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ABSTRACT 
The swift automotive paradigm shift brought on by the rapidly growing electric vehicles (EVs) has made the precise 
prediction of the battery state paramount in optimizing performance, ensuring safety, and thus, ultimately, prolonging 
battery life. The paper describes a new technique for predicting battery states in EVs using Explainable Data-Driven 
Digital Twins. Using deep learning, the model includes the latest and most commonly used techniques such as DNN, 
LSTM, CNN, SVR, SVM, Feedforward Neural Networks, RBF networks, Random Forest and XGBoost. The aim 
is to improve predictions of battery-important parameters such as SOC and SOH, for different working scenarios.On 
the other hand, explainable AI techniques help to identify key factors that affect battery performance. Based on the 
synergistic effects of these algorithms, the digital twin model surpasses existing ones with respect to predictive accuracy 
and robustness. This work aims to convince the scientific community about the need for designing intelligent and 
adaptive battery management systems laying the foundation of tomorrow's sustainable electric mobility. 
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I. INTRODUCTION 
Pressure from people around the world to adopt green transportation, along with less fossil fuel and 
increased renewable power, has increased the use of EVs. Their performance largely depends on battery 
systems which are costly and must be closely monitored for state of charge and state of health to make 
them more efficient, secure, longer lasting and less expensive.Since temperature, charging and discharging 
and driving patterns all affect the SOC and SOH, it’s difficult to accurately estimate the battery’s 
condition. This results in different ranges for the vehicle and impacts its safety. Conventional physical 
models struggle to account for these dynamic, non-linear behaviors, whereas data-driven approaches 
leveraging real-world EV data provide greater precision. Digital twins—virtual replicas that mirror real-
time battery performance—enable continuous monitoring and predictive analysis.Here, researchers use 
both digital twin data and a variety of ML tools to help the system anticipate future events. The algorithms 
used are deep neural networks, long short-term memory networks, convolutional neural networks, 
support vector regression, support vector machines, feedforward neural networks, radial basis function 
networks, random forests and extreme gradient boosting.  While Deep Neural Networks and 
Convolutional Neural Networks discover complicated details in data, Long Short-Term Memory (LSTM) 
networks are designed to analyze data in order. SVM and SVR function well with large quantities of data. 
RF and XGBoost belong to the category of ensemble methods and provide reliable and accurate results 
in this case.Originally, digital twins were developed for manufacturing, but now they help the automotive 
sector by providing real-time information and allowing for less testing. Even so, it is still a challenge to 
add these technologies due to the complexity of data on batteries.A critical aspect of this study is model 
interpretability, as many ML models lack transparency, which is a concern for safety-critical EV battery 
management. Explainable AI (XAI) methods are employed to make predictions understandable, clarifying 
how factors like temperature or charging patterns influence outcomes, thereby building trust and 
supporting informed decision-making.By combining explainable digital twins with ML, this approach 
delivers precise, actionable insights that tackle battery degradation and alleviate range anxiety, paving the 
way for more intelligent battery management systems (BMS). These advancements are vital for improving 
EV reliability and efficiency.  
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As EV adoption expands, the synergy of ML, XAI, and digital twins offers sustainable, cost-effective 
solutions, enhancing battery durability and promoting environmentally friendly transportation. 

II. RELATED WORK 
Many studies have been carried out to predict electric vehicle battery performance and enhance how 
accurately SoC and SoH are measured and recorded [1][2]. Many machine learning and deep learning 
solutions have been implemented by researchers to face the complexities included in this task. Many 
scientists rely on support vector machines (SVM) and support vector regression (SVR), among others, to 
estimate SoC and SoH because these models can detect non-linear patterns between what happens to the 
battery and its health features [3][4]. That being said, using these methods can be difficult because 
scalability and performance do not always hold up across various uses [5].Nowadays, using deep learning 
models such as LSTM networks is becoming popular for estimating the state of batteries [6]. LSTMs are 
designed to effectively process data on battery usage in different conditions.  

Similar to other methods, convolutional neural networks (CNNs), originally made for images, can handle 
sensors and identify where and when certain events take place, resulting in better SoC and SoH 
estimations [7]. Furthermore, feedforward neural networks (FNNs) and radial basis function (RBF) 
networks have been tried for this particular problem. They find a balance between making accurate 
predictions and needing computer power [8][9].  Random Forest and XGBoost are often favored because 
they excel in working with large amounts of data and help ensure a regression model does not overfit. 
Using many decision trees produces better and more consistent outcomes [10].  There is a trend in this 
area to apply explainable artificial intelligence (XAI) to help make the decisions of models more 
understandable [11]. Thanks to XAI, it is possible for practitioners to pinpoint what causes batteries to 
degrade such as temperatures, charging habits and driving methods [11]. When XAI is used together with 
machine learning in EV systems, predictions are more reliable and can be easily used [12].The use of deep 
neural networks, LSTMs, CNNs, SVMs and XGBoost is rising in digital twins used for analyzing batteries 
[14]. Digital twins of batteries allow for real-time simulation and observation that is important for 
controlling and monitoring batteries [15][16]. Still, there are hurdles involved in fully achieving scalability, 
fast performance and understood models [17]. It is common for recent studies to make use of each 
model’s strong points, while minimizing its weaknesses [18]. Managing batteries in electric vehicles is set 
to be improved by digital twins, providing more effective, reliable and safe ways to store energy [19][20]. 

III. SYSTEM DESIGN AND ARCHITECTURE 
To produce explainable and accurate predictions for EVs, the system architecture of “Interpretable Data-
Driven Digital Twins for Predicting Electric Vehicle Battery Conditions” combines well-known machine 
learning techniques, the principles of XAI and digital twin technology. The process begins by collecting 
both current and historical data about the EV’s battery from the BMS. This process covers parameters 
such as voltage, current, temperature, the status of charge (SOC) and the status of health (SOH) when 
different operations are taking place.After collection, cleansing and preprocessing are done to the data, 
then the information is moved to a hybrid machine learning engine. Among the models used by this 
engine are Deep Neural Networks (DNN), Long Short-Term Memory (LSTM), Convolutional Neural 
Networks (CNN), Support Vector Regression (SVR), Support Vector Machines (SVM), Feedforward 
Neural Networks, Radial Basis Function (RBF) models, Random Forest and XGBoost [23].Such models 
are found within a digital twin model [24] that works constantly and displays the exact state of the battery 
. Whether on cloud or edge, the digital twin allows for more users and quick responses. An XAI layer 
adopts tools like SHAP and LIME which explain how factors or features influence the output of the 
model. Furthermore, a feedback loop sends forecasts to the BMS, helping improve how the battery is 
charged and cooled [26]. 
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Fig 1:  System Architecture of data driven digital twins 

IV. DATASET 
The dataset employed in the study, "Interpretable Data-Driven Digital Twins for Forecasting Battery 
Conditions in Electric Vehicles," is a detailed and multifaceted compilation of battery-related data 
gathered from electric vehicle (EV) operations in both real-world and controlled settings.  

It records information from the EV’s BMS about metrics such as battery charge (SOC) and battery 
condition (SOH). The data includes various operations, covering factors like voltage, current, 
temperature, cycles and power, under many challenging conditions and with several types of batteries[28]. 
It can consider information about vehicle speed, the rate of acceleration and braking, the driving surface, 
among others for appropriate use cases. Supplementary metadata, such as battery age, cycle count, and 
historical performance records, are included to support the analysis of degradation patterns. Since DNN, 
LSTM and CNN are key machine learning approaches, the dataset is developed at a fine-grained rate and 
is prepared to resolve problems such as noisy, gap-filled or unreliable data. Most likely, there are labeled 
data for supervised learning with SOC and SOH being the targets, along with unlabeled data for 
discovering useful features. The dataset’s extensive scope and variability ensure effective training and 
validation of the digital twin model, enabling precise predictions and interpretable insights into battery 
performance and degradation across a range of operational contexts. 

V. DATA PREPROCESSING 
The data preprocessing phase is pivotal in creating reliable and accurate data-driven digital twins for 
predicting electric vehicle (EV) battery conditions. Given the intricate nature of battery systems and the 
varied operational environments of EVs, a thorough preprocessing pipeline is essential to transform raw 
data into a usable form for predictive modeling.Driving in different areas, sensors and BMSs collect data 
such as voltage, current, temperature, SOC, SOH and information about the environment (ambient 
conditions).These datasets are often plagued by noise, missing entries, or inconsistencies due to sensor 
errors or communication issues, requiring careful cleaning.To address missing data, imputation methods 
like mean/median substitution or sophisticated approaches such as k-nearest neighbors (KNN) are 
applied, chosen based on data characteristics. Outliers, potentially caused by sensor failures or extreme 
conditions, are identified and corrected using techniques like z-score analysis or interquartile range (IQR) 
methods to avoid distorting model outcomes.For ease of learning by machines, data is rescaled to a fixed 
range or standard scores to help train DNNs, LSTMs and CNN kidneys. In the case of LSTM, the input 
data representing time is divided into proper intervals to display changing battery behavior and the 
process involves building new predictors such as charge-discharge rates or levels of temperature change. 
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Categorical variables, such as battery type or driving mode, are transformed using one-hot or label 
encoding to ensure compatibility with algorithms like Support Vector Machines (SVM) or XGBoost. 
[29].Following balance, the information in the data is divided into 70% training, 15% validation and 
15% testing sets to avoid any information from the future affecting the forecast in time-based situations. 
Proper preparation of data allows Random Forest, RBF networks and Feedforward Neural Networks to 
use well-structured and reliable data. Consequently, digital twins are able to accurately and clearly forecast 
how batteries function [31]. 

VI. METHODOLOGY 

1. CNN 

Purpose: CNNs are trained to spot patterns in the data (voltage, current and temperature) from the 
batteries to predict their remaining capacity. 

Internal Working: 

Architecture: CNNs have layers called convolutional and pooling. Three different types of layers, layers 
and fully connected layers. 

Convolutional Layers: They add filters to any time-series signals, whether from batteries or other sources, 
to notice fluctuations in voltage and changes in temperature. Filters are applied to the data and the dot 
product operation creates the feature maps. 

Pooling Layers: These methods shrink the data (such as max pooling), decreasing the amount of 
computing needed, lowering overfitting danger and maintaining vital details. 

Fully Connected Layers: These integrate extracted features to produce an SOH prediction, typically as a 
regression output. 

• Data Processing: Battery data is structured as 1D or 2D arrays (e.g., time-series or multi-parameter 
inputs). Filters learn to recognize patterns like cyclic behavior or degradation signals. Non-linear 
activation functions (e.g., ReLU) enable modeling of complex relationships. 

• Training: The model is trained using backpropagation to minimize a loss function, such as Mean 
Squared Error (MSE), with optimizers like Adam adjusting weights for better predictions. 

Relevance to SOH: CNNs are adept at detecting localized patterns, such as degradation trends or 
anomalies, making them valuable for SOH estimation. They efficiently process multi-dimensional inputs, 
combining various battery metrics. 

Table 1: Metric Value report of CNN 

 

2. SUPPORT VECTOR REGRESSION (SVR) 

Purpose: SVR estimates SOH by mapping battery features (e.g., voltage, current) to a continuous SOH 
value, effectively handling non-linear relationships. 

Internal Working: 

Architecture: Support Vector Regression (SVR) is created by modifying the Support Vector Machines 
(SVM) to fit regression problems. Its objective is to discover a suitable function. 𝑓 (  )An f(x) is acceptable 
if it can compute the value of State of Health with an error margin less than or equal to epsilon (ε). Using 
kernel functions such as the Radial Basis Function (RBF), SVR changes the input into data with a high 
number of dimensions so it can fit non-linear problems. 
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Data Processing: Input features like voltage, current, and cycle count are normalized. The kernel function 
measures similarities between data points, capturing intricate patterns. 

Training: SVR optimizes a loss function that penalizes predictions beyond the epsilon margin while 
ensuring a simple model, controlled by a regularization parameter C . Only a subset of data points 
(support vectors) defines the function, enhancing efficiency. 

Relevance to SOH: SVR’s tolerance for noise in battery data, together with its modeling of any kind of 
curve, are reasons it is suitable for predicting SOH. 

Table 2: Metric Value report of SVR 

 

3. RADIAL BASIS FUNCTION (RBF) NETWORKS 

Purpose: RBF networks predict SOH by representing battery data as a combination of radial basis 
functions, ideal for non-linear regression tasks. 

Internal Working: 

• Architecture: The network is separated into three parts: input, hidden and output. 

• Input Layer: Receives battery features like voltage, current, and temperature. 

Hidden Layer: Contains neurons with RBF activation (e.g., Gaussian), each centered at a specific input 
space point. 

Output Layer: Produces SOH by computing a weighted sum of hidden layer outputs. 

• Data Processing: Each RBF neuron calculates the distance between inputs and its center, applying a 
Gaussian function for localized responses. The network learns RBF centers and widths during 
training. 

• Training: Centers are set using clustering methods (e.g., k-means), and weights are optimized via least 
squares or gradient descent to minimize prediction errors. 

Relevance to SOH: RBF networks excel at capturing localized degradation patterns, such as specific 
operating conditions, and provide smooth predictions for continuous SOH estimation. 

Table 3: Metric Value report of RBF 

 

4. FEEDFORWARD NEURAL NETWORKS (FNN) 

Purpose: FNNs estimate SOH by learning mappings from battery features to SOH through 
interconnected neuron layers. 

Internal Working: 

• Architecture: The structural elements are an input layer, one or more hidden layers and an output 
layer and the layers are fully connected. 
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• Data Processing: The data includes voltage, current and the number of cycles on the battery. A neuron 
does the sum of inputs multiplied by their weights, applies an activation function and sends the result 
to the succeeding layer until the SOH is predicted. 

• Training: Backpropagation minimizes a loss function (e.g., MSE) by updating weights and biases, using 
optimizers like Stochastic Gradient Descent (SGD) or Adam. 

Relevance to SOH: FNNs help discover the challenging and unpredictable connections between battery 
properties and the state of health, accommodating batteries with many different properties and 
conditions. 

Table 4: Metric Value report of FNN 

 

5. RANDOM FOREST (RF) 

Purpose: RF predicts SOH by combining outputs from multiple decision trees, offering robust and 
interpretable predictions. 

Internal Working: 

Architecture: An ensemble of decision trees, each trained on random data subsets and features using 
bagging and feature randomness. 

Data Processing: Features like voltage, current, and temperature are used to construct trees. Each tree 
predicts SOH independently, and the final prediction is an average of all tree outputs. 

Training: Trees are trained on bootstrapped samples with random feature selection at splits, reducing 
inter-tree correlation and enhancing robustness. 

Relevance to SOH: RF manages high-dimensional data, captures feature interactions, and is resilient to 
noise. Its feature importance analysis helps identify critical factors influencing SOH. 

Table 5: Metric Value report of RF 

 

6. XGBOOST 

Purpose: XGBoost delivers accurate SOH predictions by iteratively constructing decision trees, optimized 
for performance and generalization. 

Internal Working: 

• Architecture: A set of decision trees that improves earlier errors by minimizing loss in each tree. 

• Data Processing: Similar to RF, but trees are added iteratively using gradient boosting to optimize a 
loss function (e.g., MSE). 

• Training: The model minimizes a regularized objective, balancing loss and model complexity, with 
techniques like shrinkage and subsampling to enhance generalization. 

Relevance to SOH: XGBoost’s precision and ability to model non-linear relationships make it effective 
for SOH estimation. Its feature importance insights highlight key degradation drivers. 
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Table 6: Metric Value report of XGBoost 

 

 
Fig 2: Comparison values for soh Algorithms 

7. LONG SHORT-TERM MEMORY (LSTM) 

Purpose: LSTMs, through analyzing the sequence of battery voltage and current, can predict the level of 
remaining battery energy. 

Internal Working: 

Architecture: A recurrent neural network variant with memory cells and gates (input, forget, output). 

Memory Cell: Retains long-term temporal patterns in data. 

Gates: 

Forget Gate: Chooses to remove some information involved in the current cell computation. 

Input Gate: Identifies and stores the data received each step. 

Output Gate: Modulates what is produced depending on the state of the cell. Data Processing: The 
processing of data follows the sequence in which data is collected. The LSTM sets the cell state anew for 
each step, using data on charge or discharge to estimate the vehicle’s state of charge. 

Training: Backpropagation through time (BPTT) minimizes a loss function (e.g., MSE), with optimizers 
like Adam adjusting parameters. 

Relevance to SOC: LSTMs are ideal for sequential data, capturing SOC dynamics over charge/discharge 
cycles and handling long-term dependencies critical for accurate estimation. 

Table 7: Metric Value report of LSTM 
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8. DEEP NEURAL NETWORKS (DNN) 

Purpose: DNNs estimate SOC by learning complex relationships between battery features and SOC 
through multiple layers. 

Internal Working: 

Architecture: Uses an input layer, a number of hidden layers and an output layer and its neurons use 
weights, biases and ReLU as their activation functions. 

Data Processing: Features like voltage, current, and temperature are fed into the input layer. Hidden 
layers transform inputs via weighted sums and non-linear activations, producing an SOC prediction at 
the output. 

Training: Backpropagation minimizes a loss function (e.g., MSE), with regularization (e.g., dropout) to 
prevent overfitting. 

Relevance to SOC: DNNs capture non-linear relationships and hierarchical features, enhancing SOC 
prediction accuracy across diverse operating conditions. 

Table 8: Metric Value report of DNN 

 

Table 9: Comparision Table for all the algorithms 
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Table 10: Model Performance Comparison by Using Graph 

 

VII. CONCLUSION 
In this study, the researchers propose a new way to predict both the condition and charge status of EV 
batteries using Explainable Data-Driven Digital Twin. Since more people are choosing EVs, it is 
increasingly necessary to ensure batteries function well for both vehicle power and reliability. The model 
aims to predict the State of Charge and State of Health of a battery system using Deep Neural Networks, 
Long Short-Term Memory, Convolutional Neural Networks, Support Vector Machines, Support Vector 
Regression, Random Forest and XGBoost algorithms.This multi-model approach enhances prediction 
accuracy and ensures adaptability across different battery datasets. DNN and LSTM models excel in 
capturing time-dependent patterns, which are vital for continuous battery monitoring. CNNs are able to 
identify how different parts of the data are related to each other. Smaller datasets work well with SVM 
and SVR, but RF and XGBoost are preferred for understanding and processing more organized forms of 
data. It gives batteries in a digital form the ability to respond realistically to changes in temperature, how 
much they are used and variations in load. The paper also brings explainable artificial intelligence (XAI) 
into the process. Conventional battery management systems are mostly non-transparent, but this 
framework displays the importance of various variables for any battery using SHAP values. This 
transparency empowers users and operators to make better-informed maintenance and usage decisions, 
ultimately extending battery longevity.Additionally, the framework demonstrates high adaptability across 
different battery chemistries and usage environments. Unlike traditional models, which are often tailored 
to specific battery types, this system is versatile enough to support both lithium-ion and emerging solid-
state technologies. Its capability to learn from real-time data ensures dynamic prediction adjustments, 
making it a scalable and future-proof solution.  If data is used, the accuracy for estimating both SOC and 
SOH can be increased by at least 10% over conventional results. This method allows electric cars to use 
adaptable and intelligent batteries. Thanks to accurate anomaly detection and predictions, these systems 
ensure good performance, less need for upkeep and a long battery life. Through the Explainable Data-
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Driven Digital Twin framework, we now have a unique way to manage electric vehicle batteries. 

VIII. FUTURE ENHANCMENT 
The system could be developed further by making it work for various types of batteries and their 
configurations. Incorporating a range of new data would let the model go beyond lithium-ion batteries 
and help it in various industries. Including information from connected EVs in real time is also 
essential.While the current system relies on historical data for training and predictions, future iterations 
could incorporate live telemetry data from EVs. This real-time integration would enable dynamic 
monitoring and forecasting of battery conditions, resulting in smarter battery management systems that 
respond to changing driving patterns and environmental factors on the fly.Moreover, applying advanced 
optimization methods like reinforcement learning or genetic algorithms could improve the system’s ability 
to suggest the most efficient charging and discharging routines, ultimately helping to prolong battery life. 
Hosting the system on cloud platforms would also improve scalability, making it suitable for deployment 
across large vehicle fleets.Lastly, user experience can be significantly improved by offering real-time battery 
analytics and recommendations through mobile applications. This would empower EV owners with 
greater visibility and control over their battery’s health and performance, fostering a more user-centric 
approach to electric vehicle care and sustainability. 
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