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Abstract 

Federated Learning (FL) has emerged as a transformative approach for privacy-preserving machine learning, 
enabling decentralized model training across distributed data sources. This survey presents a comprehensive 
and methodologically rigorous review of FL systems, employing the SALSA methodology to identify, evaluate, 
and categorize the primary challenges associated with FL implementations. Spanning literature from 2015 
to 2025, the review covers both tradi- tional sectors such as healthcare, finance, IoT, and education, as 
well as underrepresented and emerging domains including smart agriculture, wildlife conservation, legal 
analytics, and space exploration. We introduce a structured taxonomy that classifies FL challenges into six 
key cate- gories: privacy and security, communication and infrastructure, data heterogeneity, algorithmic 
and optimization, fairness and participation, and evaluation and debugging. The qualitative findings reveal 
critical gaps in current research, especially regarding cross-domain applicabil- ity, fairness, client reliability, 
and scalable personalization. Additionally, the survey identifies significant under representation of FL in 
agriculture and low resource environments, proposing application specific adaptations to enhance 
deployment feasibility. Emerging opportunities are discussed in the context of intelligent edge systems, 
collaborative governance, and regulatory compliance. Comparative tables and domain specific summaries 
further enhance the practical value of this work. This review contributes actionable insights for researchers, 
developers, and policymakers seeking to design robust, inclusive, and secure FL frameworks. It establishes a 
foun- dation for future innovation and emphasizes the need for scalable, trustworthy federated systems across 
privacy-sensitive domains in the era of distributed artificial intelligence. 

Keywords: Federated Learning, Decentralized Machine Learning, Privacy-Preserving AI,Real-world 
applications, Distributed learning. 
1 Introduction 
In the age of precision agriculture and digital farming, data-driven insights have become crucial 
for enhancing productivity, sustainability, and efficiency in agricultural practices [1]. The growing 
deployment of Internet of Things (IoT) devices [2], smart sensors [3], drones [4], and satellite-based 
systems [5] across farms has led to an exponential surge in agricultural data, ranging from soil and 
weather conditions to crop health and pest infestations. While such data holds immense potential 
for transforming decision-making in agriculture, its collection and centralization often raise 
significant concerns related to privacy, bandwidth limitations, data ownership, and regulatory 
compliance. 
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Fig. 1: Publication trends of FL and emerging Privacy-Preserving Technologies (PPTs) 

FL [6] emerges as a transformative solution to address these challenges by enabling decentralized 
model training across multiple data-generating entities such as agricultural institutions, sensor net- 
works, and research centers without the need to transmit raw data to a central server. In contrast to 
traditional centralized machine learning, FL allows data to remain local while collaboratively training 
global models using distributed updates, thus preserving privacy, reducing communication overhead, 
and accommodating region-specific data characteristics. These capabilities make FL particularly 
suited for modern agricultural systems, where data is sensitive, heterogeneous, and geographically 
dispersed [7]. Initially developed to address privacy concerns in mobile devices and healthcare appli- 
cations, FL has now expanded into diverse sectors including finance [8], transportation [9], and more 
recently, agriculture [10]. The application of FL in agriculture enables smart systems to learn from 
distributed datasets such as soil profiles, climate variations, pest outbreaks, and disease symptoms, 
resulting in more adaptive, accurate, and localized models. For instance, smart irrigation systems 
can optimize water usage across regions, and disease detection models can become more robust by 
learning collaboratively from data collected across different agro climatic zones while keeping data 
securely within local sources. 

Figure 1 represents the trend of FL estimated number of research activity or publications per 
technique and provide an idea about its increased or decreased significance in the field of machine 
learning. Remarkably, FL exhibits a sharp and exponentially increased trend that starts in 2018, 
and its publication index is expected to surpass 450 by the year 2025, and so it is the most popular 
method in the given category. This explosion is an indication of the growing need of decentralized 
privacy-sensitive learning environments posited by data governance models and the emergence of 
edge computing. Other related technologies like Split Learning, Federated Differential Privacy (DP), 
and Compressed secure aggregation are experience consistent growth and presumably reasons what 
complement technologies to improve the privacy and communication efficiency of FL. Although 
such methods as PATE, Homomorphic Secret Sharing (HSS), Zero-Knowledge Proofs (ZKP) in 
machine learning are developing more steadily, the increasing uptake suggests a growing interest in 
secure, explainable, and auditable deployment of FL. Also, the Decentralized FL that is combined 
with Blockchain also shows a strong increasing movement since 2021, indicating that there is an 
increasing mutual share between DLT and FI. Taken together, all these trends suggest a growing 
research environment interested not only in constructing robust, scalable, and reliable AI models 
without compromising user privacy but do this across multiple application domains. 

The fusion of FL with agriculture not only enhances the capabilities of precision farming but also 
addresses critical limitations such as poor internet connectivity in rural regions, data silos between 
agricultural organizations, and the lack of standardized data sharing frameworks. With increasing 
concerns over data privacy and ethical AI practices in rural communities, FL presents a privacy-aware 
and scalable paradigm for enabling secure, collaborative intelligence in agriculture. This comprehen- 
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sive review aims to examine the growing landscape of FL applications in agriculture, analyzing its 
benefits, limitations, and real-world deployments across various agricultural domains. By surveying 
state-of-the-art approaches, the paper provides insights into how FL is being used to address chal- 
lenges such as non-IID data, communication bottlenecks, and model heterogeneity in agricultural 
contexts. Furthermore, this work identifies emerging opportunities and research directions, offering 
a structured perspective for future exploration at the intersection of FL and agriculture. Table 1 
comparison of this survey in agriculture with the state of the art of other review works shows a com- 
parative analysis of several survey papers in various application domains of FL, as well as their scope 
and domain coverage. 
 
Table 1: Comparison of this survey in Agriculture with the state of the art of other review works 
 

Survey Year Agriculture Healthcare Finance Smart City IoT Education 
[11] 2024 ✓ – – – ✓ – 
[12] 2025 ✓ – – – - – 
[13] 2024 ✓ – – – - – 
[14] 2025 ✓ – – – ✓ – 
[15] 2023 ✓ – – – ✓ – 
[16] 2025 ✓ – – – - – 
[17] 2022 ✓ – – – - – 
[18] 2025 ✓ – – – - – 
[19] 2023 – ✓ ✓ ✓ ✓ – 
[20] 2023 – ✓ ✓ – – – 
[21] 2021 – – – – ✓ ✓ 
[22] 2023 – – – ✓ – – 
Our 
Survey 

2025 ✓ ✓ ✓ ✓ ✓ ✓ 

 
The rest of this paper is structured as follows: Section 2 presents the related literature, compar- ing 
previous survey efforts. Section 3 outlines the methodology used for paper selection and data 
synthesis. Section 4 introduces the foundational concepts of FL in agricultural settings. Section 5 
categorizes the various FL applications of federated learning. Section 6 highlights the challenges and 
limitations associated with applying FL. Section 7 summarizes the key findings and contributions of 
the review. Section 8 discusses future directions, and Section 9 concludes the paper with reflections 
on the implications of FL for sustainable agriculture. 
 
2 Related Work 

In this section, we provide an overview of related works on FL in variety of sectors: agriculture, 
healthcare, finance, IoT, smart cities, and education. These surveys have discussed the evolution of 
FL frameworks, aggregation methods, optimization issues, domain-specific utilities, and deployment 
challenges. Comparison to such surveys locates the originality of this paper that is, concentrating on 
FL applications for smart agriculture systems. 

Zheng et al. [23] provided a survey on a list of FL structures, like horizontal, vertical and transfer 
FL and aggregators, like FedAvg, FedProx, FedYogi. It examines practice implementations of smart 
contracts in the context of healthcare, finance, IoT, smart cities, education, and agriculture, studying 
data properties and privacy issues in the respective fields. The paper enters into optimization methods 
, security such as secure aggregation and DP , heterogeneity in the system. It shows profiling of such 
datasets as FLamby and Flower, and compares communications overhead in a variety of domains. 
Outstanding among those is its sector comparison model, which produces cross sector gaps in design 
and sets out future directions on personalization, incentive mechanism, and hybrid FL. 
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Nguyen et al. [24] this survey is interested in FL executed on resource-constrained hardware to 
be applied in healthcare, smart cities, autonomous, and unmanned aerial vehicles, smart industry 
application, such as agricultural sensors, powered by IoT. It examines such technological issues as two- 
layer FL architecture on edge servers, quantization and pruning compression, asynchronous updates, 
and privacy approaches like homomorphic encryption, secure aggregation. The authors survey sources 
of datasets from IoT sensors, medical wearable, drone images and review related challenges such as 
non-IID data, straggler effect and a bandwidth bottleneck. They give information on performance 
indicators such as latency, energy levels and model accuracy depending on the domain. 

Olivares et al. [25] in this review, the intersection of IoT, edge intelligence, and FL can be realized 
between IoT through smart agriculture and other areas. It talks about FL-grounded utility sensors 
like soil moisture, NDVI, livestock, monitoring and edge ML models of crop and animal health. 
Technically the present paper reviews the two communication protocols which were LoRa, ZigBee, 
data fusion schemes, energy efficient FL scheduling. It works on domain-critical issues, such as rural 
connectivity, data disparity, and regulations. This is agriculture centered but provides potentials to 
compare the presence of FL in smart cities and health care, demonstrating a cross functional 
blueprint of architecture in a scalable, privacy sustaining, edge based data processing. 

Nguyen et al. [26] discusses FL frameworks and technical adaptations like FedProx, 
SCAFFOLD, secure multi-party computation, in the context of healthcare, IoT, smart cities, finance, 
and dabbles in agricultural health monitoring of soil and plant diseases. It looks into a variety of data 
types: medical images, wearable, sensors, and comments on model architectures of 3D-CNN and RNN, 
homomorphic encryption, and client-server heterogeneity. The paper also examines latency of the system, 
fairness metrics and compliance with GDPR. It combines applications such as disease detection, smart 
mon- itoring and resource management, and plots next requirements, such as cross-domain 
adaptation, trust, and incentive-aligned FL ecosystems.Such an authority survey discusses FL 
frameworks and technical adaptations like FedProx, SCAFFOLD, secure multi party 
computation. 

Zheng et al. [27] capacities and restrictions of the concept of smart cities are extensively dis- 
cussed, whereas comparative overview of FL applications in other fields, including IoT, healthcare, 
finance, transportation systems, and agriculture e.g. pest monitoring systems, crop analytics using 
UAVs are also covered in this survey. It categorizes NLP driven tasks: data offloading, anomaly 
detection, location services, and agricultural sensor fusion of data. Technically, this paper evaluates 
the frameworks of FedAvg and FedAtt, secure aggregation protocols, and blockchain-based identity 
management. It compares communication strategies, device-heterogeneity as well as privacy enforce- 
ments between sectors. The cross-domain solution would make it possible to realize reuse of smart 
city design patterns like edge orchestration, incentive models in agricultural FL implementations. 

Javed et al. [28] provide an extensive survey and framework proposal to combine blockchain 
technology and FL to develop trustful decentralized frameworks to support Internet of Things 
(IoT) conditions (smart cities and 6G networks). The authors bring up the reliance of traditional 
FL on centralized aggregators that can be a problem of trust and transparency on large scale, 
heterogeneous networks of IoT. To overcome it, they suggest a blockchain accessibly FL 
framework applying non- centralized records to aggregate safe models and select on-chain storage to 
benefit both performance and resource constraints. The paper also says a few words about reputation-
based mechanisms that can be applied to validate client behavior and it aligns its architecture with 
some global standards, including 3GPP, ETSI, ITU-T, IEEE, and O-RAN. To support their 
design, the authors develop a simulation of the model on the IOTA Tangle platform and demonstrate 
that the offered system could demonstrate high throughput and consistent confirmation rate even as the 
workload was increasing. Such major issues as blockchain overhead, latency, and the ability of 
devices to work together are as well critically assessed. This piece of work is a good source of 
information into making further advancements in the reliability, auditability, and scale of FL 
implements in smart infrastructures of the next generation. Table 2 presents a detailed 
comparative summary of five key research papers that apply FL in agricultural contexts.
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Table 2: Examination of the latest events in the application of federated learning 

 
Paper Methodology Reviewed Key Contributions Limitations 

Puppala et al. [29]  The paper reviews cross-silo FL 
approaches 
deployed over heterogeneous rural networks. The authors 
focus on adaptive clustering tech- niques that integrate both 
sensor and satellite data (Sentinel-2, CropScape) to enable 
scal- able model training under connectivity and energy 
constraints. 
Aggarwal et al. [30]  This review evaluates resource 
efficient FL for 
agricultural IoT settings, focusing on CNN ensemble 
models for rice leaf disease clas- sification. Methods such as 
model pruning, quantization, and asynchronous updates 
are discussed for optimizing FL performance. 
Ž alik et al. [31] The authors review horizontal FL 
architec- 
tures and their application in agriculture, especially those 
using FedAvg variants. The survey covers sensor and image 
data integra- tion, as well as a classification of FL types and 
aggregation topologies. 
Durrant et al. [32]   This paper explores cross-silo FL 
models 
applied to yield prediction in agri-food sup- ply chains 
using decision tree ensembles. The focus is on secure, 
collaborative model training among multiple institutions 
without sharing raw data. 

The authors propose a self 
regulating FL framework that 
optimizes both communica- tion 
efficiency and energy consumption. 
The framework is validated using 
remote sensing data and highlights 
the feasibility of FL in 
decentralized agricultural systems. 

The paper presents a custom FL 
pipeline that improves model 
accuracy while sig- nificantly 
reducing communication cost. It 
demonstrates that FL can 
outperform central- ized approaches 
in constrained farm environ- ments. 
The work provides a clear taxonomy 
of FL strategies applicable to 
agriculture and dis- cusses 
communication bottlenecks and data 
heterogeneity in rural settings. It 
helps catego- rize deployment use-
cases based on data types. 

The study demonstrates how FL 
enables privacy-preserving modeling 
for soybean yield prediction. It 
shows FL achieves similar perfor- 
mance to centralized models while 

maintaining data privacy and ownership. 



 
 
International Journal of Environmental Sciences  
ISSN: 2229-7359 
Vol. 11 No. 17s, 2025 
https://www.theaspd.com/ijes.php 

 

The framework lacks on field deployment test- ing and does 
not address device-level process- ing efficiency or 
compatibility with low power edge devices. 
 

 
The review is crop specific focused on rice and lacks 
generalizability or scalability anal- ysis across different 

agricultural domains or geographic 
regions. 

 
While insightful, the review lacks 
algorithmic depth and does not 
provide performance met- rics or 
comparative results across multiple 

FL strategies. 

 
It is limited by the use of a small set of 
public datasets, lacks real world farm level 
deployment, and does not consider network 
heterogeneity or device variability. 

Vimalajeewa et al. [33] The review presents a service-based 
FL frame- work for smart agriculture 
using microservice orchestration. 
Edge devices are configured to run 
modular models with support for 
updates and localized adaptation. 

The approach supports remote 
model updat- ing and client 
personalization in greenhouse 
setups. It is designed for 
lightweight deploy- ment, 
enhancing the scalability and 
adaptabil- ity of FL in edge 
environments. 

The framework is validated at prototype 
level only and lacks full scale deployment 
results. It also does not cover security 
robustness or long- term performance 
implications. 
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3 Study design and data collection 

The present systematic review gives a detailed overview of the development, use, and current issues 
of FL in an extensive list of areas. It presents an examination of the developing, simulating and 
implementing of FL frameworks in real-world. The aim is to develop a synthesized opinion about the 
existing state of the FL research with respect to the architecture advancements, approach to algo- 
rithms, communication models, privacy strategies, and system capacity with respect to the strengths, 
weaknesses, and rising tendencies. This study adhere to the SALSA [34] (Search, Appraisal, Synthesis, 
and Analysis) methodology to make it methodologically rigorous, transparent, and interdisciplinary 
meaningful. The literature search was concentrated on the subline 2015-2025 and a huge number of 
searches were conducted on the key academic databases such as IEEE Xplore, SpringerLink, 
Science Direct, ACM Digital Library, Wiley Online Library, Scopus and Google Scholar. ArXiv 
and other preprint outlets were used to take into consideration grey literature. Such terms as the 
ones included in the following list: federated learning, decentralised learning systems, privacy-preserving 
machine learning, cross-silo FL, FL in edge computing, non-IID data management, and secure 
aggregation were used to create keyword combinations. 

In this study, the methodology is hinged on the SALSA framework. Although the Systematic 
Literature Review (SLR) approach [36] is frequently implemented when collecting evidence in a 
struc- tured way, the nature of FL in the all domain needs to be less structured and more iterative. 
SALSA allows scholars to reflect the empirical advances as well as the theoretical ideas in a new 
area. The proposed methodology can be especially effective in synthesis works that run across subjects 
and disciplines, like in the case of such interdisciplinary as agriculture, machine learning, and edge 
com- puting, where the API set, deployment patterns, and application pattern differ considerably. 
SALSA enables one to develop a sophisticated sense of how to implement FL with regard to 
methodological clarity and scholarly rigor. 
 
3.1 Search Strategy 

The main objective of the search strategy was seeking a broad range of peer-reviewed and upcoming 
research papers in terms of concentration on FL. More attention was paid to the literature 
con- cerning the foundations of FL, the design of the system, optimization approaches, and their 
use in different real-life situations such as healthcare, IoT, financial, educational, and smart 
environments. Literature search was undertaken in high flying online libraries such as IEEE 
Xplore, SpringerLink, ScienceDirect, ACM Digital Library, Scopus, Wiley Online Library and 
Google Scholar. Also, arXiv was added to guarantee the inclusion of grey literature and the most 
innovative solutions that are yet to be reviewed. To ensure an all round coverage, search terms were 
formulated through the Boolean logic. Some of the example queries were the compoundings of 
terms like federated learning AND privacy, non, IID data AND FL optimization, edge devices 
AND FL deployment, and cross-device federated training. The publications available between 2015 
and 2025 were put in the search box to obtain current and up to date studies. This time slot can be 
described as the time of the blistering growth of the FL research, as there is a growing need of 
privacy-aware, distributed AI. 
 
3.2 Appraisal 

The Preliminary search identified 3,401 records of which 3,373 records were obtained in the primary 
scholarly databases, i.e., IEEE Xplore, SpringerLink, ScienceDirect, ACM Digital Library, 
Scopus, Wiley Online Library, and Google Scholar, and 28 records in the grey literature sources: 
arXiv. Duplicate records were removed and 1,823 records were kept after the initial screening. 
Another 600 articles were eliminated via unaccessibility or irrelevancy depending on the title and 
the synopsis. This yielded 600 full-text papers that were checked in terms of their eligibility. Articles 
were selected due to applications to specific Federated Learning (FL), including the development of 
algorithms, systems, and implementation, privacy measures, optimization of communications or 
empirical eval- uation in the real world. Researches referring to FL briefly or dedicating their 
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attention to other fields were excluded. After the appraisal of full-texts, 456 articles were excluded 
because of irrele- vance or inadequate contribution and 144 studies were included in this review. 
They comprised 46 papers using implementation and experimenting, 39 using simulation and 
modeling, 28 on architec- ture design and 24 on the subject of conceptual and thematic approaches 
to personalization, non-IID data processing, and efficiencies in communications. The whole process 
of article selection and filter- ing is visualized in We used specific Boolean search strings to search 
multiple academic databases for key Federated Learning concepts in order to make sure that the 
literature review was thorough and strong. In order to guarantee a solid and thorough literature review, 
various scholarly databases were searched with clear Boolean search terms centered on major Federated 
Learning themes. As shown in Table 3 reflecting the prominent presence of FL research in 
computer science and engineering- oriented journals. This initial dataset served as the basis for 
the following screening and synthesis phases according to the SALSA approach. 

 
Table 3: Query search results of relevant content for data collection from each database 

 
Database Example string Total 
articles 

IEEE Xplore (“Federated Learning”) AND (“privacy”) AND 
(“aggregation”) OR (“communication”) 

SpringerLink (“Federated Learning”) AND (“optimization”) OR 
(“non-IID”) OR (“per- sonalization”) 

ScienceDirect (“Federated Learning”) AND (“edge computing”) AND 
(“deployment”) OR (“scalability”) 

761 

654 

612 

ACM Digital Library (“Federated Learning”) AND (“secure aggregation”) OR (“system 
design”) 403 
Scopus (“Federated Learning”) AND (“IoT”) AND (“decentralized 
learning”) 327 
Wiley Online Library (“Federated Learning”) AND (“applications”) AND (“deep 
learning”) 241 
Google Scholar (“Federated Learning”) AND (“applications”) OR (“challenges”)
 47 

arXiv (“Federated Learning”) AND (“survey”) OR (“novel framework”)
 28 
3.3 Synthesis 

The synthesis stage was performed through an orderly structure of the chosen studies to reveal pre- 
vailing themes, novelty, and gaps with regard to FL research. A systematic template was used to 
read and analyze each article, and major details were captured including the kind of FL that was 
applied in the article (horizontal, vertical, cross-device or cross-silo), the learning model employed 
(e.g., CNNs, LSTMs, Transformers), privacy preserving mechanisms (e.g., differential privacy, homo- 
morphic encryption, secure aggregation) and the evaluation metric. Instead of categorizing the papers 
by a particular application domain, the synthesis was done in terms of a technical aspect which 
included handling non-IID, personalization strategies, aggregation method and deployment on edge 
devices. APTs such as FedAvg and FedProx were commonly found, and even architectures designed 
to operate in real-time or in low resources environments. The most common datasets included bench- 
marked image datasets, synthetic sensor data and federated healthcare data. The method used to 
classify the results thematically allows highlighting the way in which the whole framework of FL is 
changing, both theoretically and practically, notwithstanding the field. 
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3.4 Analysis 
At the stage of analysis, the synthesized information was to be interpreted and key trends, strengths, 
and limitations, and gaps to conduct FL research were to be obtained. One of the more prevalent 
themes was the use of FedAvg as a basis of aggregation, even as an increasing amount of work 
focuses on personalizing aggregation in the non IID setting and convergence. Transformer-based 
models and CNNs were also common in the vision-based tasks and sequence-based tasks. The 
use of simulation environments in the process of evaluation was underlined in many cases, 
whereas valuable was the absence of full-scale implementation in the real world. These issues of 
communication overhead, model drift, hardware heterogeneity, and data imbalance among clients 
were constantly found. Moreover, there was no standardized procedure of benchmarking 
performance of different models across implementation, which aggravated comparability. 
Privacy and trust are the major themes around the idea of FL but there have been limited works 
providing end-to-end secure proposals which integrate cryptographic solutions and performance-efficient 
solutions. Furthermore, the gap between research and practice was an important issue, since not many 
systems were implemented in active edge or mobile settings. Figure 2 presents a flowchart illustrating the 
article selection process based on the SALSA methodology. It outlines the step-by-step filtration 
of articles starting from the initial retrieval of 3,126 records across multiple databases, followed 
by duplicate removal, title and abstract screening, full-text appraisal, and final inclusion of 137 
relevant studies. This visual representation ensures transparency and reproducibility of the review 
process while demonstrating the rigor applied in curating the literature for comprehensive analysis. 
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Fig. 2: Flowchart of all the articles used in the SALSA 

3.5 Insights and Implications 

The current mini-review has a number of valuable insights as to what is going on and where FL 
research is heading. This is because, first there is an urgent need to have sensible, communication 
efficient aggregation mechanisms where aggregation can scale under low bandwidth or mobile net- 
works. Second, global models personalization in non-IID, multi cultural worlds is an open 
issue. Third, the lightweight models, energy efficient training techniques are imperative in the 
development of FL that requires edge devices with no strong computing capabilities. Fourth, to 
enhance repro- ducibility, and facilitate cross-community collaboration, open-source toolkit and 
established forms of evaluation need to become available. The review also indicates that there is still 
a need to perform more interdisciplinary work that unites distant systems and privacy and deep 
learning expertise with expertise in those fields where FL is deployed to bridge the gap between 
research prototypes and real-world practice. It is also necessary to integrate policymakers and 
technology developers to need to collaborate and eliminate legal and infrastructural obstacles, 
particularly when it comes to data regulation and robust collaboration on a big scale. 

 
3.6 Reporting 

In order to guarantee transparency and reproducibility, the whole review process was thoroughly 
reported. All the steps of SALSA methodology have been carried out through pre-defined templates 
and documentation instruments. All articles used in the research had been referenced accordingly 
through standardized citation methods. Data on the type of algorithm, the deployment model, the 
approach to privacy, and evaluation were represented in summarized form using comparative tables 
and depicted in visual graphs. The thematic structure of the review facilitates its usage by a general 
audience and serves as a practical resource to the readers who are researchers, engineers, educa- tors, 
and anyone working in the industry. This review will be used to establish the ground in the 
further development of federated intelligence systems by focusing on the aspects of methodological 
exactitude and cross-domain utility. Table 4 presents a structured overview of the reviewed liter- ature 
on federated learning spanning the years 2015 to 2025. A total of 144 articles were selected using 
the SALSA methodology, sourced from leading academic databases. The studies span a diverse range 
of application domains—including agriculture, healthcare, finance, smart cities, IoT, and more. The 
most common challenges identified across the literature include privacy risks, communication 
overhead, non-IID data, algorithmic instability, fairness issues, and difficulties in evaluation. Key 
findings emphasize the growing demand for scalable, privacy-preserving federated systems and high- 
light significant research gaps, particularly in underrepresented sectors like agriculture and mental 
health. 

 
Table 4: Overview of Included Literature in the Review 

 
Criteria Details 
Publication Year Range Considered 2015–2025 Total Articles Reviewed  144 
Databases Used IEEE Xplore, SpringerLink, ScienceDirect, ACM Digi- tal Library, 
Scopus, Wiley, Google Scholar, arXiv 
Methodology Used SALSA (Search, Appraisal, Synthesis, and Analysis) Types of 
Applications Considered 

• Smart Agriculture 
• Healthcare 
• Finance and Banking 
• Smart Cities 
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k=1 

K 

• Internet of Things (IoT) 
• Education 
• Legal Analytics 
• Wildlife Conservation 
• Space Exploration 
• Mental Health Monitoring 

 

Types of Challenges Faced  
• Privacy & Security 
• Communication Overhead 
• Data Heterogeneity (Non-IID) 
• Algorithmic Optimization 
• Fairness & Participation 
• Evaluation & Debugging 

Key Findings (Short Keywords) 
• Taxonomy of FL challenges 
• Underrepresented domains (e.g., agriculture) 
• Need for scalable, privacy-preserving FL 
• Emphasis on cross-domain applicability 
• Lack of standardized benchmarks 
• Gaps in personalization and deployment 

 
4 Fundamentals of Federated Learning 

4.1 Basic principle of federated learning 

FL is a learning system that collaboratively models together and shares no raw data across several 
separate clients, which are independent of one another. Rather than that, all clients can run their 
data locally and share with a central server model parameters or updates only. This paradigm aids 
in maintaining data privacy and minimizes overhead in communication related to transmitting huge 
set of data. 
In equation 1, Let K represent the total number of clients. Each client k possesses a local dataset 

of size nk, and the global data size is n = 
ΣK  nk. The global objective is to minimize the 

weighted 
average of each client’s local objective function, defined as: 

min F (w) = 
Σ nk F (w) (1) 

w n k 
k=1 

Here, Fk(w) denotes the local loss function for client k, which is given by: 
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t 

K 

 
 

 
k nk 

i i 
i=1 

where ℓ(w; xk, yk) represents the loss function applied to the i-th data point of client k, and w 
i i 
are the model parameters. 
During each communication round t, the following steps occur: 

1. The server broadcasts the current global model wt to all selected clients. 
2. Each client performs local training on its private dataset and updates the model to wk. 
3. The server aggregates the clients’ updates using a weighted average: 
 

w = 
Σ nk wk 

 
(3) 

t+1 n t 

k=1 

This iterative process continues until convergence. FL is particularly effective for scenarios involving 
sensitive or distributed datasets, such as those in agriculture, healthcare, and IoT, where data-sharing 
constraints are critical. 

4.2 Types of federated learning 

FL has become one such magic bullet in the field of decentralized machine learning enabling many 
clients or organizations to train models in a coordinated manner without exchanging raw data. With 
the proliferation of application of FL in a variety of fields and spheres of life (agriculture, healthcare, 
finance, etc.), the typology of its implementation and design versions becomes relevant. The difference 
between these types depends on the data distribution nature, the relation between clients, and the 
involved learning strategies. The realization of such categories is critical to making a decision when 
adopting the appropriate FL framework to the domain of application, particularly in situations 
where data heterogeneity, device constraints, or privacy policies bring in special challenges. 

Among the major divisions of FL, we suggest such viewpoints as Horizontal Federated 
Learning (HFL) [42], Vertical Federated Learning (VFL) [43] and Federated Transfer Learning 
(FTL) [44], and new models such as Cross-Silo [45] and Cross-Device Federated Learning [46]. 
All of them are used in solving different problems based on individual functions of whether the 
clients share features or even data samples or not and whether they are personal devices and 
institutional servers. These FL models are described in the subsections below as well as their relevance 
and usefulness in application, especially in agriculture. 
  
This iterative process continues until convergence. FL is particularly effective for scenarios involving 
sensitive or distributed datasets, such as those in agriculture, healthcare, and IoT, where data-sharing 
constraints are critical. 
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4.3 Types of federated learning 

FL has become one such magic bullet in the field of decentralized machine learning enabling many 
clients or organizations to train models in a coordinated manner without exchanging raw data. With 
the proliferation of application of FL in a variety of fields and spheres of life (agriculture, healthcare, 
finance, etc.), the typology of its implementation and design versions becomes relevant. The difference 
between these types depends on the data distribution nature, the relation between clients, and the 
involved learning strategies. The realization of such categories is critical to making a decision when 
adopting the appropriate FL framework to the domain of application, particularly in situations 
where data heterogeneity, device constraints, or privacy policies bring in special challenges. 

Among the major divisions of FL, we suggest such viewpoints as Horizontal Federated 
Learning (HFL) [42], Vertical Federated Learning (VFL) [43] and Federated Transfer Learning 
(FTL) [44], and new models such as Cross-Silo [45] and Cross-Device Federated Learning [46]. 
All of them are used in solving different problems based on individual functions of whether the 
clients share features or even data samples or not and whether they are personal devices and 
institutional servers. These FL models are described in the subsections below as well as their relevance 
and usefulness in application, especially in agriculture. 

4.3.1 Horizontal Federated Learning 

Horizontal Federated Learning is suitable when the data of diverse clients belong to the identical 
feature space but divergent sample space [45]. With reference to agriculture, this could occur whereby 
various farms can gather the same information as soil moisture, leaf images or weather but on a 
different piece of land or crops. Every farm learns about the same model structure on its data and 
transmits the updates to a central server. Weighted averaging is done to create a global model based 
on the server. HFL is especially successful where institutions or clients gather similar kinds of features 
but in separate operations. It assumes the homogeneity of data in regards to features and is mostly 
applied via FedAvg algorithm. Although HFL could be used to improve the privacy and collaborative 
modeling of data, it can encounter challenge when the local datasets are non-IID, and such cases can 
cause problematic convergence and performances among the clients. 
 
4.3.2 Vertical Federated Learning 

Vertical Federated Learning can be appropriate in situations in which various clients hold varying 
elements regarding a similar set of information images [46]. This category is particularly important 
when there are several agricultural stakeholders of that have complementary data of same entities. 
An example would be that a crop monitoring agency could have image data of plants and national 
weather service measures temperature and humidity on the same geographic locations. The clients 
do not share the data samples, but the data entities overlap, which is why VFL needs the ability 
to sufficiently conduct such techniques as secure entity alignment and homomorphic encryption 
that need to be in place to provide privacy assurance and faultless merge of features. This model can 
enable the cooperation between the institutions having different data capabilities and providing more 
complex training inputs. However, VFL at the cost of computation and communication overheads, 
requires secure matching of data and model updates. When it is to be used in agriculture, it 
will bring about more integrated and model-rich models of decision support, particularly when both 
governmental and non-governmental agencies are required to cooperate. The figure 3 illustrates the 
three main types of federated learning based on data partitioning. 
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(a) Vertical FL (b) Horizontal FL (c) Transfer FL 

Fig. 3: Types of Data Partitioning Models 
 
4.3.3 Federated Transfer Learning 

Federated Transfer Learning deals with a case in which feature space and sample space vary across 
clients. This is usual in the case when institutions or farms are working under various environmental, 
technological or the data collection scenario [47]. As an instance, a research center engaged in wheat 
disease might be interested in cooperating with a regional center being engaged in rice disease with 
varied crop variety, climatic conditions, and characteristics. FTL uses the principles of transfer learn- 
ing to transfer knowledge used for one domain and adjust it to the other using common intermediate 
representation or transfer modules. This renders it to be an effective instrument of the knowledge 
generalization in various farming environments [48]. FTL also generally assumes some small overlap 
in either data points or representation of the data features is possible. The principal complexities are 
domain adaptation and the necessity to compose semantic mappings. Nonetheless, the potential ben- 
efit in FTL to increasing the robustness of models in geographically and semantically heterogeneous 
farming systems that do not involve direct data sharing is obvious. 
 
4.3.4 Cross-Silo Federated Learning 

Cross-Silo Federated Learning allows a few trusted and high performance organizations namely uni- 
versities, agricultural research centers or state agencies to work together [49]. The data stored in each 
silo is generally large volume of data and they also possess enough computational power to effectively 
train the models. This type of FL is based on the assumption of the relatively stable con- nection to 
the network and the consistent presence of the clients. When several institutions bring 
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their local models to construct the common crop disease prediction model or selection of the com- 
mon crop yield estimation model, It can be used in the agricultural field. Such configurations usually 
enable superior orchestration and version of the training pipeline. The FL model updates are aligned 
and jointed with regulated and secure protocols, and, therefore, a Cross-Silo FL is much easier to 
process, in respect of privacy, compliance, and audit [50]. It can also engage in more complicated 
model architectures as well as prolonged training periods because resources are abundant. Neverthe- 
less, they have weak scalability and lack diversity of clients in comparison with Cross-Device FL. The 
structure of cross-silo Federated Learning is shown in Figure 4, in which a few trustworthy organi- 
zations, like hospitals, universities, or research centers, work together to jointly train a global model 
while maintaining decentralized data. This method permits high-performance model learning across 
separate silos while guaranteeing privacy, trust, and data ownership. 

 

Fig. 4: Illustration of cross-silo Federated Learning architecture 
 
4.3.5 Cross-Device Federated Learning 

The Cross-Device Federated Learning works on a different scale on the edge devices e.g. mobile 
phones, IoT sensors, and agricultural drones [51]. Very little data is contained in each device and 
computing, storage and energy is scarce in each device. The given FL environment is perfect to work 
with smart farming where numerous sensing nodes are distributed to provide real time information 
about crop health, soil moisture, or micro climate variables. Some of the issues that may arise due 
to use of Cross-Device FL are latency in communication, heterogeneity of devices, and unstable 
network connections. In response, strategies such as asynchronous updates, compression algorithms 
and sparse communication protocols are used. The greatest benefit is that privacy is high because 
sensitive on-device data does not leave the local system. The aggregation is usually carried out 
applying algorithms such as FedAvg or federated dropout. Cross-Device FL can be scaled to 
field use, and can personalize and localize model updates, but it puts a strong requirement on 
distributed coordination that must be robust to allow effective and reliable work across a highly 
dynamic system of devices. Cross-device Federated Learning, where a large number of decentralized 
and frequently unreliable edge devices like smartphones, wearables, or IoT nodes participate in 
training a shared model, is demonstrated in Figure 5. This kind of FL puts user privacy and 
scalability first, but it also comes with drawbacks like device heterogeneity, limited bandwidth, and 
sporadic connectivity. 
 
5 Applications of federated learning 

5.1 Agriculture 

FL takes a significant role in revolutionizing smart agriculture by providing data driven solutions 
with protecting privacy [52]. So the nature of agriculture is that the farms are geographically far apart 
and each produces a lot of potentially useful sensor data on soil condition, irrigation, crop health 
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and pest trends. The concentration of such data may easily cause privacy issues and logistic problems. 
FL allows these distributed farms, research establishments, as well as agro tech enterprises to jointly 
train effective machine learning systems without moving any sensitive details. It is necessary 
 

 
Fig. 5: Architecture of cross-device Federated Learning across decentralized user devices 

 
in precision agriculture as a localized knowledge may greatly influence productivity. FL enables the 
detection of diseases via imagery of the leaf [53], optimizes the most appropriate time to make harvest, 
and optimizes the timing of an irrigation cycle, through sensor readings [54]. Also, FL is scalable in 
diverse environments that adjust to a region specific pattern and seasonal trend. Its decentralized 
structure matches the requirement of privacy, security and regulatory compliance that is demanded 
in agriculture [55]. In general, FL enables farmers and policy makers to have timely and actionable 
intelligence and yet owning the data and being considerate of regional differences. Numerous uses 
of Federated Learning in agriculture, such as crop disease detection, yield prediction, pest 
monitoring, and irrigation management, are depicted in Figure 6. FL facilitates scalable and privacy-
preserving decision-making in contemporary agricultural practices by allowing cooperative model 
training across dispersed farms and research institutions without exchanging raw data. 

 

Fig. 6: Applications of Federated Learning in smart agriculture systems 
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5.2 Healthcare 

FL is deemed to be one of the most important areas to apply to healthcare since all medical-related 
data is sensitive and confidential [56]. Medical data that include imaging scans, genetic information, 
and client reports are collected in huge volumes in hospitals, diagnostic labs, and clinics. Because 
of strict privacy laws (HIPAA and GDPR), it is difficult to share this data in various institutions. 
FL enables such a distributed model development by enabling decentralized learning the raw data 
does not leave the local location [57]. This offers privacy and promotes innovation on medical 
research. The applications of FL include constructing systems to detect diseases, updating radiology 
images classification [58], anticipating the shift in patient condition, and inventing personalized 
treatment advises. It also supports multi institutional research that is quite important in solving rare 
diseases and characteristics of different populations. Making the model more general, de biasing, 
and preserv- ing the identity of the patient, FL is substantial in advancing more ethical and safe AI 
tools in the current healthcare contexts. 

5.3 Finance 

Data security, along with the derivation of meaningful business intelligence is of high importance 
in the financial sector. The excellent solution to this problem is federated learning, which will 
allow banks, insurance companies, and fin-tech platforms to learn collectively in machine 
learning mod- els without compromising any confidential data [59]. Financial institutions handle 
sensitive data of credit histories, log of transactions and account balances. When this data is 
shared even to analyt- ics, it brings both regulatory and competitive issues to the fore. By 
participation in decentralized collaboration, FL enables the construction of models of detection 
of fraudulent operations, credit risk scoring and systems of prevention of money laundering. 
These models have the advantage of diversity of data on the institutional level, and they adhere 
to the laws of protection of data, such as GDPR, CCPA, and PCI-DSS [60]. FL also increases 
the customization of services in the banking sector since it is possible to run behavior-based 
recommendation engines but without getting access to the individual users profile centrally. Its 
distributed structure makes its models robust, the sys- tem less biased, and cybersecurity in 
financial systems. Therefore, FL guarantees new advancement in the world of finance without 
sacrificing privacy, compliance, or the integrity of an institution. 
 
5.4 Smart city 

The creation of smart cities is inseparable with FL since streams of large data are being rung 
out by a network of distributed sensors and IoT devices (which exist). Those are surveillance systems, 
environmental monitors, traffic sensors, and utility meters. Such huge and sensitive data cannot be 
amalgamated at a central point and this presents a privacy issue. The FL solution is scalable and 
secure because it allows the local models to be trained at the edge and precisely update the at -a- 
central-server [61]. This solution keeps data locally and yet contributes to a smart system worldwide. 
The FL is utilized in smart cities to optimize traffic, anticipate infrastructure maintenance, analyze 
energy efficiency, and emergency response systems. The role of FL is associated with the decrease in 
latency, reduction in bandwidth utilization, and maintaining the individual privacy without compro- 
mising real time decision making. In addition, it enables municipalities to use the information on 
the insight of heterogeneous data streams without jeopardizing security, resulting into a robust, adap- 
tive, and privacy-conscious urban ecosystem. It plays a significant role in streamlining the movement 
of traffic, saving energy, and analyzing the safety of people. The added value of FL is the creation of 
smart infrastructure that changes in real time, has low latency and does not violate the privacy of 
citizens [62]. 
 
5.5 IoT devices 

Industrial Internet of Things (IoT) involves the deployment of sensors and devices across manu- 
facturing units, energy plants or supply chain facilities [63]. These systems produce high frequency 
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sensitive data about machine performance, environmental conditions, and system health.electronics. 
This data is centralized, which can lead to operational leakage and cyber attacks. These issues are 
addressed by federated learning, which allows for the direct training of models at the edge. The 
use of FL enables accurate identification of machinery failure patterns for predictive 
maintenance, improves production efficiency, and enhances quality assurance without the disclosure of 
proprietary data. The development of AI models can be undertaken collaboratively by 
manufacturers across multiple facilities or companies, while maintaining minimal industrial 
confidentiality. Its localization of data benefits real-time analytics and reduces network overhead. 
The impact of it is felt in areas such as enhanced operational resilience, cost reduction, and smarter 
automation across industries, which spurs innovation while maintaining data sovereignty in competitive 
markets, energy plants, & supply chain facilities [64]. These systems produce high frequency sensitive 
data about machine per- formance, environmental conditions, and system health electronics. The 
concentration of data can lead to operational leakage and cyber attacks. FL addresses these issues by 
facilitating direct model training at the edge. Moreover, FL facilitates predictive maintenance by 
identifying failure patterns in machinery and improving production processes while maintaining 
proprietary data. Manufactur- ers have the ability to collaborate on developing AI models across 
multiple facilities or companies without breaching industrial confidentiality. The ability to keep data 
locally helps support real time analytics and reduce network overhead. 

5.6 Education 

In the education industry, where student data distribution is among schools, universities, and internet 
sites, FL is a rather important aspect [65]. Individual institutions collect massive data on student 
and learning performance, behavioral information including engagement. The shared trait is 
the privacy issue and the policies of data governance do not allow sharing such data to perform 
large scale analytics. FL allows one to train predictive models in a decentralized way that may 
predict the results in academic performance and identify the learning challenges and personalize the 
educational information. These frameworks utilize a rich set of educational data, and also satisfy 
student privacy laws such as FERPA. FL enables equity since the underrepresented or distant 
institutions can share their insights, but they do not have to reveal sensitive information [66]. It 
also gives a hand to adaptive learning systems whereby the delivery of content is customized 
according to the regional learning contexts. On the whole, FL provides better decision-making to 
educators, supports scalable e-learning infrastructure, and popularizes equity in academic AI 
systems, which makes it a decisive instrument of digital change in education. Federated Learning is 
being used in the education sector to facilitate decentralised academic data sharing, personalised learning 
models, and privacy-preserving analysis of student performance, as shown in Figure 7. 
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Fig. 7: Applications of Federated Learning in the education sector 
 
6 Challenges faced in federated learning system 

The real life application of FL is full of challenges manifesting as a result of the type and distributed 
nature of the constituents of the process. These difficulties cut across concerns on privacy and security, 
limited communications, data heterogeneity, instability on the algorithm, and fairness. A proper 
comprehension and taxonomy of these issues can guide in the creation of scalable, secure, and effective 
FL systems. A detailed classification and deep analysis of the main challenges encountered in FL 
systems are presented as below. 
 

6.1 Privacy and security challenges 

FL is planned as a system that aims at preserving the privacy of the users, keeping their data 
in one place, but still leaves their privacy and security at severe risks. As the updated model is shared 
rather than raw information, it is possible to draw adversaries to deduce some sensitive information 
or corrupt the model via malicious activities. These threats are important to be addressed to assure 
FL deployments of trust, reliability, and safety. Though FL has a decentralized characteristic, 
still it has privacy and security risks. The purpose of these threats is to reveal some confidential data 
or destroy the integrity of the model. 

6.1.1 Information Leakage Attacks 

This is an attack whose goal is to infer sensitive information using the shared parameters of the model. 
The updates used to modify data samples may be discarded through gradient leakage exposing all 
of the data samples. Membership inference determines whether particular information was included 
in training. Model inversion attacks attack data elements based on inferences of the models. These 
attacks affect the confidentiality of data stored about the clients, although raw data may never be 
presented. [67] demonstrates how gradients shared during FL can be used to reconstruct original 
training inputs. It evaluates multiple scenarios and mitigation techniques. 

6.1.2 Poisoning Attacks 

Poisoning takes place whenever the opponents inject some poisonous updates or data into the system. 
Information contamination skews local information to deceive global learning. Backdoor attacks are 
performed as model poisoning, where misclassification triggers are embedded. Sybil attacks imply 
training models by several bogus clients to take control. Such threats compromise the performance 
of models as well as generate used-attacker mistakes or inability to trust the system. [68] introduces 
model replacement as a form of backdoor attack in FL. It shows that a single malicious client can 
manipulate the global model while remaining undetected. 

6.1.3 Lack of Secure Aggregation 

Central servers are capable of reading or tinkering with client updates without cryptographic protec- 
tions in place. Lack of a safe aggregation method like homomorphic encryption or secure multi-party 
computation puts the clients at the risk of monitoring or alteration. The vulnerability goes against 
the privacy goal of FL and can cause adversaries to make inferences about client behavior or model 
input using aggregated statistics. [69] presents a secure aggregation protocol designed to protect 
model updates in federated learning while ensuring efficiency and scalability. 

6.1.4 Trust Management 

All the participants are assumed to be honest in FL, but not always this is the case. The free-riding 
clients reap the benefits of the global model and they do not provide quality upgrades. In addition, 
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unverifiable training causes server to doubt whether a particular client indeed did computation, or 
whether it indeed provided synthetic updates. This increases the need of scoring reputation and 
verification mechanism of contributions. [70] explores how trust and accountability can be managed 
in distributed systems where multiple autonomous entities collaborate without a central authority. 
Figure 8 shows the main problems that come with FL.These problems make it very hard to use 
FL in the real world, especially in places with limited resources or where people are spread out. They 
are also important areas of ongoing research and improvement. 

6.2 Communication and Infrastructure Challenges 
The FL systems involve regular communication and infrastructure from decentralize to the cen- 
tral server. Nonetheless, there are considerable impediments brought by the fact that the hardware, 
network bandwidth, and participation capabilities would vary across participating clients. These 
problems lead to coordination headaches, unbalanced input and poor model. The nature of such 
communication and infrastructure challenges is important to predict how resilient and scalable FL 
systems can be designed. These are attributable to the reliance to network availability, device capacity 
and communication overhead. [71] provides a comprehensive review of techniques to improve commu- 
nication efficiency, highlighting methods like model compression, client selection, and asynchronous 
updates while outlining ongoing challenges such as bandwidth constraints and client heterogeneity. 

 
 
Fig. 8: Key challenges in the implementation and deployment of Federated Learning syst 
 
6.2.1 Communication Overhead 

A continuous transport of large model parameters between customers and the server strains the 
communication infrastructure. Training rounds multiply the network load more so in a large scale 
deployment. Such overhead is expensive in those places where connectivity is not so good and the 
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overall training may be hampered. [72] define the concept of the federated optimization that is a 
paradigm of training centralized machine learning models over massively distributed, non-IID, and 
unbalanced data, including mobile phone data with communication efficiency as the main 
bottleneck, and the novel algorithm in this unique environment. 

6.2.2 Network Instability 

FL can be implemented in an edge or rural setting where the presence of the internet is sporadic. 
Weak signals may also make the clients miss or lack the ability to send and receive information on time 
leading to their partial or late contribution. Unstable network causes de synchronization and 
poor accuracy and reliability of the model. [73] introduce a federated PAC-Bayesian learning 
model that generalizes traditional PAC-Bayesian theory to any non-IID federated application that 
conceptualizes tight generalization bound designed to work with decentralized data and metric. They 
provide client- specific priors and aggregation weights of variables, estimate a new Gibbs-based 
algorithm minimize the PAC-Bayesian bound and cross check its utility on practical datasets 
through resource efficient federated updates . 

6.2.3 Device Heterogeneity 

Clients of FL are highly diversified in terms of computational capacity, memory and battery life. The 
low-resource devices might not be able to do training tasks which results in either client dropouts 
or rounds skipped. This disparity influences equity, delays convergence and it creates glitches when 
aggregation is accomplished. [74] address the problem of federated optimization in resource-limited 
edge settings through a dual direction; first, derive bound of convergence in distributed gradient 
descent over non-IID edge data, and then design a control algorithm that strategically trades off local 
updates and global aggregation in a resource-bounded local setting. Their approach thus reaches 
near-optimal model performance with both prototype and large scale simulations that not only reduce 
communication expense but also reduce training duration as well, and thus it is applicable in 
IoT and edge computing applications. 

6.2.4 Client Dropouts and Availability 

Every client can participate in FL on a voluntary basis and depending on his or her availability. 
The devices can easily be disconnected during training or can be nonreactive due to power limits or 
way of connections. Dropping out causes unequal participation and may severely cause them to slow 
down a learning process all altogether. [75] introduce FedCS, a client selection algorithm to federated 
learning on heterogeneous mobile edge systems, which selects clients to maximize client participation 
in a round with consideration to computational capabilities and network conditions to decrease the 
amount of training time and remove the impacts of dropout. 

6.3 Data Heterogeneity Challenges 

Rare and non-homogeneous nature of distributed data on the clients is one of the fundamental 
confusions of FL. In contrast to centralized learning, non-IID data, imbalanced sample size, and the 
discrepancy of features apply to FL. Such heterogeneity may prevent convergence, make the models 
less accurate, and be subject to biases. The solution to data heterogeneity is the key to making the 
FL systems generalizable and fair in their performance. Such category includes challenges brought 
by diversity of local datasets. 

6.3.1 Non-IID Data 

The data are normally non-identical and independently distributed in FL. Various distributions of 
classes or patterns of data may be observed by clients. This disparity between client information 
and the worldwide model goal leads to low generalization as well as draggy convergence. [76] present 
a comprehensive survey on the effects of non-IID data in federated learning, analyzing its impact 
on both horizontal and vertical FL, reviewing mitigation strategies, and outlining future research 
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directions. 

6.3.2 Unbalanced Data Volume 

There are clients who obtain and collect thousands of samples whereas there are few ones. This tilt betrays 
the model in terms of data rich clients and undermining the global model representation of 
underrepresented clients, which lowers model fairness and robustness. [77] the objective inconsistency 
issue has been discussed in the paper, which occurs in heterogeneous federated learning due to differences 
among local updates among clients, leading to global level convergence to an unwanted surrogate 
objective. The authors suggest fixing this with FedNova, a normalized gradient aggregation scheme that 
guarantees convergence of the global, true objective that shows increased performance in non-IID 
and resource-varying environments. 

6.3.3 Label Scarcity and Missing Classes 

In most regions, some of the clients do not have labeled data or their data are not all the classes. 
This imbalance has an impact on classification, including skew global model decision boundaries. 
[78] FedGroup proposes a clustered federated learning scheme which dynamically clusters the clients 
together according to affinities in their local model updates- using a new data-driven distance- such 
that they can carry out client-clustered specific federated training to enhance robustness given non- 
IID data, gaining accuracy in non-IID data over regular FedAvg by a big margin. 

6.3.4 Feature Space Misalignment 

Under vertical FL or multi-source, the customers should be able to capture different characteristics 
of the same entities. Incorporating in such sets of diversified features sets entails complex 
transformation or matching of entities processes which render the system complex and 
computationally expensive. [79] Fed2 mitigates the structural feature misalignment induced by using 
local models in federated learning by presenting feature oriented structure adaptation, a process to 
divide neural network into grouped modules corresponding with individual structures, and a feature-
paired averaging scheme that only semantically coherent parameters are averaged. This achieves a 
more stable convergence, greater accuracy (2.52-4.6 percent improvements), and lower 
computational and communication expenditure than FedAvg particularly when facing both IID 
and non-IID data distributions 

6.4 Algorithmic and Optimization Challenges 

The FL version of system types of distributed optimization typically get tangled up with various 
algorithmic difficulties faced in non-IID data, device disconnection and non- synchronous updating. 
These complicate convergence and stability of training. As well, the optimization trade-offs between 
the generalization of a model that should be used worldwide and the personalization of models 
on a client-to-client basis exist. These challenges should be addressed to develop such a FL algorithm 
that is strong and effective. Some of them are model training, convergence and aggregation. 

6.4.1 Slow Convergence 

The convergence of FL models usually needs much more training rounds to converge than 
that of centralized models owing to the heterogeneity of data, incomplete participation by the clients, 
and the non-synchronous update process. Incremental progress slows down the full functionality of 
the system and minimally increases the deployment. Optimizers such as FedDyn and FedNova are 
designed to stabilize convergence in this phenomenon. [80] poses a combined optimization problem 
based on user selection, wireless resources block allocation and global model aggregation to minimize 
convergence time and training loss of FL of wireless network. They propose a probabilistic client 
selection methodology and use neural networks to guess updates of omitted customers so that they 
can achieve up to 56 percent faster convergence and 3 percent superior precision in comparison with 
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standard FL guidelines 
 
6.4.2 Model Personalization Trade-off 

Global models can fit badly on distributions that are client specific. The methods of personalization 
such as meta learning, local fine tuning learning enable models to be adjusted locally but remain a 
part of a global model. The main FL challenge is finding the perfect measure between generalization 
and personalization. [81] discusses the model generalization-personalization trade-off in federated 
learning so as to curb the effects of data heterogeneity among clients. The authors exemplify their 
strategy by presenting a privacy-preserving heterogeneous fall detection system and explain that a 
balanced trade-off between the two objectives can considerably enhance the robustness and accuracy 
of a system in realistic settings. 

6.4.3 Aggregation Bias 

Such aggregation methods as FedAvg favor different clients with greater data or hardware. It causes 
over representation and ineffective generalization on clients who are smaller or minority. Work such 
as weighted averaging, data-aware selection and fairness-aware aggregation are meant to address this. 
[82] contain a thorough literature review and taxonomy of 27 federated learning aggregation 
algorithms and evaluation of best practices like model averaging methods, client weighting, secure 
aggregation and even personalization approaches. They categorically discuss the contributions and 
drawbacks of all of the methods concerning issues such as efficiency of the communication, scalability, 
resilience, and privacy, and identify research directions toward standardization, homogeneity, defense 
against security attacks, and quantum-conscious aggregation. 

6.4.4 Stale Updates 

Nevertheless, asynchronous clients can send updates after some rounds and this can cause using out- 
dated gradients. Such uninspiring updates will undo new learning and unsteady the model. Such 
techniques as staleness-aware aggregation address this issue. [83] propose FedStale, a federated learn- 
ing algorithm that is better than FedAvg and FedVARP in that its weighting scheme intelligently 
leverages both fresh updates supplied by the participating clients and stale updates supplied by the 
non participating ones, using a weighting scheme that is tunable to the perceived relevance of updates 
across the clients. This suffers the impact of homogeneous participation and data distributions quite 
passingly, providing improved and more consistent convergence, and beating baseline methods in a 
wide variety of experimental configurations. 

6.5 Fairness and Participation Challenges 

The situation with fair participation of diverse clients and equity of model performance is always 
a dilemma in FL. Unequal data quality, availability, and systems resources may result in unequal 
patterns in which it may profit some clients at the expense of the others. Besides, there are no well- 
developed incentives related to participation and ways to detect dishonest behavior. This is to be 
tackled comprehensively in a fair and inclusive FL system. These deal with fair model results and 
equal attendance of clients. 

6.5.1 Accuracy Disparity 

Global FL models might not equally work on all clients. The low accuracy can be encountered when 
users have minority or out-lier data distributions. This compromises the principles of fairness, par- 
ticularly in the context of software such as healthcare tools or agriculture, where predictions have to 
be accurate to the marginalized population. Individualized FL algorithms and fairness consideration 
optimization algorithms help curb that gap. [84] that suggests the FOCUS framework to address 
poor quality labeling among clients by more keeping the small and clean benchmark dataset on the 
server. To update each client, FOCUS calculates that client credibility as a comparison of local model 
accuracy relative to this standard, and uses these credibility metrics to weight client updates, which 
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has the effect of allowing noisy label participants greater weight or influence in traditional FedAvg, 
and greatly increases model accuracy. 

6.5.2 Client Selection Bias 

The clients that are usually chosen using FL frameworks tend to have good network connections 
or high reliability at the expense of slower or less available nodes. This causes biased training and 
decreased generalization of a model. System efficiency ought to be matched with statistical fairness 
performed through selection mechanisms, such as FedCS and Oort. [85] offer an overview of client 
selection methods in federated learning, and groups them according to system and data heterogeneity 
and discuss how they can differently affect performance, fairness, and resource consumption. They 
provide major limitations, which are resource limits, confidentiality, and equity, and future aspects 
of research are outlined, where these are dynamic selection, theoretical propositions, and large-scale 
benchmarks. 

6.5.3 Lack of Incentive Mechanisms 

Clients who have valuable data or those that possess high computation power might be reluctant to 
engage in FL without incentive. It is important to develop incentives that encourage honest, pro- 
ductive contributions. Reputation-based scoring, token systems and game-theoretic reward models 
can be used as solutions. [86] gives a broad survey of the 27 federated learning aggregation algo- 
rithms based on their strategies like secure aggregation, weighted averaging, and personalization and 
evaluates their ability in terms of diverse proxy measures like communication efficiency, robustness, 
scalability, and privacy. Main constraints on current methods and directions of future research, as 
identified by the author of the review, include standardization, a better way to handle the issue of 
data heterogeneity, and integration with secure aggregation methods to provide a higher degree of 
trustworthiness. 

6.5.4 Free-Riding and Dishonest Behavior 

Clients that are bound to cheat to score points of the global model without contributing to its 
training will involve themselves by giving the outdated, noise, or fabricated updates. This is against 
equity and it makes people lack trust. Such behavior can be detected and mitigated with the help of 
auditing and trust-based filters. [87] makes a credible analysis of free-rider attacks in blockchain 
assisted decentralized federated learning and quantifies how free-riders can undermine system 
performance. The authors prove the vulnerability to free-riders and the effectiveness of credibility 
enablers in maintaining the integrity and solidity of federated learning by testing the resilience of 
network, in terms of 6G-type topologies. 
 

6.6 Evaluation and Debugging Challenges 

Equal participation in the model performance and the involvement of the different clients is assured 
by fair means and that is the ever-present problem in FL. Data quality, availability or even the source 
system resources may be biased which may lead to the gains of some clients at the expense of other 
clients. Moreover, participation in incentives and the methods of determining unethical behavior 
are also not achieved successfully. These concerns should be addressed comprehensively and fairly 
in an inclusive manner in FL system. They concern just outcomes of the models and reasonable 
participation of clients. 

6.6.1 Lack of Centralized Evaluation 

The evaluation of the model performance is not carried out with the help of a common global dataset 
in FL, and it is challenging to trace the consistency of the model behavior among the clients. This is 
a drawback in reproducibility and reliability particularly when clients have very disparate data. 
There is no shared test set hence distributed validation policies are needed. [88] categorizes the 
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studies on federated learning based on system design, application vertical, privacy/security protocols, 
and resource management that it highlights its transition out of a centralized model to a 
distributive, on site model of the IoT. They further determine some of the most pressing unresolved 
issues that include client heterogeneity, safe aggregation, communication efficiency, and regulatory 
compliance when they project future research directions on more resilient and more scalable FL 
frameworks. 

6.6.2 Monitoring Difficulties 

Given that training is carried out on-site, the server finds it difficult to track the action of the 
client, whether data is corrupted, over fitted or under-trained. Revealed a lack of transparency makes 
models subject to failures that are difficult to detect with FL systems. [89] perform an in depth survey 
of 27 federated learning aggregation algorithms and group them according to approaches such as 
weighted averaging, secure aggregation and personalization. They compare these approaches along 
the main performance axes, such as communication efficiency, scalability, robustness, and privacy 
and recommend remaining open questions and research directions, referred to as standardized 
benchmarks, heterogeneity, and security. 

6.6.3 Debugging and Fault Isolation 

In case of a decline in the performance of global models, it is hard to determine the root cause of 
error because of the decentralized solution of FL. The model can be disrupted by one bad client or 
update, and it will be necessary to do complex diagnostics on the client level and upgrades to 
figure out the offender. [90] FedDebug provides an end-to-end model of debugging federated learning 
programs by representing the simulation and replay execution together with automated fault 
identification to detect malicious clients without having access to test information or labels whilst 
vendorizing up to 100% precision in the single client fault identify and 90.3 percent accuracy in the 
multiple defective client situation, with just a 1.2 delay per round of training data. Its fine grained 
inspection and break point based interface allow developers to step through federated rounds and 
client states without interruption and significantly increase efficiency and reliability of their 
debugging and debugging of distributed systems of a privacy-sensitive nature. 

6.6.4 Explainability and Transparency 

FL models can be black boxes, meaning that the training data, as well as the behavior of the model 
locally, is not accessible to server. This explainability constrains stakeholder confidence, particularly 
in the regulated industries. On the one hand, explainable methods in FL remain in their infant 
stages. 
[91] the author proposes a unified model in which FL is integrated with Explainable AI (XAI) to 
identify financial fraud among banks without sacrificing privacy. The system increases transparency, 
regulatory compliance, and accuracy of detection results training on realistic dataset of transactions 
by applying FL and using XAI to explain model decisions, without sharing raw data. 

7 Results and discussion 

This literature review was started because the investigator wanted to comprehend the complex nature 
of the issues of FL systems, as well as point out knowledge gaps by means of the published articles 
during the period between 2015 and 2025. Our qualitative research results demonstrate a certain 
pattern: although FL has been heralded as the paradigm that offers privacy-preserving education, its 
real-life application is hampered by numerous structural, operational, and ethical issues. We could 
see that most of the studies are domain specific i.e. they dwell on the areas of agriculture, healthcare, 
IoT, finance, or smart cities but few provide cross domain generalizations. More to the point, 
most of the papers do not thoroughly classify the problems they discuss, usually restrict their 
premise to a technical solution and do not consider its different repercussions. 
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One more critical point is that review articles concerning FL tend to make biased use of health- 
care or IoT and highly underrate smart agriculture in comparative papers. Moreover, even though 
most papers refer to data heterogeneity, privacy, or communication bottleneck, they usually do not 
attribute these issues to real-life deployment cases and do not provide scalable countermeasures. The 
inconsistency in reporting and bench marking of FL challenges also appeared as one of the gaps. 
Most of the papers examine the performance measures but missed out on long-term aspects such as 
fairness, trust dynamics, system robustness, or governance. This survey contribution is three-fold. We 
have first hand-picked and reviewed an impartial collection of FL review studies and articles that cut 
across fields. Second, we presented a well-organized taxonomy of dividing FL issues into six general 
categories with specifically delimited subcategories. This group helps scholars to get an organized 
knowledge about at which points the existing literature is focused, and which areas still have not 
been covered by it. Third, our survey is the first to emphasize comparative under representation of 
the agriculture domain and consequently the need to focus on a more inclusive research in which 
low resource and high variance settings like farms and their rural data networks get represented. 
Figure 9 shows how Federated Learning (FL) research is spread out across different application areas. 
The chart shows the main areas where FL has been used, including healthcare, finance, smart cities, 
edu- cation, IoT, and agriculture. Healthcare and IoT seem to be the most popular, which makes 
sense given the growing need for data analytics that protect privacy in sensitive and distributed 
settings. This breakdown by sector shows how flexible FL is and how it is becoming more useful in 
fields that cross disciplines. 

Further, the survey can be considered an added benefit, since it contains a cross-domain com- 
parative table, an SALSA inspired review methodology, as well as paper overviews with sources. 
This renders the paper not only tale of synthesis, but also of reference to practitioners, researchers, 
and policymakers, who seek to utilize the FL systems in the real-world environment. We based 
our hypothesis on the fact that although FL is presented with a solution to the issue of 
dependence on centralized data, it invokes a set of distinct issues that are fundamentally rooted 
together. They are not merely the technical ones like optimization instability or the cost of 
communication but also ethical, infrastructural and methodological. In a methodical evaluation of the 
existing literature, our theory is confirmed: FL does impose its own type of challenges that need 
to be approached in a much more comprehensive way than the one that is employed in the 
majority of the research stud- ies. Whether or not future FL systems will be successful also relies 
on how well these issues will be comprehended and mitigated. 
 
8 Future prospects of federated learning 

FL has huge potential as a privacy-preserving system of collaborative machine learning over dis- 
tributed data assets. Since the concern of data privacy is gradually gaining prominence among 
industries, FL is likely to be the central aspect of intelligent systems expanding to cover other fields 
such as healthcare, agriculture, finance, and IoT. In the future, its improvement is based on the per- 
sonalization enhancements, scaling through improvements, and advanced security. As edge 
computing develops, as privacy-enhancing technologies are improved and as governance protocols 
are imple- mented, FL will no longer be a dream, but will become a standard model of ethical and 
distributed machine learning. 

8.1 Space Exploration and Planetary Research 

As space missions are becoming more independent, intelligent collaborative learning between satellites 
and planetary systems are in demand. Large amounts of localized information like orbital telemetry, 
thermal imagery or surface terrain distribution are frequently gathered by satellites or rovers and, 
since real-time transmission of this information to earth to be used in centralized training is usually 
constrained by latency, energy and bandwidth, the information will usually remain localized. 
FL 
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Fig. 9: Distribution of federated learning across different sectors 
 
provides a potential solution since they allow these dispersed entities to jointly train the models 
without sharing their raw data. To take one example, satellites might create joint predictions of their 
orbital patterns, whilst deep space rovers might train themselves using each-others travel trends. The 
communication dependency is overcome in terms of the fact that the skill to train in situ not just 
diminishes communication dependency it also facilitates on-board intelligence which would enable 
real time decisions. [92] mentioned FedSecure, the LEO satellite federated frame worked by a group 
that is decentralized to generate keys and secure gradient aggregation, is presented in the paper. It 
makes learning computations on satellites with local image data rather than the traditional Earth- 
based orchestration. Through their experiments, convergence is faster and the robustness of their 
models is very powerful with less bandwidth. This confirms the viability of FL as a learning paradigm 
of orbital and interplanetary systems. 
 
8.2 Mental Health and Behavioral Monitoring 
The diagnostics of mental health become more and more dependent on such sensitive and personal 
data as voice patterns, keyboard use, sleeping, and smartphones usage. The conventional cloud- based 
systems pose significant privacy threats, which demoralize patients to engage in online mental health 
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tracking. The privacy aware alternative offered by FL proposes to run the processing of the behavioral 
information locally, and only updates to the updated model are sent to be aggregated. This allows 
keeping confidential information on the device of a user but facilitates significant model 
optimization. FL has the potential to assist in mood monitoring, early intervention, identification 
of stress, and individualization of the therapeutic content. These strategies become essential when 
it is concerning the young population, susceptible consumers, or persons in prejudicial 
surroundings, where credibility as well as confidentiality are essential. The incorporation of context 
aware modeling in context of speech tone, typing delay or on screen usage increases the precision of 
mental health analytics without interfering with the freedom of the user. [93] FedTherapist is a 
smartphone-based FL framework that collects voice and text signals from users to predict 
psychological states. It leverages natural language processing to infer depression and anxiety while 
maintaining on device privacy. The system demonstrated improved AUROC and mean accuracy, 
validating FL’s viability in mobile mental health contexts. 

8.3 Legal and Judicial Systems 
The confidentiality of information that law firms deal with is so high in areas like classified 
case files and verdicts, communications with client as well as litigation tactics among others. The 
most critical questions that concern the way such data, as the result of the machine learning process, 
is centrally processed refer to divergence with the question of confidentiality, regulatory requirement, 
and the ethical boundaries. When dealing with records owned by law firms, governmental or judicial 
institutions, FL offers one alternative of how to train a model in a collaborative fashion without 
being compelled to expose its raw documents. Applications Potential deployment could include the 
forms of outcome-prediction according to precedents, blinded evaluation of contracts, or automatic 
privilege-scrubbing of privileged objects within legal documents. Additionally, FL can promote 
global judicial cooperation, where the national laws on privacy will protect the privacy of legal 
information. Nevertheless, FL is an insufficiently examined domain in respect of this topic and is 
usually attributed to the fact that legal text is a complex structure, and legal datasets are extremely 
dismantled. The use of FL in judicial analytics would eliminate opaqueness, injustice and mistrust, 
and would not undermine privacy. Future research will be able to merge blockchain with the creation 
of auditable, secure multiparty computation to validate proofs, and recipe use the models of domain 
specific language and comprehend examples, all trained end-to-end across legal entities. [94] 
FedJudge is a practical federated learning framework that aim at fine-tuning big legal language 
models (LLMs) in various legal institutions without the exchange of sensitive data. It combines 
parameter efficient tuning (LoRA) and continual learning so that it can achieve high performance 
when it works on tasks such as the generation of court views, and legal consultation without 
compromising user privacy and compliance with regulatory rules. 

8.4 Wildlife Conservation and Poaching Prevention 
The conservation areas and wildlife parks use a combination of motion sensors, unmanned aerial 
drones, acoustical traps, and infrared cameras in ensuring that biodiversity is checked and species  
are not poached illegally. Much of this data, though, is location specific, and it is hard to centralize 
because of power limitations, poor connectivity and ecological sensitivities. fl can revolutionize the 
way wildlife is monitored as the collective training of models to differentiate human encroachment, 
poaching, or unusual animal behavior can be done in an edge setting without the need to exchange 
raw videos or geo location metadata. It is a privacy preserving method suitable to sensitive ecosystems 
and has the resilience against weather or interference induced data loss. In addition, models that 
are trained with FL can be customized according to the location, thus making the detection more 
accurate due to the use of local trends. [95] it proposes a new method of protecting the wild life in 
that wireless acoustic sensors actually differentiate between animal and human footsteps in real time 
and hence, an automatic notification of potential poaching activities are sent keeping the natural 
habitats healthy. Their system applies the machine learning method where the audio information 
is preprocessed, noise eliminated, and footstep events detected, to find useful intruders in distant 
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wildlife reserves . 

9 Conclusion 
The research is the systematic and comprehensive literature review that explores the concept of FL 
based on the SALSA approach and supplemented by the resources accessed through DOI verified and 
peer-reviewed channels. As opposed to previous surveys, which are either more specific, targeting 
only the field of healthcare or the Internet of Things, this study is more universal covering both 
established and novel fields, such as agriculture, smart cities, FinTech, education, legal frameworks 
or environmental measurements. One of the main contributions is the formulation of a structured 
taxonomy in which all FL challenges are segregated into 60 significant classes: privacy and security, 
communication and infrastructure, data heterogeneity, algorithmic and optimization, fairness and 
participation, and evaluation and debugging. Qualitative analysis through this survey reveals the 
tendencies, the boundaries, and gaps in current literature that are underrepresented. It is important 
to note that it distinguishes smart agriculture as a substantially underserved area with a great 
potential of decentralized learning. The survey also underlines topic of site specific solutions, 
including privacy-preserving model sharing in wildlife surveillance and safe teamwork-related systems 
in space travel. These various implementations provide a basis by which the study enriches the insight 
of the behavior of FL in various heterogeneous environments with limited resources. 

The possible practical applicability of this work is another major contribution to it. Coupled with 
full comparative tabulation, future mapping and mapping of barriers to deployment in the real 
world, the twofold actionable output assists academic researchers, as well as system constructors, in 
addition to their function of performing the initial stages of future app design. It has been 
established that the work suggests new spheres of implementations of FL, including judicial 
analytics, mental health monitoring, and biodiversity protection spheres that have not been actively 
covered during previous surveys. The implication of this study is great. It challenges the research 
community to concentrate on designing scalable, inclusive and secure FL frameworks that can suit 
a diversity of deployment environments. It also attracts to the acute necessity of benchmark datasets, 
interpret ability tools, incentive mechanisms, and edge-ready optimization algorithms. 

To sum it all up, this survey is not only complementary to the scholarly concept of federated 
learning but also preconditions meaningful practical insight. With further maturity of FL, the 
spec- ified shortcomings will be crucial to overcome to achieve the potential of becoming an 
enabler of collaborative intelligence in the decentralized world. 
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[31] Ž alik,  Krista Rizman, and Mitja Ž alik. ”A review of federated learning in agriculture.” Sensors 
23.23 (2023): 9566. 

[32] Durrant, Aiden, et al. ”The role of cross-silo federated learning in facilitating data sharing in the agri-food sector.” 
Computers and Electronics in Agriculture 193 (2022): 106648. 

[33] Vimalajeewa, Dixon, et al. ”A service-based joint model used for distributed learning: Applica- tion for smart 
agriculture.” IEEE Transactions on Emerging Topics in Computing 10.2 (2021): 838-854. 

[34] Mengist, Wondimagegn, Teshome Soromessa, and Gudina Legese. ”Method for conducting sys - tematic literature 
review and meta-analysis for environmental science research.” MethodsX 7 (2020): 100777. 
https://doi.org/10.1016/j.mex.2019.100777 

[35] Zhang, Ticao, and Shiwen Mao. ”An introduction to the federated learning stan- dard.” GetMobile: 
Mobile Computing and Communications 25.3 (2022): 18-22. https://doi.org/10.1145/3511285.3511291 
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