is characterized as Straight out cross-entropy added over all pixels of a cut. The contribution of this research can be categorized into
 - ✚ The dataset per cut is as a rule legitimately took care of for preparing with little clump inclination plummet i.e. the researcher figuring and back-proliferating misfortune for a lot more modest number of patches than entire cut.
 - ✚ For each dataset, the researcher loads per class, coming about into weighted misfortune work. This is taken as measure to slanted dataset, as number of non-tumor pixels generally comprises dataset.

Algorithm 1: EfficientNET CNNs

Input: Input image I , Train Set Image T_s

Output: Brain tumor Segmentation B_s

Preparation:

1. MRI Preprocessing
2. Patch Extraction
3. Patch Preprocessing
4. CNNs
5. Brain Tumor Segmentation using EfficientNET CNNs method

Steps:

While (T_s)

1. $I_p \leftarrow$ process image preprocessing //Image normalization
2. $P_s \leftarrow$ Patch Extraction // Get the Local Binary Patterns (LBP) are used for object detection
3. CNN \leftarrow Detecting CNN layers flow estimation between Training set Images
4. EfficientNET CNNs \leftarrow CNN features are combined in EfficientNet.

End While

5. **for** $n = 1$ to z **do** // where z represents number of images in the training set
 - a. Image $I(n) \leftarrow$ Read the test Brain image.
 - b. Apply $I(n)$ to CNNs Model // layers preparation
 - c. Apply $I(n)$ to EfficientNET CNNs Model // Brain Tumor Segmentation with patch feature estimation
 - d. Segment Tumor Portion with image $I(n)$ using (EfficientNETCNNs)
6. Tumor position \leftarrow Result Segment portion
7. Display Segmented portion class

End for

4. IMPLEMENTATION

This section envisions the prototype implementation of the system which includes three steps namely Data Collection, Data Acquisitions and the analysis of the prediction system.

- **Data Collection:** An online source of Brain Tumor Segmentation (BraTS – 2015) dataset is used for the investigation of the proposed method which comprises of patient images as engineered pictures.

It is then partitioned into High Grade (HG) and Low Grade (LG) images in which the patient information is processed into T1, T1-C, T2, and FLAIR. The 5th image is the core value for every pixel then the element of the image is distinctive in LG with the measurement values are indicated as, 176,196,216 and for HG the measurement values are indicated as 176,261,160.

- **Data Acquisition:** The tumor tissues can be described as two diverse crashing represented as, T1 & T2 respectively. T1 refers to the consistent time requires to adopt the rate at which active protons arrival for balance. The amount of the time requires for operating protons to realign. T2 refer to steady time in which it decides the rate of strengthened protons arrive at balance phase with one another. The normal MRI schedule is T1& T2 weighted outputs. T1 weighted images are delivered by small TE & TR. The differentiation and brilliance of the images are mainly maintained by the properties of T1 tumor tissues. Alternately, T2 weighted images are delivered by lengthy TE & TR. The modification and glory of the images are mainly maintained by the properties of T2 tissue. T1 & T2 weighted images might be separated by CSF. It is blurred on T1 weighted imaging and intelligent on T2 weighted imaging. Flair stands for Fluid Attenuated Inversion Recovery a T2 weighted image apart from TE & TR are lengthy and abnormal in nature. Thus anomalies behave intelligent in typical CSF liquid which is reduced & blurred. This will create the separation among CSF an irregularity proportion.

Table 1: Training Dataset

Patient	Weighted Images				
brats_15_pat0008	T1	T1-C	T2	Flair	OT
brats_15_pat0009	T1	T1-C	T2	Flair	OT
brats_15_pat0010	T1	T1-C	T2	Flair	OT
brats_15_pat0011	T1	T1-C	T2	Flair	OT
brats_15_pat0012	T1	T1-C	T2	Flair	OT

In Table 1 the Training dataset has weighted scans T1, T1-C, T2, Flair and OT based on the relaxation time of the brain tissues. The OT is the final segmented images that accentuate the tumor tissues.

Table 2: Testing Dataset

Patient	Weighted Images			
brats_tcia_pat114_0001	T1	T1C	T2	Flair
brats_tcia_pat123_0054	T1	T1C	T2	Flair
brats_tcia_pat139_0159	T1	T1C	T2	Flair
brats_tcia_pat220_0001	T1	T1C	T2	Flair
brats_tcia_pat225_0001	T1	T1C	T2	Flair

In Table 2 the weighted scans as, Flair and OT based on the relaxation time of the brain tissues. The OT is the final segmented images that accentuate the tumor tissues.

- **Analysis of the Prediction System:** In stack, the multiple convolutional layers extract the appearances become more conceptual due to increasing the granularity. The first layers boost the features as edges aggregated as motifs, parts, or objects. The significant in the context of CNN are,

- **Activation Function:** It is liable for nonlinear data transformation. Rectifier Linear Units (ReLU) is defined as

$$\circ \quad F(x) = \max(0, x) \quad (1)$$

- To attain better outcomes more than the standard sigmoid functions and also to speed up the training process. However, imposing a constant with a value of 0 can impair the gradient flow. To handle this

limitation a new variant Leaky Rectifier Linear Unit (LReLU) was introduced with a minor slope on the negative part of the function as,

- $F(x) = \max(0, x) + \min(0, x)$ (2)

⊕ **Pooling:** It incorporates symmetrically neighboring features in the redundant features will makes the depiction as more compact & constant to small image changes. In addition, it decreases the computational load and combines the features which are more similar to utilize the maximum or average pooling.

⊕ **Regularization:** To reduce the over-fitting of the data probability technique was used. In this approach it forces all nodes to learn better data format, prevention from integration with each other. During at the test phase all the nodes are used. Whereas, dropout can be viewed as a group of networks and a method of bagging,

⊕ **Data Augmentation:** To improve the size of training set and also to reduce over-fitting the class of chunk is obtained via central voxel which control the data augmentation for rotation operations. The researchers consider the translations of images using segmentation will results in an incorrect class to the chunk. Accordingly improving the dataset in the training phase will generate the new chunks via rotation operations. In this method angles multiple of 90 with another alternative was evaluated and used effectively.

⊕ **Loss Function:** The Categorical Cross-entropy is used whereas, it represents the probabilistic predictions with its objectives.

5. RESULTS AND DISCUSSION

The first dimension in Table 3 shows the number of channels, second and third refers to the dimension of the feature maps. In-order to achieve invariance and also to reduce unwanted information convolutional layers and maximum pool to be in positive state, a negative effect results in removing the significant details. Apply overlapping pooling with the size of 3 x 3 and 2 x 2 respectively which gathers to keep more information around its position. The resulting feature maps could maintain its dimensions. In HGG there are 2,118,213 weights to train, while in LGG it lowers to 1,933,701 weights because of two low convolutional layers. All the sequences used as an input with the activation function of LReLU is in all layers along with its weights, exception & the dropout was used in the FC layers.

Table 3: Higher Grade Gliomas (HGG) using CNNs

Layers	Category	FC - Dimension	HGG	Filters	FC entity	I/P
Layer1	convolution	3x3	1x1	64	-	4356
Layer2	convolution	3x3	1x1	64	-	69696
Layer3	convolution	3x3	1x1	64	-	69696
Layer4	maximum pooling	3x3	2x2	-	-	69696
Layer5	convolution	3x3	1x1	128	-	69696
Layer6	convolution	3x3	1x1	128	-	32768
Layer7	convolution	3x3		128	-	32768
Layer8	max pool	3x3	2x2	-	256	32768
Layer9	convolution	-	-	-	256	6272
Layer10	convolution	-	-	-	5	256

The testing data as represented in Table2 has been compared with the training data as shown in Table 1, and the segmented result will predict the presence of tumor as depict in Table 4.

Table .4: The Segmented Result

Patient	Weighted Images	Result
---------	-----------------	--------

brats_tcia_pat114_0001	T1	T1C	T2	Flair	Benign
brats_tcia_pat123_0054	T1	T1C	T2	Flair	Benign
brats_tcia_pat139_0159	T1	T1C	T2	Flair	Malignant
brats_tcia_pat220_0001	T1	T1C	T2	Flair	Malignant
brats_tcia_pat225_0001	T1	T1C	T2	Flair	Malignant

In Table 5 the training results of proposed EfficientNet CNNs shows the better training and validation accuracy when compared with U-net combinations of FLAIR, T1ce, T1, FLAIR, T1, T2 and EfficientUNet (T2, T1ce, T1) [18-20]. In general the best performance of the proposed model “EfficientNET CNNs” yields 99.87% accuracy with validation as shown in the fig.3. In Table 6 the training and validation loss results were computed. In that, the observations are recorded and compared with the existing method which shows that the EfficientNet CNNs model exhibits the best performance in terms of loss results as, 1.001% as shown in the fig.4.

Table .5: Training and validation accuracy results

Methods	Accuracy	Accuracy with validation
U-net	0.9983	0.9974
EfficientUNet (FLAIR, T1ce, T1)	0.9986	0.9974
EfficientUNet (FLAIR, T1, T2)	0.9986	0.9973
EfficientUNet (T2, T1ce, T1)	0.9983	0.9963
Proposed EfficientNETCNNs	0.9998	0.9987

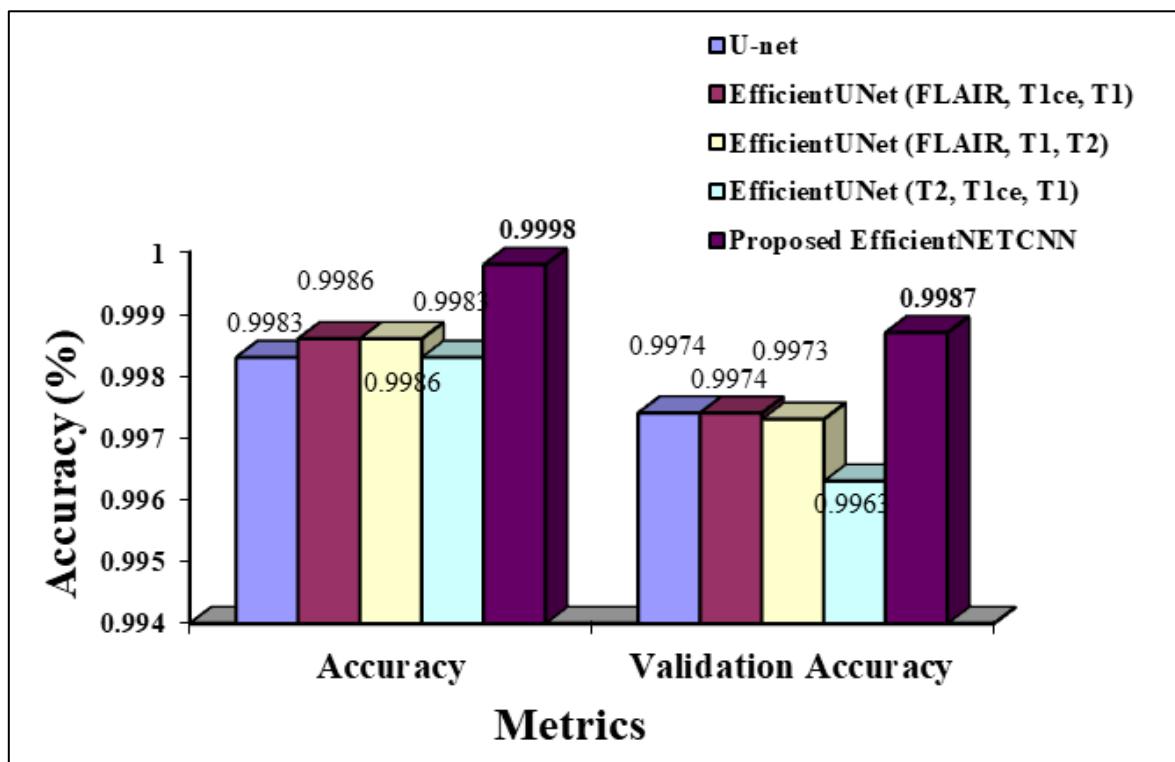


Figure.3: Training and validation accuracy result

Table 6: Training and Validation Loss Result

Methods	Loss	Loss with validation
U-net	0.537	0.1088
EfficientUNet (FLAIR, T1ce, T1)	0.429	0.1056

EfficientUNet (FLAIR, T1, T2)	0.447	0.1140
EfficientUNet (T2, T1ce, T1)	0.531	0.1749
Proposed EfficientNETCNNs	0.418	0.1001

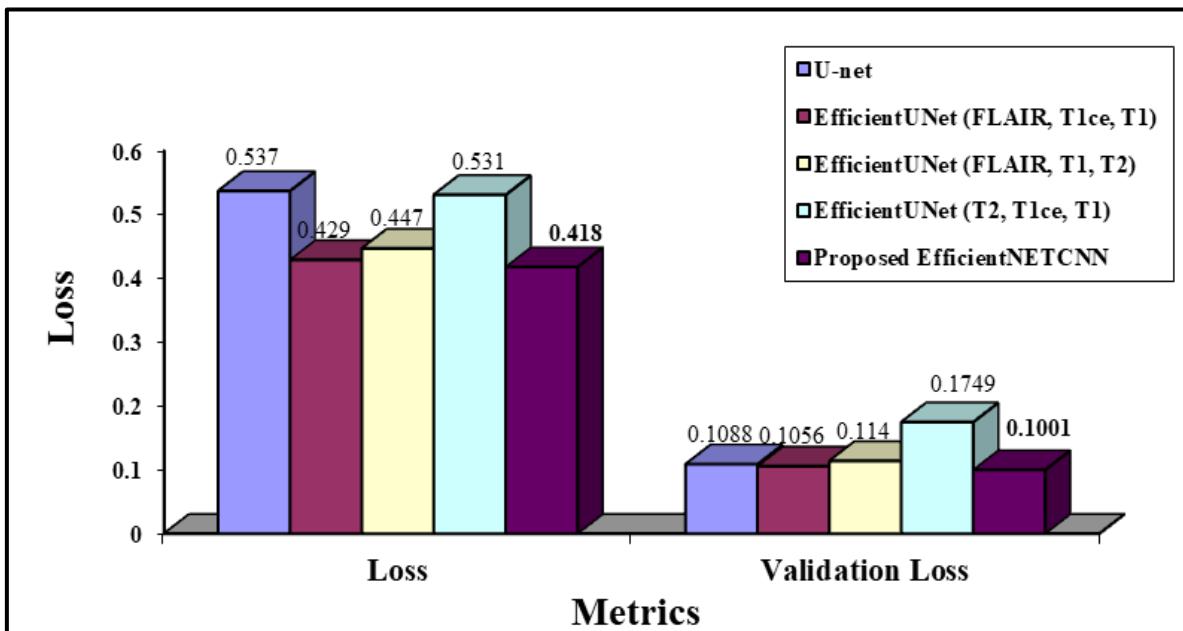


Figure.4: Training and validation loss result

CONCLUSION

The primary objective is to plan proficient technical cerebrum tumor expectation with high precision, execution and low intricacy. To increase the exactness and to diminish the computation time, EfficientNET CNNs is presented in the proposed method results in accuracy as 99.98%. In addition the exactness is high and misfortune is low. Thus, later on, the work could be stretched out by growing further developed fix extraction calculations which will help in expanding the division precision. In this paper consider a gander at the issue of naturally segmenting tumor from the MR pictures and the researcher have concocted four unique calculations for separating patches which can be utilized to prepare CNNs to do the programmed segmentation. The researchers consider two diverse CNNs and EfficientNET, one for the Higher Grade Gliomas and other for the Lower Grade Gliomas patients to do the programmed division in a sensible measure of time with high exactness and move learning has helped in expanding the segmentation precision if there should be an occurrence of Lower Grade Gliomas patient still now the researchers have investigated removing and preparing utilizing 2D chunks the tasks could be reached out by creating the models on 3D chunks and consequently attempting to propose efficient computation for extracting 3D chunks.

REFERENCES

- Atiq Islam; Syed M. S. Reza; Khan M. Iftekharuddin, Multi-fractal Texture Estimation for Detection and Segmentation of Brain, IEEE Transactions on Biomedical Engineering, Vol. 60 Issue no. 11, 2013, PP: 3204-3215.
- AndacHamamci, Nadir Kucuk, KutlayKaraman, KayihanEngin, GozdeUnal, Tumor-Cut: Segmentation of Brain Tumors on Contrast Enhanced MR images for Radio surgery Applications, IEEE Transactions on Medical Imaging, Vol.31 Issue no.3, 2012, PP: 790-804.
- Bjoern H. Menze et al., The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS), IEEE Transactions on Medical Imaging, Vol.34 Issue no.10, 2014, PP: 1993-2024.
- Heba Mohsen et al., Classification using Deep Learning Neural Networks for Brain Tumors, Future Computing and Informatics, Vol.3 Issue no.1, 2018, PP: 68-71.
- Jankinaik, Sagar Patel, Tumor Detection and Classification using Decision Tree in Brain MRI, International Journal of Computer Science and Network Security (IJCSNS) , Vol. 14 Issue no.6, 2014, PP: 87-91.

6. Jiachi Zhang, Xiaolei Shen, Tianqi Zhuo, Hong Zhou, Brain Tumor Segmentation Based on Refined Fully Convolutional Neural Networks with A Hierarchical Dice Loss, Cornell University Library, Computer Vision and Pattern Recognition, 2017.
7. Jin Liu, Min Li, Jianxin Wang, Fangxiang Wu, Tianming Liu, and Yi Pan, A Survey of MRI-Based Brain Tumor Segmentation Methods, TSINGHUA Science and Technology, Vol. 19 Issue no.6, 2014, PP: 578-595.
8. Meiyang Huang et al., Brain Tumor Segmentation Based on Local Independent Projection-based Classification, IEEE Transactions on Biomedical Engineering, Vol. 61 Issue no. 10, 2012, PP: 2633-2645.
9. R. Karuppathal and V. Palanisamy, Fuzzy-based Automatic Detection and Classification Approach for MRI-brain Tumour, ARPN Journal of Engineering and Applied Sciences, Vol. 9 Issue no. 12, 2014PP: 2770-2779.
10. Janani and P. Meena, Image Segmentation for Tumour Detection using Fuzzy Inference System, International Journal of Computer Science and Mobile Computing, Vol. 2 Issue no. 5, 2013, PP: 244 – 248.
11. Sergio Pereira et al., Brain Tumor Segmentation using Convolutional Neural Networks in MRI Images, IEEE Transactions on Medical Imaging, Vol. 35 Issue no. 5, 2016, PP: 1240 – 1251.
12. Shamsul Huda et al., A Hybrid Feature Selection with Ensemble Classification for Imbalanced Healthcare Data: A Case Study for Brain Tumor Diagnosis, IEEE Access, Vol. 4, 2016, PP: 9145 – 9154.
13. Stefan Bauer et al., Multiscale Modeling for Image Analysis of Brain Tumor Studies, IEEE Transactions on Biomedical Engineering, Vol. 59 Issue no. 1, 2012, PP: 25 – 29.
14. Varun Jain and Sunila Gondara, Comparative Study of Data Mining Classification Methods in Brain Tumor Disease Detection, IJCSC, Vol. 8 Issue no. 2, 2017, PP: 12 – 17.
15. Bakas S, Reyes M, Jakab A, Bauer S, Rempfler M, Crimi A, Shinohara RT, Berger C, Ha SM, Rozycki M., “Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge”, 2018, ArXiv arXiv:1811.02629.
16. Hou C, Han H, Liu Z, Su M., A wind direction forecasting method based on Z-score normalization and long short_term memory., In 2019 IEEE 3rd international conference on green energy and applications (ICGEA). 2019, IEEE, 172-176.
17. Zhang J, Jiang Z, Dong J, Hou Y, Liu B., “Attention gate resU-Net for automatic MRI brain tumor segmentation”, 2020, IEEE Access 8:58533-58545
18. Wei J, Zhu G, Fan Z, Liu J, Rong Y, Mo J, Li W, Chen X., “Genetic U-Net: automatically designed deep networks for retinal vessel segmentation using a genetic algorithm”, 2021, IEEE Transactions on Medical Imaging 41:292-307.
19. Farajzadeh N, Sadeghzadeh N, Hashemzadeh M., “Brain tumor segmentation and classification on MRI via deep hybrid representation learning”, 2023, Expert Systems with Applications 224:119963.
20. Lin S-Y, Lin C-L., “Brain tumor segmentation using U-Net in conjunction with EfficientNet”. 2024, PeerJ Comput. Sci. 10:e1754.