
International Journal of Environmental Sciences  
ISSN: 2229-7359 
Vol. 11 No. 4s, 2025 
https://www.theaspd.com/ijes.php 

 

52 

 

Machine Learning In Climate Impact Assessment: Bridging Data And 
Policy 
 
Dr. Shashank Bhardwaj1 , Dr. Amit Kumar2 , Nikhil Kumar3 , Praveen Kumar Gupta4 

1Associate Professor Department of Computer Applications KIET Group of Institutions, Delhi-NCR, Ghaziabad. 
shashank12swe@gmail.com 
2Assistant Professor Department of Computer Applications KIET Group of Institutions, Delhi-NCR, Ghaziabad 
amit4593@gmail.com 
3Assistant professor IT department Ajay kumar garg engineering college Ghaziabad nikhilcs33@gmail.com 
4Assistant Professor School of computer science and technology, Bennett university greater noida 
praveenporwal@gmail.com  
 
Abstract— Climate change creates problems that have never been seen before in ecosystems, economies and the lives of people. 
Being able to quickly and accurately evaluate its results matters a lot for making good decisions in policymaking. With the help of 
recent machine learning (ML), scientists can now predict future climate scenarios and spot unusual events in complex 
multidimensional data. This research reviews the ways machine learning methods are now used in climate science to improve how 
assessments of impacts are carried out. In addition, it assesses the way policymakers bring ML-based insights into their decision 
making. We discuss the difference between various machine learning (ML) models used with climate data, explain their real impact 
and address questions about model explanations, data availability and applying findings to public policies. According to the findings, 
ML can help to unite climate data analysis and making informed choices. 
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I. INTRODUCTION 
Apart from being a scientific issue, climate change also leads to problems in society, politics and existing 
environmental, economic and healthcare systems. Climate impacts include more intense storms, changes in the way 
rain and snow fall, sea level rise and the extinction of species and these are very significant and wide-ranging. Accurate 
assessment of these effects is now a main focus in both international action on climate change and national plans for 
adapting to it. Scientifically preferred assessment tools which chiefly rely on physics and experiments, have generally 
been satisfactory, though they struggle with instant answers, clear predictions and connection with fast-changing social 
and economic factors [17]. 

Recently, new environmental data thanks to satellites, IoT sensors, mobile devices and open data projects has made 
it possible to see climate systems in much more detail and scope [1]. Nevertheless, the fact that there is so much 
information comes with its own set of issues: too many variables (dimensions), random errors (noise), missing data 
over time (gaps) and complex trends across the data (nonlinearity). Since machine learning (ML), a branch of AI 
involving pattern recognition and prediction analysis, is now available, it serves as a solid solution. Machine learning 
systems are capable of handling huge and variable data, learning relationships between variables by themselves which 
makes it simple and quick to build models for complicated tasks. 

Machine learning is being used more often in issues related to climate change. Examples of using machine learning 
include predicting droughts, crop yields and carbon fluxes with supervised models and grouping or finding new 
patterns in climate variations through unsupervised models. Such tools can reveal patterns that would be hard or 
impossible to notice with older modeling techniques which could open up chances for quick and accurate climate 
analyses [3-5]. 
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Even though ML offers technical benefits in climate science, its results are not yet used much in developing climate 
policies. Organizations responsible for the environment and governments require actionable, open and generally 
applicable information. The fact that ML outputs are seen as opaque algorithms is seen as a big issue for their use in 
government policies that emphasize transparency. Data scientists and policymakers do not always exchange enough 
information which can be a problem [7]. 

This research looks at the ways machine learning and policymaking connect in assessing climate change. It studies 
existing machine learning methods on climate data and checks if their findings can meet the needs of climate policy. 
It studies how capable ML is for forecasting and also acknowledges that interpretability, ethical ideas and user interface 
play a role in how policies are made based on models. A mix of research and analysis into policy leads to a framework 
that enables practical application of ML in the field of climate governance [10-12]. 

Now that we are facing climate threats that happen more suddenly and can’t be predicted, using smart and 
responsive tools to make decisions is more important than before. Needing careful integration, machine learning can 
make science and action closer than ever before in environmental policy. Nevertheless, it needs to be done with care 
and awareness of data ethics, model explainability and the readiness of the organization [8]. 

Novelty and Contribution  
It adds a number of unique and important points to the fast-changing field of machine learning in climate science 
and policy. 

• Dual Perspective on Technology and Policy: Almost all other research just centers on developing models, 
while this work brings together both technology and policy aspects of using machine learning in climate 
impact assessment. The field studies the success of algorithms and also looks at how they can fit into practical 
policy solutions [9]. 

• Using both quantitative machine learning and qualitative policy insights, the study gives a complete 
perspective on the matter. It looks at how an algorithm functions and at the same time checks the systemic, 
ethical and usability issues that restrict the adoption of policies. 

• A variety of open-source environmental datasets are used in this paper such as satellite images, anomalies in 
temperature data and indicators showing economic and social information, to construct and test machine 
learning models. Applications included are flood zone prediction, classifying droughts and forecasting 
emissions, proving ML is important for various industries. 

• Trust and Interpretability: The group has come up with an initial plan to help make AI models explanatory 
and trustworthy for policy applications. Some examples include choosing the right types of charts, having 
stakeholders help develop the model and letting domain specialists help create the training data. 

• Environmental Reviews for Canada and the Netherlands: Studies include real-world instances from Canada 
and the Netherlands where machine learning results are affecting the rules for the environment, planning 
resources or planning for disasters. They explain what factors contribute or take away from a good translation 
of machine learning into government policies. 

• Discussing algorithmic bias, data privacy and how algorithms are overseen by regulations, the study plays a 
role in the ongoing debate about responsible AI in climate governance. The framework gives practical 
strategies for making ML models fit with major global principles such as AI for Good and Open Climate Data 
[14]. 

The main value of the paper is its strategy of using machine learning in climate impact assessment from a wide 
perspective. Besides explaining the technology, it shows how benefits from ML can be added into governmental 
processes so that key decisions are made effectively and ethically. 
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II. RELATED WORKS 
In 2024 Z. Özcan et.al., İ. Caglayan et.al., and Ö. Kabak et.al. [6] proposed the machine learning has often been used 
to better study and deal with the different consequences of climate change. Initially, machine learning was used mostly 
to increase the accuracy of weather forecasts and enhance how much detail is shown in global models. They proved 
that data-driven approaches were helpful because they could pick up on nonlinear behaviors and local patterns that 
standard physics-based simulations missed. 

Later research focused on applying machine learning for agricultural yield in the face of climate stressors, 
foreseeing impacts of major rain on rivers and studying wildfire potential in sensitive areas. They used long-term 
weather data, satellite pictures and other meteorological data to develop models that can give early notice and classify 
risks. Recently, unsupervised learning techniques have been used to detect unusual weather trends, morrk changing 
land cover types and detect hidden trends in different environmental data. 

One more category of research uses deep learning models—mainly convolutional and recurrent neural networks—
to examine large amounts of data that change over space and time. People have applied these models to track satellite 
imaging, map sea surface temperatures and estimate current air quality levels. Many people criticize such models 
because they cannot easily interpret or understand what is happening inside the model which limits their direct 
usefulness in certain situations. 

In 2020 J. Baas et.al., M. Schotten et.al., A. Plume et.al., G. Côté et.al., and R. Karimi et.al. [13] introduced the 
notable change in studies lately is the combining of socio-economic and demographic factors with assessments of 
climate change. The works in this stream look for ways to understand human vulnerability and strength, applying 
machine learning to recognize zones at high risk because of social, political and economic factors. It is not easy to 
align multi-source datasets because they often differ, are of poor quality and may not be consistent over the same time 
span. 

In 2024 K. Ukoba et.al., O. R. Onisuru et.al., and T.-C. Jen et.al. [2] suggested a growing focus on using machine 
learning ethically in climate science. People are concerned about data biases, how clear research models are and who 
is responsible for them and research is now paying attention to these problems. These studies involve presenting 
explainable AI methods and participatory modeling which include stakeholders in the development and confirmation 
of results. Certain articles also recommend using policy-shaped algorithms, so the results are adapted to fit the 
administration within environmental management. 

All in all, while machine learning is expected to advance climate impact assessments, there is still a gap between 
its technical strengths and what it can achieve in real policy problems. Not many studies focus on just how model 
outputs can guide and direct how policies are made and put into place. Because of this gap, it’s important to have 
experts translate technical knowledge into useful policies which is what the study I present attempts to do. 

III. PROPOSED METHODOLOGY 
To construct a robust and interpretable machine learning framework for climate impact assessment, this methodology 
combines environmental data preprocessing, feature extraction, model development, and policy interpretation into a 
unified pipeline [15]. 

We start by collecting multi-modal datasets: satellite images, temperature logs, rainfall records, and socioeconomic 
indicators. These raw inputs are denoted as: 

D = {(x1, y1), (x2, y2), … , (xn, yn)} 

where xi ∈ ℝd is the input feature vector and yi is the corresponding climate impact label (e.g., drought index, flood 
severity). 



International Journal of Environmental Sciences  
ISSN: 2229-7359 
Vol. 11 No. 4s, 2025 
https://www.theaspd.com/ijes.php 

55 

 

Normalization ensures data consistency and convergence stability. We normalize each feature using: 

xi
′ =

xi − μ

σ
 

where μ and σ represent the mean and standard deviation of the dataset respectively. 

For temporal prediction tasks (e.g., rainfall forecasting), we deploy a supervised regression model. A basic hypothesis 
function used is: 

ŷ = wTx + b 

with w as the weight vector and b as the bias term. The model minimizes the loss between predicted and actual values. 

We use Mean Squared Error (MSE) as the cost function for regression tasks: 

J(w, b) =
1

n
∑  

n

i=1

(ŷi − yi)
2 

This loss is minimized through stochastic gradient descent. 

For classification-based climate zoning (e.g., arid, semi-arid, tropical), we apply logistic regression, where: 

P(y = 1 ∣ x) =
1

1 + e−w
Tx

 

This probability output aids in spatial categorization. 

To capture temporal dependencies, Recurrent Neural Networks (RNNs) are implemented. The hidden state update 
is: 

ht = tanh⁡(Whht−1 +Wxxt + b) 

This enables sequential modeling of climate events. 

We also leverage Random Forests for policy-relevant feature importance analysis. The prediction function is: 

ŷ =
1

T
∑  

T

t=1

ft(x) 

where ft represents the prediction from the t-th decision tree in the ensemble. 

To measure uncertainty in policy-critical predictions, we introduce Bayesian inference. For a parameter 𝛉, the 
posterior is: 

P(θ ∣ D) =
P(D ∣ θ)P(θ)

P(D)
 

This ensures predictions include confidence intervals critical for risk-based policy. 

To embed fairness, we measure statistical parity using: 

Δ = |P(ŷ = 1 ∣ A = 0) − P(ŷ = 1 ∣ A = 1)| 
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where A is a sensitive attribute like income or region. 

Lastly, we evaluate performance using R2 score: 

R2 = 1 −
∑ ⁡ (yi − ŷi)

2

∑ ⁡ (yi − y‾)2
 

This quantifies how well the model explains variance in the data. 

MAPE =
100%

n
∑  

n

t=1

|
yt − ŷt
yt

| 

 

FIGURE 1: MACHINE LEARNING PIPELINE FOR CLIMATE IMPACT ASSESSMENT 

IV. RESULTS & DISCUSSIONS 
To test the proposed pipeline, data from the past were collected from coastal, arid and temperate regions. Among the 
several features in these datasets were temperature, humidity, rainfall, soil moisture, a vegetation index and indicators 
of socio-economic vulnerability. The models performed very well in forecasting sales after training with 80% of the 
data and testing with the remaining 20% [16]. 

Figure 2 shows the result of using Random Forest, RNN and linear regression to predict ATR in multiple regions. 
The RNN is able to accurately follow changing temperature patterns, especially in volatile times and this makes it 
better than the average method. RNNs are shown through the figure as being better at detecting patterns across time 
than traditional models. The RNN model reached actual temperature values within a range of ±1.3°C, yet Random 
Forest seemed to fall behind when there were strong peaks and troughs. 
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FIGURE 2: PREDICTED VS ACTUAL TEMPERATURE ANOMALIES USING THREE MODELS 

Rainfall predictions, however, showed a slightly different way they were built. RNNs did well on shorter sequences, 
but Random Forests were consistent across all lengths. Rainfall forecasts were more reliable in the temperate zones 
which may be because of regular rainfall and detailed historical records. Because rainfall in the arid zone is 
unpredictable and usually scarce, the residuals spread more widely. In Figure 3, the mean absolute error (MAE) for 
every model and region is displayed. Random Forest performed the best by having the least average error in predicting 
rainfall across coastal and temperate zones. 

 

FIGURE 3: MODEL MAE COMPARISON FOR RAINFALL PREDICTION ACROSS REGIONS 

Table 1 shows a list of important metrics used to rank model performance such as MAE, R-squared and how much 
time each model takes to train. On average, it took the Random Forest model 24 seconds to train and it was accurate. 
RNN was trained for much longer, but the results showed it was better at forecasting temperature. Neither the accuracy 
nor the adaptability to new patterns was good with linear regression. 

TABLE 1: MODEL PERFORMANCE METRICS ACROSS CLIMATE VARIABLES 

Model MAE (Temp) MAE (Rainfall) R² Score Avg Training Time (s) 
Random Forest 0.92 0.68 0.88 24 

RNN 0.67 0.72 0.93 158 
Linear Regression 1.23 1.01 0.72 6 

 
It is not enough for a model to be precise; how the results can be interpreted matters for dealing with climate 

policy frameworks. Data scientist were able to show this by producing feature importance rankings. Again, the most 
common factors predicting the effect of climate change on agriculture were precipitation, NDVI and temperature 
variability. While socio-economic factors did not directly predict risk, they did have a major impact on mapping the 
risk. 

We looked into ways we could turn the predictions into useful ideas. Due to droughts in the arid zone, having 
feature-driven predictions let experts recognize at-risk areas early on. The data was added to maps showing social and 

0.6
1.1 0.90.58

1.07 0.92

0

2

Jan–Mar Apr–Jun Jul–Sep

Predicted vs Actual Temperature Anomalies

Actual Temp Anomaly (°C) RNN Predicted Temp (°C)

0.74
0.68

0.89

0.61
0.55

0.72

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Coastal

Arid

Model MAE Comparison for Rainfall Prediction Across Regions

Random Forest MAE (mm) RNN MAE (mm)



International Journal of Environmental Sciences  
ISSN: 2229-7359 
Vol. 11 No. 4s, 2025 
https://www.theaspd.com/ijes.php 

 

58 

 

economic vulnerability which made important local interventions clear. This section presents a map of composite risk 
that joins information on climate change with measurements of human vulnerability (Figure 4). This information is 
needed by those who manage and plan for disasters. 

 

FIGURE 4: COMPOSITE RISK MAP COMBINING CLIMATE AND SOCIO-ECONOMIC VULNERABILITY 

Within the scope of comparative impact assessment, we tested how well the model supported running policy 
simulations. A study simulated how an irrigation intervention might perform under three different levels of funding. 
The figure below tells us what to expect from crop yields and the use of water for each scenario. Based on the model, 
the greatest return on investment happened when funding was given to areas that face climate risk and are 
economically weak. The results suggest how important machine learning-driven assessment has become. 

TABLE 2: SIMULATED POLICY OUTCOMES UNDER VARYING IRRIGATION INVESTMENT 
SCENARIOS 

Scenario Yield Increase (%) Water Use Reduction (%) Benefit-Cost Ratio 
Low Investment 4.2 2.1 1.3 

Targeted High-Need Focus 12.8 6.7 3.4 
Uniform Distribution 7.9 4.0 2.1 

 
They make it obvious that applying machine learning improves the design of climate policies. In addition to 

statistical predictions, the most important part of these tools is turning large amounts of environmental data into 
useful and clear insights for actions. Planning for drought can be done locally through the models and the same 
models also help organize national infrastructure projects. 

In brief, this way of working both improves the detail and accuracy of climate impact conclusions and connects 
data science to policy-making. With the help of detailed plots, socio-economic layers and modeling tools, the 
framework creates a way to apply machine learning to climate resilience planning at large scale. 

V. CONCLUSION 
Because of its speed, scalability and power to find hidden patterns, machine learning could lead to better climate 
impact assessments. Still, only focusing on technical excellence is not adequate. The main importance of ML is that 
it guides policy and motivates people to act. This study points out that ML models used for climate policymaking 
should be open, simple to understand and ethical. Necessary teamwork among data scientists, climate experts and 
decision-makers is important to make sure ML strongly supports tackling climate change. Further efforts need to be 
made to explain ML models better, shape legal policies for their use in government and strengthen vital public 
institutions in handling AI for climate protection. 
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