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Abstract: Urban Air Mobility (UAM) has gotten a lot of attention because it could change the way people get around in cities with 
lots of people. But getting UAM cars to navigate reliably is still hard, especially since Global Navigation Satellite Systems (GNSS) 
aren't perfect in these situations. GNSS performance is often hampered by infrastructure in cities, signal blockages, and interference. 
This paper suggests a new way to predict GNSS success in UAM systems using machine learning and environment recognition 
methods together. The suggested model takes into account a lot of external factors that affect the quality of GNSS signals, like the 
number of buildings, plants, temperature, and other barriers. Based on these external factors, machine learning methods like 
regression models and support vector machines are used to look at and guess how well GNSS will work. GNSS systems built into 
UAM cars and weather sensors are used to collect data for the method. Both GNSS and weather data are preprocessed with feature 
extraction methods. This data is then put into machine learning models. Key measures like GNSS accuracy and forecast accuracy 
in different urban settings are used to judge the performance of the model. A case study shows how the model can be used in a real-
life UAM situation, showing how well it improves the accuracy of GNSS performance predictions. The results show that adding 
environmental detection makes GNSS performance much more reliable in complex urban settings. This study helps UAM systems 
get better by giving a strong answer to one of the main problems these cars have: making sure they can navigate consistently and 
correctly. The study also talks about areas that could be studied in the future, such as adding more outdoor factors and better 
machine learning methods for predicting GNSS in real time. 
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INTRODUCTION 
Urban Air Mobility (UAM) could change the way humans get round cities by way of bringing in flying cars that can 
fly in towns, imparting quick and long-lasting approaches to get around. Unmanned aerial vehicles (UAVs), electric 
vertical takeoff and landing (eVTOL) planes and other superior airborne transportation structures are getting more 
popular. UAM claims to ease visitors, reduce down on carbon emissions, and make it simpler for people to get round 
in crowded cities. However, certainly one of the most important troubles with the use of UAM technologies is ensuring 
they can locate their manner round reliably, particularly in towns where global Navigation satellite systems (GNSS) 
work much less nicely. GNSS generation has been very vital in imparting correct area and timing offerings for lots 
styles of transportation structures, which includes those utilized in aeroplanes, ships, and automobiles on land. in 
terms of UAM, GNSS is very crucial for steering for vehicles that fly themselves or with little help from humans. 
However the crowded and complex city placing makes it more difficult for GNSS to paintings nicely in a number of 
ways. Satellite TV for pc indicators may be blocked or interfered with by way of such things as tall buildings, small 
streets, a whole lot of infrastructure, and weather that modifications fast. This will lead to less accuracy, sign loss, and 
much less dependable placement. GNSS signals can emerge as unstable or absent in those varieties of places, which 
can make UAM sports less safe and more inefficient [1]. On the way to solve this trouble, we need to create a system 
which could guess how well GNSS will work in cities. This may allow UAVs to modify to changing conditions right 
away. A vital part of that is surroundings identification, this means that locating and knowing the things inside the 
environment that exchange signal receiving. Figure 1 show how environmental popularity techniques and statistics 
can be used to are expecting GNSS overall performance for city air mobility. 

https://theaspd.com/index.php
mailto:dilip.motwani@vit.edu.in1
mailto:vidya.chitre@vit.edu.in2
mailto:varsha.bhosale@vit.edu.in
mailto:swapnil.sonawane@vit.edu.in4,%20amit.nerurkar@vit.edu.in
mailto:swapnil.sonawane@vit.edu.in4,%20amit.nerurkar@vit.edu.in
mailto:deepali.vora@sitpune.edu.in6


International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 18s, 2025 
https://theaspd.com/index.php 

 

784 

 

 
Figure 1: GNSS Performance Prediction for Urban Air Mobility Using Environment Recognition 
Environmental elements like building height, city population, greenery, and climate conditions will have a massive 
effect on how properly GNSS works. Machine learning (ML) fashions can look at huge datasets and find complex 
trends. They can be an amazing manner to guess how properly GNSS will work based on data from the surroundings. 
This paper indicates the use of device studying to guess how nicely USA automobiles will do with GNSS by combining 
strategies for recognizing their environment. The counseled model can bet the first-rate of GNSS signals in diverse 
town settings through collecting and reading statistics on each the signals themselves and the features of the 
environment [2]. Adding device getting to know to the system lets it analyze from beyond records, alter to changing 
conditions within the international, and predict success in actual time. Getting GNSS to paintings better in city 
airspaces and making UAM structures safer and more effective are the principle goals of this observe. The rest of the 
paper is organized like this: In Section II, we look at important material that talks about GNSS performance, UAM 
uses, and forecast models based on machine learning.  
 
RELATED WORK 
More and more study is being done on how to combine Global Navigation Satellite Systems (GNSS) with Urban Air 
Mobility (UAM) technologies because people want safe, self-driving transportation options in cities. A lot of study has 
been done on how to make GNSS work better, especially in cities that are complicated and always changing, where 
signal loss from objects and multipath effects is common [3]. Line-of-sight contact with satellites is needed for 
traditional GNSS devices. However, tall buildings, small streets, and weather conditions can make this very difficult. 
Many research on these problems have produced recommendations for additional or new technology that could 
improve GNSS performance in urban areas. To better understand where something is, they have investigated mixed 
systems using GNSS, ocular odometry, inertial navigation systems (INS), and other sensor-based techniques [4]. These 
approaches attempt to cover for lost or distorted GNSS signals, but often they need additional hardware, which 
increases system complexity and expense. Machine learning (ML) models have evolved over the last several years into 
a fascinating approach to identify GNSS signal issues in localities and address them.  
Regression models, support vector machines (SVM), and deep learning approaches—types of machine learning—have 
been employed in many research to project how effectively GNSS would function depending on surroundings. To 
estimate errors in signal power and placement, models have been created that resemble cities, with regard to their 
form and architectural details like building count and height. Various studies have attempted to estimate the real-time 
accuracy of GNSS communications by use of air and weather considerations [5]. Using convolutional neural networks 
(CNNs), one may manage outside input for GNSS performance prediction. In this area, this is a quite significant 
workpiece. These models may be taught by the data how to spot trends in location and time. This helps them to 
forecast more precisely and adjust to changes in their surroundings. Table 1 summarises the main results, ideas, and 
efforts of the urban air flow research [6]. Real-time data from the car's surroundings guides reinforcement learning in 
changing its course. This is an other approach to improve GNSS system performance.  
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TABLE 1: SUMMARY OF RELATED WORK 
Method Key Finding Approach Challenges 
GNSS-INS 
Hybrid 
Systems 

Improved positioning accuracy 
in urban environments. 

Combines GNSS with Inertial 
Navigation Systems (INS). 

Sensor fusion complexity 
and additional hardware 
costs. 

Environmental 
Feature 
Analysis [7] 

Environmental factors like 
building density affect GNSS 
accuracy. 

Uses environmental data to 
predict GNSS signal strength. 

Difficulty in real-time data 
processing and integration. 

Support 
Vector 
Machines 
(SVM) 

SVM models can effectively 
predict GNSS performance 
based on environment. 

Supervised learning model for 
prediction using GNSS and 
environmental data. 

Requires large labeled 
datasets for training. 

Deep Learning 
Models 
(CNNs) [8] 

Deep learning models 
outperform traditional methods 
in complex environments. 

Uses Convolutional Neural 
Networks (CNNs) for spatial 
pattern recognition. 

High computational cost 
and need for large datasets. 

Reinforcement 
Learning (RL) 

RL can optimize GNSS signal 
prediction by adjusting flight 
paths. 

Applies RL algorithms to adjust 
GNSS performance 
dynamically. 

Training RL models can be 
resource-intensive. 

Regression 
Models 

Simple models can predict 
GNSS accuracy in less complex 
settings. 

Uses linear or nonlinear 
regression to estimate GNSS 
performance. 

Limited performance in 
highly dynamic urban areas. 

Weather 
Impact 
Analysis [9] 

Weather conditions, especially 
precipitation, impact GNSS 
signals. 

Integrates weather data (rain, 
fog) with GNSS data for 
prediction. 

Limited real-time weather 
data integration in urban 
environments. 

Signal 
Strength 
Prediction 
Models 

Predicting signal degradation 
can improve safety. 

Machine learning models 
predicting signal strength 
degradation. 

Signal degradation due to 
multipath effects and 
obstructions. 

 
METHODOLOGY 
A. Data collection  
1. GNSS data from UAM systems  
Obtaining GNSS data from UAM systems in many cities comes first in our approach. Usually, this information 
comprises the speed, the location (latitude, longitude, and altitude), the satellite signal's intensity, and the data 
collecting date. Data from many satellites may be simultaneously picked up by the GNSS receivers on UAM 
automobiles. This reveals a lot about other crucial factors, tracking accuracy, and the effectiveness of the indicators. 
This knowledge will help you to comprehend how urban canyon effects, signal loss, and multipath interference affect 
GNSS performance in cities [10]. To create a powerful model applicable in numerous metropolitan regions, we will 
combine data from several sites and periods with various kinds of structures.  
• Step 1: GNSS Signal Propagation Model 
The GNSS signal S(t, r) received at time t and position r is influenced by the distance to the satellite, atmospheric 
conditions, and multipath effects. This can be expressed as: 

𝑺(𝒕, 𝒓) =
𝑷𝒔𝒂𝒕𝒆𝒍𝒍𝒊𝒕𝒆(𝒕,𝒓)

(𝒅(𝒓, 𝒓𝒔𝒂𝒕) +  𝜟𝒅𝒂𝒕𝒎(𝒓) +  𝜟𝒅𝒎𝒑(𝒓))
 

Where: 
- P_satellite(t, r) is the power of the GNSS signal from the satellite at time t and position r, 
- d(r, r_sat) is the geometric distance from the receiver at r to the satellite at r_sat, 
- Δd_atm(r) accounts for atmospheric delays (e.g., ionospheric and tropospheric effects), 
• Step 2: Signal Strength Deviation 
The signal strength S_received(t, r) received at the UAM vehicle is related to the environmental conditions: 
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𝑺𝒓𝒆𝒄𝒆𝒊𝒗𝒆𝒅(𝒕,𝒓) =  𝑺(𝒕, 𝒓) ∗ 𝒆𝒙𝒑 ( − ∫ 𝝈𝒆𝒏𝒗(𝒙)𝒅𝒙
𝒓𝒔𝒂𝒕

𝒓
) 

Where: 
- σ_env(x) represents the environmental attenuation factor along the path between the UAM system and the satellite, 
- The integral term models the cumulative effect of the environment along the signal path. 
• Step 3: Positioning Error Prediction 
Positioning error ε(t, r) can be estimated based on the predicted signal strength and the GNSS system's inherent error 
sources: 

𝜺(𝒕, 𝒓) =  ∫ (
𝝏𝟐𝑺𝒓𝒆𝒄𝒆𝒊𝒗𝒆𝒅(𝒕,𝒓)

𝝏𝒙𝟐
+

𝝏𝟐𝑺𝒓𝒆𝒄𝒆𝒊𝒗𝒆𝒅(𝒕,𝒓)

𝝏𝒚𝟐
+

𝝏𝟐𝑺𝒓𝒆𝒄𝒆𝒊𝒗𝒆𝒅(𝒕,𝒓)

𝝏𝒛𝟐 )
𝑨

𝒅 𝒓 

Where: 
- A is the spatial area over which the signal propagation and error are evaluated, 
- The second derivatives of the received signal S_received(t, r) account for the positioning accuracy with respect to 
changes in space. 
• Step 4: Final GNSS Accuracy Prediction 
The final GNSS accuracy δ_GNSS(t, r) at time t and position r is given by: 

𝜹𝑮𝑵𝑺𝑺(𝒕,𝒓) =  ∫ (
𝜺(𝒕, 𝒓)

𝑺𝒓𝒆𝒄𝒆𝒊𝒗𝒆𝒅(𝒕,𝒓)
) 𝒅

𝒓𝒔𝒂𝒕
𝒓

𝒓 

Where: 
- The integral quantifies the total error along the signal path and normalizes it by the received signal strength, providing 
a more accurate prediction of GNSS performance based on environmental factors and signal degradation. 
2. Environmental data  
Along with GNSS data, outdoor data is collected from a number of sources, such as devices on the UAM car, city 
maps, and weather data from outside sources. Some important natural factors are the height, density, and spread of 
buildings, the amount of greenery, the shape of the land, and weather conditions like rain and wind. These things 
have a big effect on how GNSS signals travel and are received. Meteorological sites or monitors built into the UAM 
systems will also collect information about the weather, such as the amount of clouds and rain [11]. When you combine 
GNSS data with environmental data, you can find links between urban traits and GNSS performance, which is very 
important for the forecast model. 
B. Feature extraction  
1. Environmental features impacting GNSS performance  
The main goal of feature extraction is to find and pick out important external factors that have a direct effect on the 
quality of the GNSS signal. It pulls out information like the number of buildings, the distance to the closest tall 
buildings, and the presence of barriers like trees or overhangs. GIS tools and satellite images will be used to map 
geospatial data, such as building heights and road networks. Temperature-based weather trends, like wind, snow, or 
rain, can also weaken signals, so these are also taken into account in the model [12]. By giving numbers to these traits, 
the model can learn more about how GNSS signal strength or reliability changes in cities. 
2. GNSS signal data preprocessing  
GNSS signal data needs to be preprocessed to make sure it is of good quality and can be used for machine learning 
tasks. Because of signal loss or multipath interference, raw GNSS data often has noise, holes, or errors that need to be 
cleaned up and standardised before they can be analysed. It is possible to get rid of outliers and smooth out changes 
in signal strength, positioning accuracy, and time delay. To keep the accuracy of the data, interpolation or estimation 
are used to fill in missing or incomplete data points. Normalisation methods are also used to make the data scale 
consistent, which lets machine learning models handle the data quickly [13]. When you do the right preparation, you 
make sure that the data you put into predictive modelling is consistent and reliable. 
C. Machine learning model selection  
1. Supervised learning approaches  
Supervised learning is used to create prediction models from labelled data. In this case, both the input features (like 
external data and GNSS signals) and the output features (like GNSS performance metrics like accuracy and signal 
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strength) are known. In the beginning, regression models like linear regression and decision trees are looked at to see 
how well they can predict GNSS signal strength and tracking accuracy. Support Vector Machines (SVM) are also being 
thought about because they can deal with input features and GNSS performance that don't have a straight line 
connection [14]. More advanced methods, like Random Forest and Gradient Boosting Machines, are used to make 
the models more accurate and deal with data that has a lot of complex relationships. 
• Step 1: Data Representation 
Let X = { x1, x2, ..., xn } be the feature matrix where xi represents the feature vector for the i-th data point, and Y = { 
y1, y2, ..., yn } be the corresponding target values (labels). The supervised learning problem can be formalized as finding 
a function f: X -> Y. 

𝑿 =  [ 𝒙𝟏    𝒙𝟐    …   𝒙𝒏 ],   𝒀 =  [ 𝒚𝟏    𝒚𝟐   …  𝒚𝒏 ] 
• Step 2: Model Definition 
In supervised learning, the model attempts to learn a function f(x; θ) that maps input features x to output predictions. 
For example, for linear regression, this function can be defined as: 

𝒇(𝒙;  𝜽) =  𝜽𝟎 +  𝜽𝟏 𝒙𝟏 +  𝜽𝟐 𝒙𝟐 + … +  𝜽𝒅 𝒙𝒅 =  𝒙𝑻𝜽 
Where: 
- θ is the vector of parameters (weights), 
- x = [ x1, x2, ..., xd ]^T is the feature vector, 
- x^T θ represents the dot product between the input features and the parameters. 
• Step 3: Loss Function 
To optimize the model, we define a loss function that quantifies the error between the predicted values and the true 
values. A commonly used loss function is the Mean Squared Error (MSE) for regression tasks: 

𝑳(𝜽) =  (
𝟏

𝒏
) ∗  𝜮 ( 𝒇(𝒙𝒊;  𝜽) −  𝒚𝒊 )𝟐 

Where: 
- L(θ) is the loss function, 
- n is the number of data points, 
2. Model training and validation  
The collected facts are split into training, validation, and test units as part of the model training method. That is 
finished to make certain that the model works nicely in an expansion of city settings. The program learns how outside 
factors affect GNSS performance at the same time as its miles being trained. As part of the schooling manner, 
hyperparameter tuning is completed to locate the pleasant version parameters via using cross-validation to avoid 
overfitting. After the model is trained, it's far examined in opposition to an exceptional validation set to see how well 
it can generalize. Key measurements, like root mean square error (RMSE) and R-squared, which measure how accurate 
GNSS performance forecasts are, are used to choose the performance. Ultimately, a distinct set of information is used 
to test the model's ability to guess facts that haven’t been visible before. This thorough testing makes certain that the 
version will paintings well in real-life situations. 

I. CASE STUDY: URBAN AIR MOBILITY SCENARIO  
A. Application of the proposed model in a UAM test scenario  
As part of this case observe, the suggested machine learning-based GNSS performance forecast model is used on a 
UAM test situation that mimics how UAM vehicles work in a city setting. The take a look at situation is meant to be 
like the troubles UAM systems face in the real world, including sign loss from big homes, traffic jams, and changing 
weather. UAM cars with GNSS structures and environmental sensors fly along predetermined paths in an urban place, 
collecting GNSS statistics as well as environmental elements like the wide variety of buildings, the weather, and the 
state of the roads. Figure 2 shows how the proposed model can be used in a test case for plane travel in cities. 
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Figure 2: Application of the Proposed Model in a UAM Test Scenario 
The environment identification model looks at this information in real time and guesses how well GNSS will work at 
different places along the flight path. In changing city settings, the model's accuracy is tested by comparing its expected 
performance with real GNSS readings. Finding the places where GNSS signals are weakest is made easier by this app. 
This helps make flight paths and operating plans for UAS systems better. 
B. Real-world data validation  
The suggested model's success is checked against real-world data gathered from UAM systems set up in different cities. 
As part of the evaluation process, the model's GNSS performance forecasts are compared to real GNSS readings taken 
during flight tests in various places and weather conditions. The information is gathered by UAVs that have high-
precision GNSS transmitters and weather monitors, which makes sure that it is correct and consistent.  
 
RESULT AND DISCUSSION  
The GNSS performance forecast model based on machine learning did a much better job of predicting the strength 
and accuracy of GNSS signals in cities. When used in real-life UAM situations, the model made very good predictions, 
with Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) numbers that were appropriate. 
Environmental factors, like the number of buildings and the weather, were very important in making the model work 
better.  
TABLE 2: MODEL PERFORMANCE COMPARISON 

Model 

Mean 
Absolute 
Error 
(MAE) 

Root Mean 
Squared 
Error 
(RMSE) 

R-
squared 
(R²) 

Linear 
Regression 

1.45 2.03 0.8 

Support 
Vector 
Machine 

1.2 1.85 0.85 

Random 
Forest 

0.95 1.5 0.9 

Gradient 
Boosting 

0.8 1.3 0.93 

 
We tested 4 machine learning models (Linear Regression, support Vector machine (SVM), Random forest, and 
Gradient Boosting) using 3 important metrics: mean Absolute error (MAE), Root mean squared error (RMSE), and 
R-squared (R²). The results are shown in the table 2. Figure 3 shows how the success measures of different models 
compare, showing their strengths and flaws across tests. 
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Figure 3: Comparison of Model Performance Metrics 
Linear Regression has the biggest MAE (1.45 and RMSE 2.03), which means it isn't very good at predicting how well 
GNSS will work. Figure 4 displays changes in model performance data over time, showing that it gets better and stays 
the same across tests. 

 
Figure 4: Trends in Model Performance Metrics 
The R-squared number of 0.8 for the model means that it can explain 80% of the differences in the data. With a lower 
MAE of 1.2 and RMSE of 1.85, Support Vector Machine (SVM) does better than Linear Regression, showing that it 
is more accurate. With a R² number of 0.85, it seems to explain 85% of the variation. Figure 5 shows stacked measures 
for evaluating models, which make it easy to see how different success factors compare. 

 
Figure 5: Stacked Metrics for Model Evaluation 
Random Forest, which has an MAE of 0.95 and an RMSE of 1.5, makes the predictions even more accurate. With a 
R² number of 0.9, it explains 90% of the differences in the data.  
TABLE 3: GNSS PERFORMANCE IN VARIOUS URBAN ENVIRONMENTS 

Environment 
Predicted 
GNSS 

Actual 
GNSS 

Signal 
Strength 

Prediction 
Error (%) 
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Accuracy 
(m) 

Accuracy 
(m) 

Deviation 
(%) 

Dense City 
Center 

2.5 2.7 5 7.5 

Suburban 
Area 

3.2 3 3 6.3 

Industrial 
Zone 

4 4.2 5.5 5 

Mixed Urban 
Area 

3 3.1 3.5 3.3 

 
In different urban areas, this table 3 shows how expected and real GNSS accuracy match. With a 5% signal power 
difference, the real number in the Dense City Centre is 2.7 meters, which is 2.5 meters less than what was projected.  

 
Figure 6: Comparison of Predicted and Actual GNSS Accuracy Across Environments 
Figure 6 shows differences between expected and real GNSS accuracy in different settings, showing where predictions 
are off. The estimate error in this case is 7.5%, which means there is a modest difference. The real accuracy in the 
Suburban Area is 3.0 meters, which is close to the prediction accuracy of 3.2 meters.  

 
Figure 7: Prediction Error Waterfall for GNSS Accuracy 
There is a 3% difference in signal strength, which means that the forecast error is 6.3%. A forecast error waterfall for 
GNSS accuracy is shown in Figure 7. It shows how errors get worse over time and how they tend to follow trends. In 
the Industrial Zone, the real accuracy is 4.2 meters, but the prediction was 4.0 meters. This is because the signal 
strength changed by 5.5%, which caused a 5% mistake in the forecast.  
CONCLUSION 
This study shows a new way to use machine learning to guess how well GNSS will work in Urban Air Mobility (UAM) 
systems. It does this by using environment recognition to solve the problems that come up with urban navigation. To 
provide real-time comments on the accuracy of tracking and the intensity of GNSS signals, GNSS data should be 
coupled with outside elements such building height, density, and weather. Following several experiments in both 
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virtual and real-world UAM environments, the model performs quite well in forecasting the GNSS performance. This 
results in much less of a concern about signal loss in towns. Environmental identification was shown to not only 
increase the accuracy of GNSS performance projections but also generally makes UAM systems safer and more 
practical. The model forecasts UAM vehicle loss of signals due to obstructions or poor weather ahead of time. They 
may so modify their course of flight and always find their way. Regression and support vector machines are two 
machine learning methods that also let you create a scalable and flexible model capable of working in many urban 
environments. Even though the model has shown promise, more study is needed to make it more accurate and find 
more uses for it. In the future, researchers might look into how to improve forecast even more by adding more external 
factors, like road conditions or moving barriers. Real-time use of the model in self-driving UAM systems would also 
give us useful information about how well it works in real life and how widely it could be used in smart towns. This 
study lays the groundwork for improving UAM systems and making sure they can safely operate in the complex 
airspaces of cities. 
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