

Comparative Assessment Of Hev Systems Using Advanced Optimization Strategies

¹Navjeet Kaur and ²Ranjeet Kumar Bindal

¹Department of Electrical Engineering, Chandigarh University, Mohali, Punjab, India.

²Department of Electrical Engineering, Chandigarh University, Mohali, Punjab, India.

navjeetkaur.ee@cumail.in¹, navjeet28k@gmail.com¹ and ranjitbindal.eee@cumail.in²

ABSTRACT

Hybrid Electric Vehicles (HEVs) are pivotal in reducing greenhouse gas emissions and mitigating the reliance on fossil fuels. The design and operation of HEVs involve complex systems requiring careful optimization to achieve a balance between performance, fuel efficiency, and environmental impact. Optimization methods such as hybrid heuristic approaches (HYSGFA and Particle Swarm Optimization), analyzed in this manuscript. These techniques are applied to improve energy management, improving the state of charge of BMS. The comparative study highlights the difference between PID, FOPID Controller for enhancement of state of charge of battery using Optimization Techniques. The Proposed Hybrid Optimization Technique improves the performance of Hybrid EV System and enhances improved response in terms of various performance indices.

Keywords—RES, EV, PID and FOPID, SOC, HYSGFA

1. INTRODUCTION

Numerous research studies have explored electric vehicle (EV) charging systems utilizing two alternative power sources: photovoltaic (PV) systems and single-phase grid power. This paper presents an EV charger designed to operate in both Grid-to-Vehicle (G2V) and Vehicle-to-Grid (V2G) modes. A comprehensive mathematical model for the entire charging system is presented, encompassing the models for both AC/DC and DC/DC converters, as well as the Li-ion battery. Discussed the energy consumption of EVs from the grid as well as several optimization techniques for energy management, load shifting, peak shaving, and lowering the high power costs related to large-scale grid-based EV charging[1]. Additionally, an energy management and optimization system leveraging V2G systems to smooth fluctuations in large-scale wind power is designed and modeled in [2]. PV and wind serve as primary energy sources, to ensure continuous power flow. The variable nature of many renewable energy sources, such as solar and wind, can cause fluctuations in power availability. This highlights the need for advanced energy storage solutions to ensure a stable and reliable electricity supply [6]. In order to satisfy demand needs, power generation from renewable energy resources (RERs) is made possible in large part by energy storage (ES) systems [7]. Because RERs depend on external factors like wind and solar radiation, these systems aid in reducing the intermittency problems that arise. Furthermore, energy storage (ES) technologies provide numerous benefits beyond simply stabilizing the fluctuations of renewable energy resources (RERs). They are essential for improving power quality, voltage, and managing power variations. The proposed optimization approach is a hybrid heuristic technique created by combining two well-known algorithms: the Yellow Saddle Goat Fish Optimization algorithm and the Particle Swarm Optimization algorithm. The proposed hybrid optimization algorithm is named Yellow saddle Goat Fish-Particle Swarm Optimization. The settings of the battery current controller and the inner-loop voltage and current controllers for the interconnected converters were optimized using the suggested algorithm. MATLAB/Simulink was used to simulate the complete system, and the results were examined and shown. The system's performance and dependability are enhanced by this integration, making renewable energy a more viable and reliable choice for power generation.

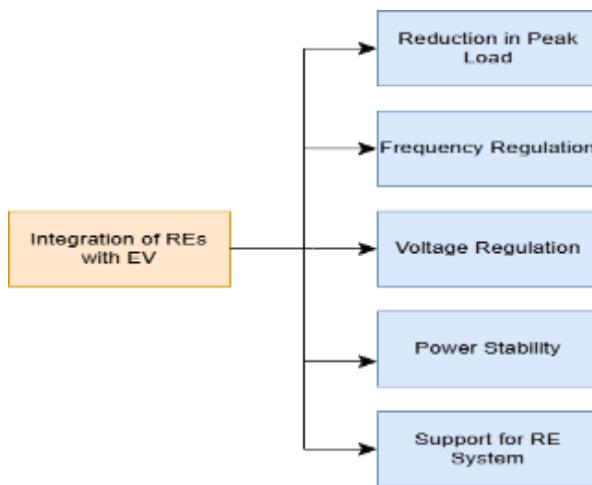


Fig.1. Benefits of Integrated Structure of REs with EV.

RELATED WORKS

Table.1 Representation Of Literature Survey

Author & Year	Findings	Techniques
Surabhi Bagherwalet.al 2024	Improving the robustness and stability of EV charging stations across varying conditions.	Lyapunov-based adaptive controller bridges
Shabab Saleem et.al 2024	Utilized to effectively harness the photovoltaic system by identifying its maximum power points (MPPs).	An artificial neural network (ANN)
Onder Tutsoy et.al 2023	To manage the simulation of the DC motor.	ant colony optimization fractional-order PID (FOPID) controller
Jamal El-bakkouri et.al 2022	Electric braking torque of electric vehicle's	ANFIS controller has been compared with AFPID controller
Aqeel Ur Rahman et.al 2021	Utilizing maximum state of charge of battery and supercapacitor.	The fuzzy logic-based energy management
Asif Khan,2020et.al	optimal unit sizing of a PV-WT-battery hybrid system to meet the consumer's load while minimizing the total annual cost (TAC).	A hybrid algorithm, combining Jaya and teaching-learning-based optimization (TLBO)
Ahmad Bagheri,et.al 2019	Optimizing SOC of the battery and UC	Differential Evolution (DE), and Cuckoo Search (CS)—
Carlos Henggeler Antunes et.al 2015	Optimizing the Energy management of energy storage System	fuzzy logic controller is designed using Particle Swarm Optimization (PSO).
Lorenzo Serrao et.al 2011	energy management problem in hybrid electric vehicles	Dynamic programming (DP) strategy is introduced.
S Zhang,et.al 2015	Minimizing the Battery state of charge, and minimum value of supercapacitors	particle swarm optimization to optimize the ESS.

2. MAIN OBJECTIVES OF THE CURRENT WORK

- To propose an improved version of HYSGFA by introducing Simplified formula to evaluate the next location in the process of iterations.
- To evaluate the capability of suggested HYSGFA in standard benchmark functions and Comparing YSGFA and PSO techniques.
- To implement the HYSGFA technique for Renewable energy sources integrated with electric Vehicle and demonstrate its SOC of the battery
- To demonstrate benefits of applying a FOPID over traditional PID controller.
- To assess the effectiveness of proposed controller in Electric vehicle.
- To examine the efficacy of HYSGFA based FOPID controller in three area system in Presence of appropriate nonlinearities.
- To examine the of proposed HYSGFA tuned FOPID controller at several loading conditions and with deviation in system parameter.

POWER SYSTEM MODEL

Hybrid System Composed of Various Components. The Proposed System Consist of Solar PV, Wind Energy Sources, battery, Controllers, Converters in Fig.2

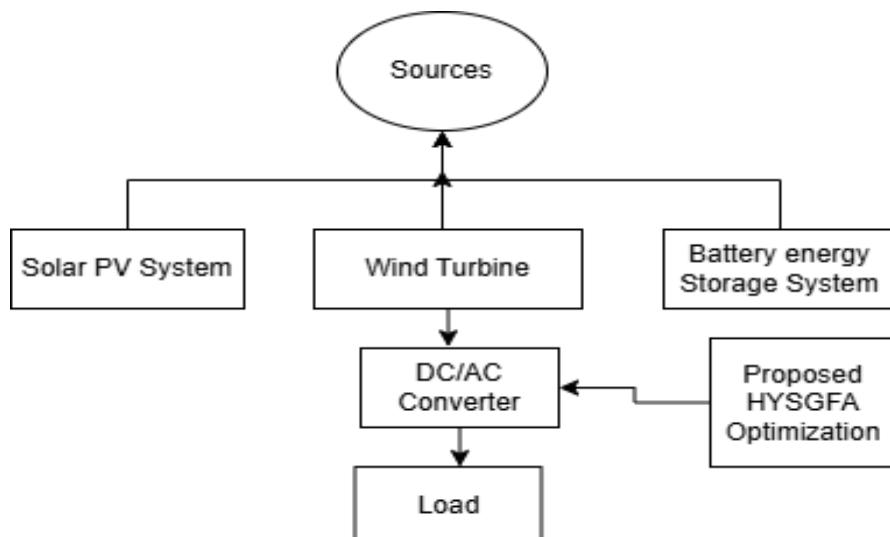


Fig.2. Internal Structure Block Diagram for a Renewable Energy Conversion System

A. Solar PV System

Renewable: Sunlight is an inexhaustible resource.

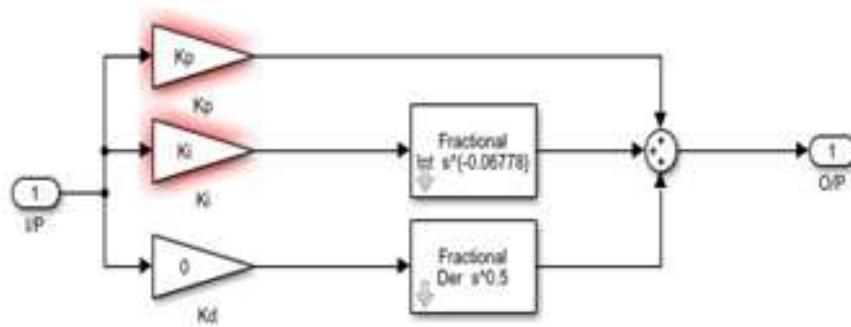
Clean: Solar PV produces no greenhouse gas emissions during operation.

Modular: Systems can be scaled from small rooftop installations to large utility-scale power plants.

Decreasing costs: The price of solar panel technology has decreased drastically in recent years.

B. Wind Generation Model

Wind energy is the fastest Growing and mostly used sustainable energy source for Power Generation. This model operates a permanent magnet synchronous machine with either three or five phases. The stator windings are connected in a wye configuration with an internal neutral point. In the three-phase machine, the back EMF waveform can be either sinusoidal or trapezoidal. For the sinusoidal machine, the rotor may have a round or salient-pole design.


Table.2. Representation of Parameters of Wind Turbine Model

Parameters of Wind Turbine	Values
Nominal Mechanical Output Power	5×10^3 Watt
Base Power of Electric Generator	$5 \times 10^3 / 0.9$ VA
Base Wind Speed	10 m/s

C. Electric Vehicle Model:

The Parameters for the Simulation were given. EV consists of three parts.

- One or more electric motors.
- Controllers.
- Charging system with a battery to store electric energy.

STRUCTURE OF FOPID CONTROLLER**Fig.3** Internal Structure of FOPID controller**D. Equations of FOPID Controller**

The cornerstone of a FOPID controller is its transfer function in the Laplace domain:

$$C(s) = K_p + K_i * s^{\lambda} + K_d * s^{\mu}$$

Where:

- $C(s)$ is the controller's transfer function.
- K_p is the proportional gain.
- K_i is the integral gain.
- K_d is the derivative gain.
- s is the Laplace variable.

λ is the fractional order of the integrator.

μ is the fractional order of the differentiator.

E. Key Differences from Traditional PID:

In a standard PID controller, the integral and derivative orders are always

1. In a FOPID, λ and μ can be any real numbers, providing greater flexibility in control.
2. Time-Domain Representation:

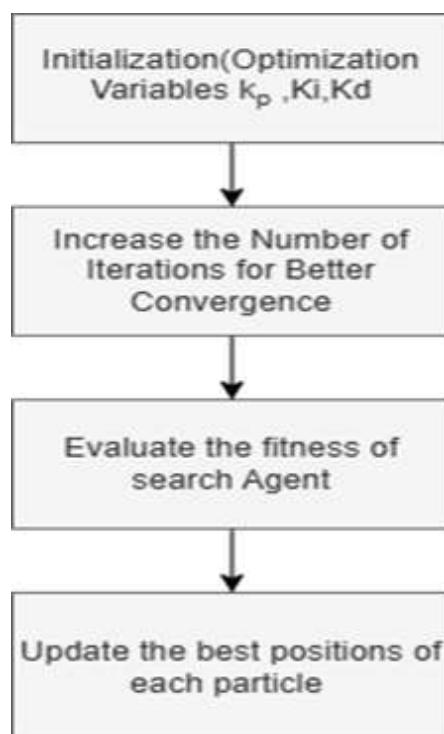
The time-domain representation of the FOPIID control action can be expressed using fractional-order derivatives and integrals. This involves concepts from fractional calculus, which are more complex than standard calculus.

In the time domain it can be written as:

$$u(t) = K_p * e(t) + K_i * D^{\lambda} e(t) + K_d * D^{\mu} e(t)$$

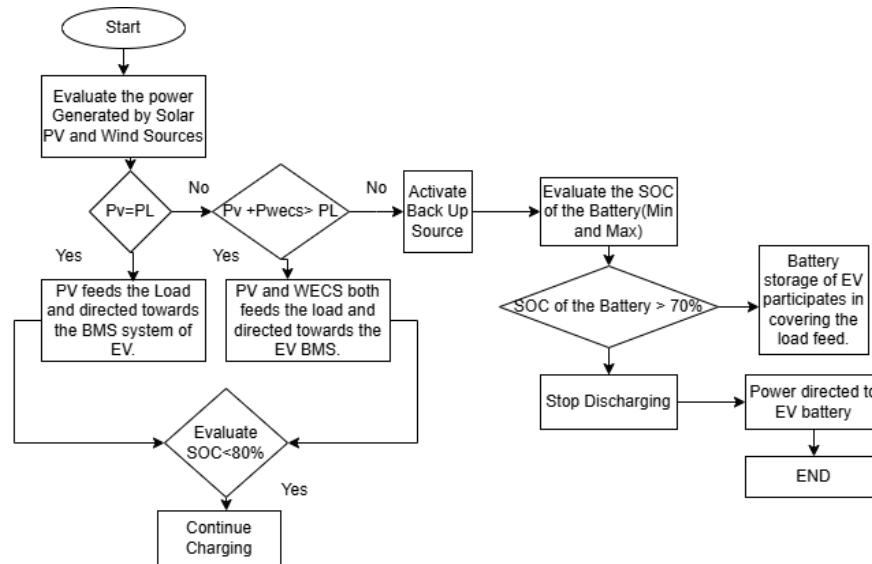
Where:

- $u(t)$ is the controller output.
- $e(t)$ is the error signal.
- D^{λ} represents the fractional-order integral.
- D^{μ} represents the fractional-order derivative.


F. Challenges and Considerations:

Implementation: Fractional-order operators are more challenging to implement than integer-order ones. Approximations and numerical methods are often used.

Tuning: FOPIID controllers have five parameters (K_p , K_i , K_d , λ , μ), which makes tuning more complex than with traditional PID controllers. The FOPIID controller expands the capabilities of the traditional PID controller by introducing fractional orders of integration and differentiation.


WHY HYSGFA OPTIMIZATION TECHNIQUE

The convergence characteristics in this figure show the average value of the convergence characteristics after we ran each method several times. Therefore, greater convergence characteristics may be obtained by improving the YSGA algorithm using PSO optimization techniques. In this way, it is shown to enhance the beginning position when used in conjunction with the metaheuristic algorithm, which is crucial for the method's rate of convergence.

Fig.4. Overview of HYSGFA Optimization Technique

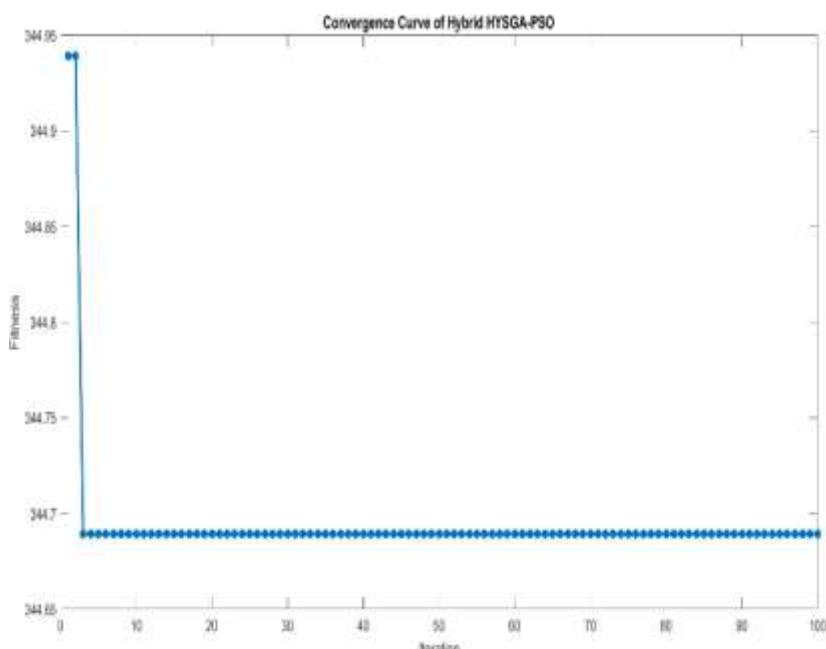

METHODOLOGY

Fig.5. Flow Chart of the Methodology

CONVERGENCE CHARACTERISTICS

The convergence characteristics in this figure show the average value of the convergence characteristics after we ran each method several times. Therefore, greater convergence characteristics may be obtained by improving the YSGA algorithm using PSO optimization techniques. In this way, it is shown to enhance the beginning position when used in conjunction with the metaheuristic algorithm, which is crucial for the method's rate of convergence.

Fig.6. Convergence curve for the Proposed Model

RESULTS AND DISCUSSION

The proposed model's performance is analyzed using HYSGFA, considering variations in renewable power generation, including wind and solar thermal power. During the investigation Comparison of Voltage, current , Power and SOC of the Battery presented by using FOPID Controller under

Optimization techniques. The battery state of charge considered is shown in Fig.9 From the analyzed parameters, there are many other factors influencing the range of an electric vehicle.

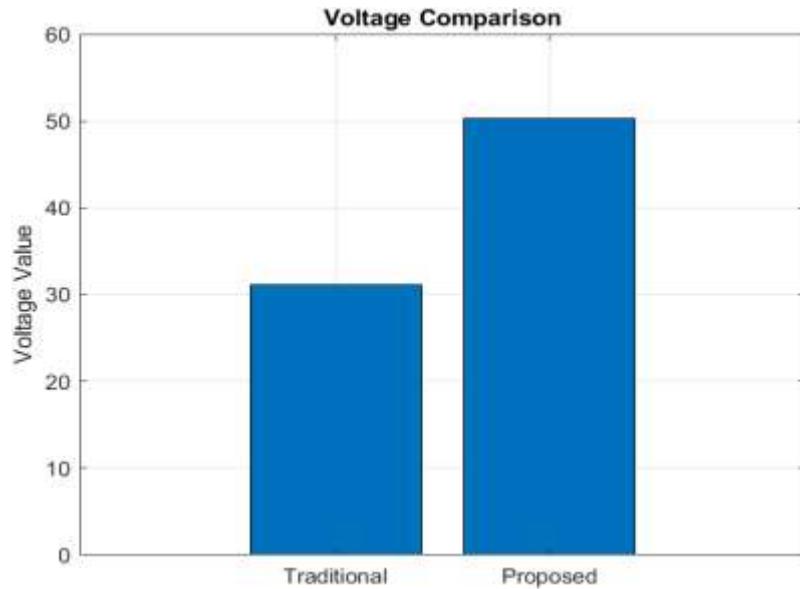


Fig.7. Comparison of voltage using Optimization Techniques

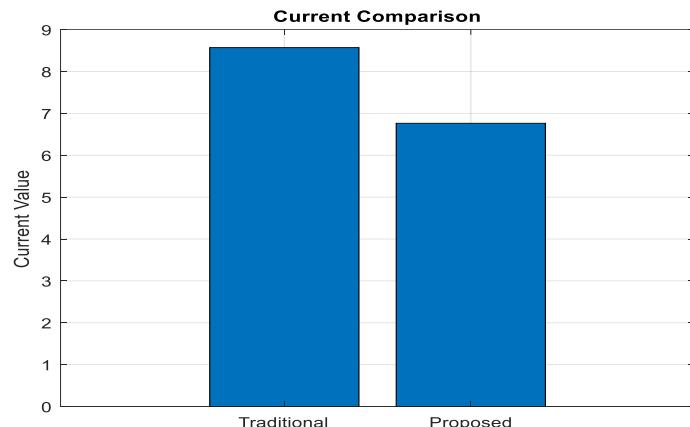
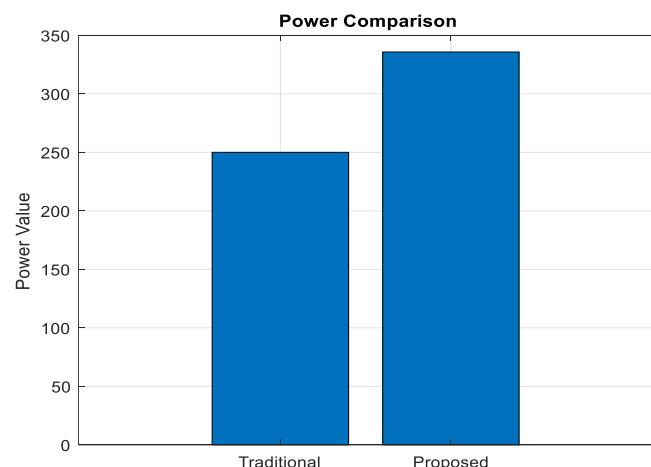
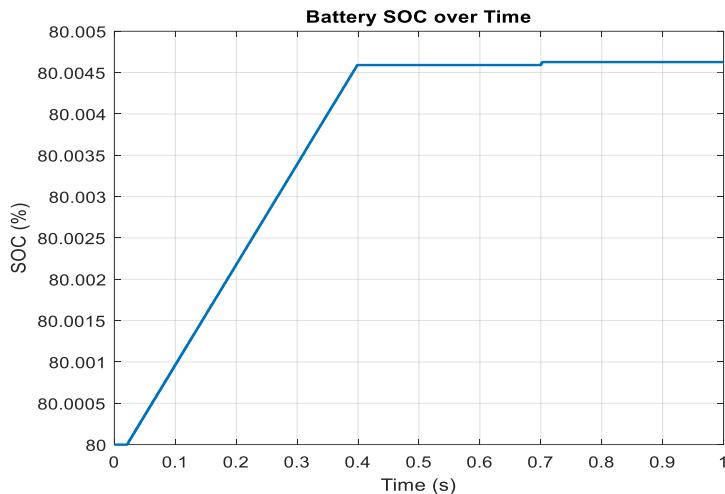




Fig.8. Comparison of Current using Optimization Techniques

Fig.9. Comparison of Power using Optimization Techniques**Fig.6.** SOC of the battery by using Optimization Technique

CONCLUSION

Such an approach greatly speeds up the algorithm's convergence, as the article demonstrates.

Moreover, a novel goal function is introduced to ascertain the ideal FOPID controller settings.

Comparing the results of the suggested algorithm with the new goal function presented in this work, the system's voltage responsiveness is noticeably superior than that of other methods under consideration. Simulation

system characteristics are changed to verify the resilience of the system with such an acquired FOPID controller.

It is demonstrated that the step response exhibits minuscule deviations from the nominal case in every example studied, indicating that the system is resilient to system uncertainties.

Additionally, three frequently occurring disruptions are added to Regardless of the optimization issue being studied, we believe that this improves the approach. In this work, we evaluated its effectiveness and suitability for the optimum FOPID design problem Peak Time. Rise time, settling time, overshoot, are the primary indications of the step response quality. Additionally, the FOPID parameters that were acquired are also included in this category.

Table 2. Comparison of the System Parameters with FOPID Controller

Parameters	Improved Value with FOPID controller	Compared Values with PID Controller
Settling Time	0.3	0.9982
Rise Time	0.15	0.2422
Overshoot time	3	25.3455
Peak Time	0.5	0.89

REFERENCES

- [1] Subhasish Mahapatra ,Surabhi Bagherwal, Adaptive Lyapunov-based controller for DC bus voltage stabilization in electric vehicle charging stations with system uncertainty,Energy Reports,Volume 12,2024,Pages 4641-4655.
- [2] Syed Hassan Ahmed,Shabab Saleem, Iftikhar,Ahmad,Atif Rehman,Artificial intelligence based robust nonlinear controllers optimized by improved gray wolf optimization algorithm for plug-in hybrid electric vehicles in grid to vehicle applications,Journal of Energy Storage,Volume 75,2024,109332,ISSN 2352-152X.
- [3] Omer Can Tolun, Onder Tutsoy,"Modelling and performance-based PD controller of the electric autonomous vehicles with the environmental uncertainties,Journal of Engineering Research,Volume 11, Issue 2,2023,100059,ISSN 2307-1877.

- [4] Jamal El-bakkouri, Hamid Ouadi, Abdallah Saad, Adaptive Neuro Fuzzy Inference System Based controller for Electric Vehicle's hybrid ABS braking, IFAC-PapersOnLine, Volume 55, Issue 12, 2022, Pages 371-376, ISSN 2405-8963.
- [5] Aqeel Ur Rahman, Syeda Shafia Zehra, Iftikhar Ahmad, Hammad Armghan, Fuzzy supertwisting sliding mode-based energy management and control of hybrid energy storage system in electric vehicle considering fuel economy, Journal of Energy Storage, Volume 37, 2021, 102468, ISSN 2352-152X.
- [6] Nadeem Javaid, Asif Khan, Jaya Learning-Based Optimization for Optimal Sizing of Stand-Alone Photovoltaic, Wind Turbine, and Battery Systems, Engineering, Volume 6, Issue 7, 2020, Pages 812-826, ISSN 2095-8099.
- [7] Ahmad Bagheri, Elham Yazdani Bejarpeneh, Behnam Yazdani Bejarpeneh, Salinda Buyamin, Saeed Nezamivand Chegini, A new adjusting technique for PID type fuzzy logic controller using PSOSCALF optimization algorithm, Applied Soft Computing, Volume 85, 2019, 105822, ISSN 1568-4946.
- [8] Carlos Henggeler Antunes, João P. Trovão, A comparative analysis of meta-heuristic methods for power management of a dual energy storage system for electric vehicles, Energy Conversion and Management, Volume 95, 2015, Pages 281-296, ISSN 0196-8904.
- [9] J. W. , Lin, C. -C., Peng, H., Grizzle, and Kang, J. -M., 2003, "Power Management Strategy for a Parallel Hybrid Electric Truck," IEEE Trans. Control Syst. Technol. 1063-6536, 11(6), pp. 839-849.
- [10] Goldberg, D.E.; Holland, J.H. Genetic algorithms and machine learning. *Mach. Learn.* 1988, 3, 95-99.
- [11] Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report-tr06; Engineering Faculty, Computer Engineering Department, Erciyes University: Kayseri, Turkey, 2005; Volume 200, pp. 1-10.
- [12] Storn, R.; Price, K. Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces. *J. Glob. Optim.* 1997, 11, 341-359.
- [13] Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. *Inf. Sci.* 2009, 179, 2232-2248
- [14] Yang, X.S. Flower Pollination Algorithm for Global Optimization. In *International Conference on Unconventional Computing and Natural Computation*; Springer: Berlin/Heidelberg, Germany, 2012; pp. 240-249
- [15] Zaldivar, D.; Morales, B.; Rodríguez, A.; Valdivia, G.A.; Cuevas, E.; Pérez-Cisneros, M. A novel bio-inspired optimization model based on yellow saddle goatfish behavior. *Biosystems* 2018, 174, 1-21.
- [16] Čalasan, M.; Oliva, D. Fractional Order PID Controller Design for an AVR System Using Chaotic Yellow Saddle Goatfish Algorithm. *Mathematics* 2020, 8, 1182
- [17] Latif, A.; Das, D.C.; Barik, A.K.; Ranjan, S. Illustration of demand response supported co-ordinated system performance evaluation of YSGA optimized dual stage PIFOD-(1+ PI) controller employed with wind-tidal-biodiesel-based independent two-area interconnected microgrid system. *IET Renew. Power Gener.* 2020, 14, 1074-1086
- [18] Zhao, X.; Cui, Y.; Guo, Z.; Hao, Z. An Energy-Efficient Coverage Enhancement Strategy for Wireless Sensor Networks Based on a Dynamic Partition Algorithm for Cellular Grids and an Improved Vampire Bat Optimizer. *Sensors* 2020, 20, 619.
- [19] Zhao, X.Q.; Cui, Y.P.; Gao, C.Y.; Guo, Z.; Gao, Q. Energy-efficient coverage enhancement strategy for 3-D wireless sensor networks based on a vampire bat optimizer. *IEEE Internet Things J.* 2019, 7, 325-338]
- [20] Ghosh, N.; Banerjee, I.; Sherratt, R.S. On-demand fuzzy clustering and ant-colony optimisation-based mobile data collection in wireless sensor network. *Wirel. Netw.* 2019, 25, 1829-1845.