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Abstract

At a time characterized by heightened environmental issues and dwindling natural resources, supply chain
optimization for sustainability has emerged as a strategic necessity. This paper discusses an integrative approach to
engineering sustainable supply chain optimization (SSCO) in resourcelimited settings through geo-spatial analytics
and artificial intelligence (Al)-driven data science methodologies. The research addresses the unique challenges faced
by supply chains in regions with underdeveloped infrastructure, unstable resources, and environmental vulnerability.
The proposed approach combines geospatial data with machine learning methods to provide a dynamic data-driven
system that enhances decision support for supply chain planning and operations. Geo-spatial analysis enables precise
mapping of patterns of resources, transport routes, and environmental impact zones, which enables localized
optimization interventions. Al technologies like predictive analytics, reinforcement learning, and optimization
algorithms are used to identify patterns, forecast demand, allocate resources to maximize the value achieved, and
adapt dynamically to realtime conditions. Key innovations include the development of an multi-layered decision-
support platform combining satellite imagery, socio-economic variables, climate variables, and logistics performance
indicators. The platform allows stakeholders to model trade-offs among cost, carbon footprint, and service levels to
varying constraints. Low-income and climatewulnerable country case studies confirm the practicability of this
approach, with emissions reductions, better delivery efficiency, and enhanced resilience to disruptions. Furthermore,
the study highlights the necessity for ethical Al practices and data governance for inclusive benefits to be generated
across different communities. It highlights the necessity for intersectoral collaboration and open data platforms to
propagate sustainable practices globally. Through the integration of geo-spatial intelligence and Al-driven insights, this
research gives a paradigm-redefining perspective to sustainable supply chain engineering. It presents actionable paths
to policymakers, logistics managers, and development organizations to unlock the intricacy of resource-constrained
settings while promoting environmental stewardship and socio-economic growth. The proposed model carries profound
implications for the execution of the United Nations Sustainable Development Goals (SDGs) that are concerned with
responsible consumption, climate action, and industry innovation.

Keywords: Sustainable Supply Chain Optimization, Resource-Constrained Environments, Geo-Spatial Analytics,
Artificial Intelligence, Data-Driven Decision Making

1. INTRODUCTION

In the rapidly evolving world economy today, supply chains are subjected to new stresses from shortages
of resources, climate change, and rising socio-economic disparity. The traditional models of supply chains,
based on cost reduction and efficiency, do not work well in resource-constrained environments—places
with weak infrastructure access, volatile patterns of demand and supply, and environmental exposure. In
such a context, the need for sustainable supply chain optimization (SSCO) [1] is no longer only a matter
of logistics but a strategic necessity for long-term robustness and human development-oriented strategy.
Scarcity environments, particularly developing nations and disaster areas, are further vulnerable to supply
chain disruption, unstable commodity prices, and infrastructural bottlenecks. These must be met by
innovative solutions that can successfully balance environmental, economic, and social objectives.

692


mailto:subramanyam.mt.ns@msruas.ac.in
mailto:amalanathan.s@christuniversity.in
mailto:vvsatishkumar2004@gmail.com
mailto:venkateshboya50@gmail.com

International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 18s, 2025
https://theaspd.com/index.php

Creating a sustainable supply chain in these environments means departing from linearity thinking and
embracing adaptive, data-informed solutions that can respond to the dynamic subtleties of such
environments. Geo-spatial analysis and artificial intelligence (Al) have emerged as powerful tools in the
transformation of traditional supply chains into smart, sustainable networks. Geo-spatial technologies
such as remote sensing, satellite imagery, and GIS [2] (Geographic Information Systems) offer granular
visibility into the landscape, resource distribution, climate risks, and infrastructure gaps. When integrated
with Al-enabled data science methods—such as machine learning, predictive modeling, and optimization
algorithms—the technologies can enhance situational awareness, anticipate disruptions, and facilitate real-
time decision-making. This paper proposes an integrative framework that applies geo-spatial intelligence
and Al to create sustainable supply chain systems for limited-resource environments. The suggested
framework would optimize product movement and allocation, minimize environmental impacts, and
improve supply chain resilience through data-driven and informed actions. It explores how machine
learning models can be trained on diverse sources of data—ranging from satellite images and weather
forecasts to socio-economic data—in order to present actionable intelligence for logistics planning,
resource management, and carbon emissions reduction.
The construction of such a model answers some of the most significant Sustainable Development Goals
[3] (SDGs), i.e., those for sustainable consumption and production (SDG 12), climate action (SDG 13),
and innovation and infrastructure (SDG 9) [4]. Through enabling smarter logistics, more equitable
resource allocation, and greener behaviors, this framework provides the foundation for the future
generation of sustainable, smart supply chains that can thrive even under restrictive conditions. Through
inter-sectoral coordination and prudent exploitation of technology, this research aims to redefine the
paradigms of supply chain engineering through the age of sustainability.
2. Related Work
2.1 Sustainable Supply Chain Management in Resource-Constrained Environments
Research within the area of sustainable supply chain management (SSCM) is gaining traction given that
global supply networks regularly face resource uncertainty. Many researchers have expressed the
constraints of traditional supply chain models in regions with unreliable infrastructure, energy, or supply.
As an example, [5] suggested some models to incorporate the environment and/or social criteria into
supply chain decisions. In developing economies with limited dependable transport, uncertain demand,
uncertain supply, and volatility in siting, adaptive supply chains are critically needed.
For example, [6] presented a decision-making model that incorporates sustainability metrics into supplier
selection and all logistics planning using constrained resource demands. They suggested a lifecycle
thinking approach and affirmed the need for local supply sources to mitigate emissions while reducing
reliance on a global supply chain. More recent studies conducted by [7] employed a risk-based perspective
of SSCM, highlighting uncertainty management in human or climate-shocked fragile regions.
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Figure 1: Supply Chain Management in Resource-Constrained Environments
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Although these advancements have been made, most models for SSCM are still inadequate in real-time
responsiveness and situational awareness, as the literature asks for better modeling methods which use
live data such, including GPS systems and IoT to increase flexibility. Resource constraints are less obvious;
but as they become increasingly complicated and multi-dimensional - and especially now in post-disaster
and marginalized areas of the world - and subsequent complications require multi-criteria decision-making
frameworks that employ up-to-the-minute and context-aware data.

2.2 Geo-Spatial Analytics in Supply Chain Optimization

Geo-spatial analytics have majorly altered the face of logistics and supply chain optimization through
spatially intelligent decision-making. Geographic Information Systems (GIS) allow the means to visualize
and analyze routed, facility locations, and hot spots that represent supply and demand. Early on, these
tools were used as route optimization and market accessibility tools; however, recent research has
expanded the use of geo-spatial tools in a myriad of ways, including disaster response, last-mile, and
environmental impact. For instance,[8], shows mapping critical supply nodes in flooding areas of South
Asia using GIS. Similarly, Miller et al. (2017) used a few spatial clustering methods to investigate the
locations of warehousing to minimize the time and emissions of delivery. Also, geo-spatial intelligences
allow for real-time monitoring through satellite data, which informs dynamic rerouting.
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Figure 2: Geospatial Al Mapping Analytics: Transforming Spatial Intelligence

Current research encourages combining geospatial data with a socio-economic or environmental dataset
to create a "holistic" view of supply chain sustainability. However, there are still challenges with data
resolution, integrating platforms, and spatial models in real-time. The literature increasingly calls for
hybrid systems to maximize the use of GIS with Al and optimization models to leverage greater insights
for sustainable supply chains considerations.

2.3 Al and Machine Learning Applications for Logistics Accurate Optimization Planning and
Sustainable Solutions

Artificial Intelligence (AI) and Machine Learning (ML) has created a paradigm shift amongst logistics and
supply chain optimization. They can conduct predictive analytics, automate decision-making, and
adaptively learn from a dynamic environment. Al applications in logistics can include, but are not limited
to, demand forecasting, and inventory management, vehicle routing, and automation, and manufacturing
and warehouse automation [9)].

Deep learning models such as Long Short-Term Memory (LSTM) networks have been successfully used
to predict time-series demand patterns while reinforcement learning techniques have been used to
optimize routing under conditions with uncertainty with traffic, logistics or weather events. Work done
by [10] acknowledged the benefits of Al's presence when creating digital twins or scenario-based modeling
for creating a more resilient supply chain, in which decision-makers could create simulation of types of
disruption scenarios and create property mitigation protocols ahead of time.
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Although advancements in Al have been made, most Al applications in resource-constrained
environments are limited by issues like not having enough data infrastructure, not enough compute
resources, and not enough trained personnel. Researchers like [11] acknowledged that using federated
learning and edge Al could aid in the decentralization of processing and incorporate Al into under-
resourced regions. Additionally, data privacy, bias, and transparency must also be taken care of to allow
for responsible use of Al systems.

2.4 Integrated Geo-Spatial and Al Supported Decision Support Systems

The integration of geo-spatial technologies and Al have resulted in integrated decision supported systems
(DSS), specifically for sustainable supply chain and supply chain optimization. Such systems can integrate
spatial, temporal, and contextual data to enable multi-objective optimization in real time. Researchers
such as [12] have noted urban logistics platforms which leverage spatial data and behavioral models to
optimize the movement of freight while considering urban sustainability.

A more recent example, by [13] utilized a hybrid DSS implementing GIS, machine learning, and
optimization algorithms to manage medical supply chains in the context of COVID-19. Their DSS
mapped healthcare facility capacities, transportation bottlenecks, and outbreak data to prioritize the
allocation of supply chain distributions in real-time. Such tools can support innovative and all-effective
logistics solutions for resource constrained environments where logistics needs to change development as
a result of unanticipated changes. Another noteworthy study by [14] assessed the integration of the
geospatial location of a business with Al-augmented geo-analytics for environmental risk mitigation in
supply chains by describing terrain vulnerability, carbon emissions and socio-political parameters. The
integrated framework provided a range of improvements in delivery process efficiency and compliance to
environmental requirements. That said, existing DSS models for global supply chain operations have
customisation levels that are problematic, and have some challenges around data heterogeneity [15].
Future research will need to focus on developing a modular and scalable DSS system that is platform
interoperable and resilient to missing or low resolution data, the characteristics of most geo-analytic
opportunities in developing regions. Support for the use of open-source geospatial platforms and low-
code Al tools is increasingly being proposed as a solution to democratize integrated DSS functionality
across the globe.

Table 1: Literature Insights on Integrating Geo-Spatial Analytics and Al in Supply Chain Systems

Topic Key Focus Methods Used in Literature | Notable Studies /
Authors

Sustainable Supply | Balancing efficiency, | Life-cycle assessment, triple- | Seuring & Miiller

Chain resilience, and | bottom-line optimization, | (2008), Govindan

environmental concerns et al.  (2014),
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Management in resource-limited | local sourcing, uncertainty | Mangla et al
(SSCM) contexts modeling (2020)
Geo-Spatial Leveraging GIS  and | Spatial clustering, terrain | Kumar et al
Analytics in | satellite data for supply | modeling, flood zone overlays, | (2018), Miller et al.
Logistics network mapping and | GIS-integrated logistics | (2017), Batty et al.
routing planning (2012)
Al/ML Predictive analytics, | LSTM, Random  Forest, | Zhang et al. (2019),
Techniques  for | routing, and demand | Reinforcement Learning, | Ivanov & Dolgui
Optimization forecasting in  supply | Genetic Algorithms, Deep Q- | (2020), Dubey et al.
chains Networks (DQN), Digital | (2021)
Twins
Integrated Geo-Al | Merging Al models with | Hybrid DSS, scenario | Chen et al. (2021),
Decision Support | geospatial insights for real- | simulation, open data | Jain & Bag (2023),
Systems time, multi-objective | integration, mobile reporting, | Batty et al. (2012)
decision-making cloud-based dashboards

3.PROPOSED METHODOLOGY

3.1 Data Acquisition and Preprocessing Using Geo-Spatial and Contextual Sources

The first phase in structuring sustainable supply chain optimization in resource constrained settings
involves the systematic collection and processing of multi-modal data. This data will include geo-spatial,
environmental, socio-economic, and logistical data. Given the abstract nature of datasets, they can be
acquired from a variety of means, but may include high-resolution satellite imagery (usually sourced from
a public repository such as NASA EarthData), topographical maps, and climate data (again from national,
regional, and international meteorological departments). Geo-spatial datasets will help to identify barriers
to the terrain (example: waterways or mountains), infrastructure deficiencies, and environmental
weaknesses such as flood zones or areas affected by land-slides and drought.

At the same pace, demographic data, consumption traits, access to public/freight transport, major
employment input, and economic performance indicators will be mined from government registers and
open data sources such as the World Bank, Open Street Map and national census datasets. Upon
analyzing these datasets, the relevant contextual datasets will give rise to generalizations of demand cluster
locations, resource distribution methods and human development index information which is exemplary
of the equitable development elements of supply chains. The datasets are then pre-processed for quality
and interoperability. Satellite imagery is denoised, de-clouded and de-warped in tool such as Google Earth
Engine and QGIS tools. Tabular and textual data sources are normalized and combined using either a
spatial join or raster-vector workflow, denormalization of datasets is performed with and where needed,
anonymization, normalization and covariate have been accounted. We address missing values with a
number of imputation mechanisms, such as KNN and regression regreasessment and deracination and
outlier detection and deracination avoid it would have aberrated the model.

The assessment of the features included remapping of all data into a common geo-spatial coordinate
system and temporal gridded resolution of the datasets to make implmenting the analysis and solving the
analysis more consistently more accountable. The feature engineering phase identified common
acknowlegments that were transformed into metrics of conveyance/flow/migration vectors; travel-time,
energy-use/time, carbon emissions, population weighted access score/measure. We considered how these
downstream metrics may rely on supply chain system to be sufficiently sensitive to physical geography and
socio-economic context. The factor analysis phase, resulted in a geospatially-aware data store & warehouse
that will continue to be updated and available for Al engines to utilize can be found through locations.
The reliance on open-source technolofy, ie. PostGIS and GeoPandas afford us applications that are
inexpensive and replicable in other developing, or underfunded regions. Assimilating use heterogeneous
data to a common, cohesive, spatially rich location, and validated.

3.2 Al-Driven Demand Forecasting and Resource Allocation Models

The next step in our methodology is to employ Artificial Intelligence (AI) methods for demand prediction
and resource allocation after data preprocessing. Machine learning (ML) models leverage historical data
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for demand prediction of essential commodities like food, water, energy, and healthcare supplies. For this
purpose we use supervised learning techniques such as Random Forest, Gradient Boosting, and Long
Short-Term Memory (LSTM) neural networks because they have direct methodologies for segmenting
time-series and sequential data for predictive analytics. Demand estimation models will use historically
observed seasonal predictive behavior and recent local climate conditions, demographic Movements and
past consumption patterns. For example, the LSTM models have been shown to be able to pick up
significantly long-term dependency in the data for predicting demand, such as increased demand for water
during dry seasons, as well as increases in demand for medical supplies when there are disease outbreaks
and increased illness in the population. An ensemble model will also ensure that the predicted estimates
are robust in the face of sparse data, which is a real challenge in several of the regions of interest.

Once demand is predicted, Al-enabled resource allocation models are selected and powered to determine
optimal goods and services allocation. In doing so, resource allocation models draw upon optimization
algorithms, such as Linear Programming (LP), Integer Programming (IP), and Metaheuristic algorithms
(e.g., Genetic Algorithm and Particle Swarm Optimization), to help solve complex, multi-objective
problems. In the optimization model, constraints include vehicle capacity limits, fuel availability, road
conditions, and storage constraints. Geo-spatial features are embedded directly in the Al models to
prioritize deliveries to locations of high need or limited accessibility. By geo-enabling the models, regional
delivery plans can be developed that minimize fuel use while also supporting situations with
environmental degradation. Also, dynamic Al models can reallocate resources in real-time, based on new
information and updated data (road closures, weather notifications, or unexpected demand), creating an
adaptable, resilient supply chain. At this stage, outputs will included detailed demand maps, optimal
inventory levels, or delivery schedules that are both logistics-minded as well as sensitive to sustainability
dimensions. Al's capacity to contextualize expectations allows for cost-efficient, socially responsible and
environmentally sustainable resource allocation strategies designed to minimize challenges faced by
unique resource-constrained inequalities in resource distribution.

3.3 Geo-Spatially Optimized Routing and Distribution Network Design

With optimal resource allocations and forecasted demand established, the second methodological
emphasis is on the creation of effective and sustainable distribution networks through geo-spatial
optimization methods. The process starts by mapping all possible points of distribution—warehouses,
depots, health centers, and retail outlets—overlaid with road maps, transportation systems, and
environmental hazard areas through GIS. Routing optimization is attained via complex graph theory
techniques such as Dijkstra's, A*, and Ant Colony Optimization (ACO) customized to multi-objective
metrics. These range from minimizing travel time, fuel consumption, exposure to environmental hazards,
to overall transport costs. Specific emphasis is laid on vehicle capacity, road quality, traffic mobility, and
each route's carbon footprint. The new addition to the approach is the direct inclusion of environmental
and terrain constraints in routing decisions. Flood maps in real time or areas prone to landslides, for
example, are introduced through layers in GIS to real-time re-route vehicles. The addition of this feature
provides robustness to the system and enables uninterrupted delivery of services even during negative
incidents. Drone and cycle-based delivery systems are also integrated where the physical terrain or traffic
within the urban region restricts the movement of motor vehicles. These algorithms are then utilized to
determine the optimal location and capacity of intermediate facilities, like mobile distribution warehouses
or mini-warehouses. Optimization of facility location is achieved through methods like the P-median and
K-means clustering algorithms that minimize the average distance to end-users and maximize coverage in
uncovered areas. In addition, a sustainability layer is implemented in the network design with
environmental scoring. Each facility and route is graded according to emissions, biodiversity disturbance,
and noise pollution, and the planner can choose the most environmentally friendly configuration. This
geospatially conscious distribution network reduces delivery cost and time and encourages environmental
preservation as well as fair access. Simulations are run to verify the robustness of the network and routing
setup under multiple disruption scenarios, including fuel shortages, road failures, and natural disasters.
The end result is a resilient, efficient, and sustainable logistics network capable of serving resource-
constrained environments in a responsive and cost-effective way.
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3.4 Decision Support System (DSS) Development and Real-Time Monitoring Interface

The last methodological aspect is the creation of a Decision Support System (DSS) incorporating all the
above aspects—data, forecasting, allocation, and routing—into one integrated, easy-to-use platform. The
DSS is the interface through which policymakers, supply chain managers, and field operators get to make
information-driven decisions in real-time. The DSS architecture has three layers: the analytics engine, the
data layer, and the visualization/dashboard interface. The data layer receives current updated data from
remote sensing feeds, local monitoring stations, and crowd-sourced data through mobile applications.
This layer makes the system run with near-real-time situational awareness.

The analytics engine is powered by Al-powered models and optimization algorithms developed in earlier
stages. It continuously works through new data to update predictions, recalculate best routes, and
redistribute resources as needed. Algorithmic anomaly detection alerts users of differences from
forecasted circumstances—such as unexpected spikes in demand, route congestion, or warehouse outage.
The dashboard's interface presents this information as interactive charts, maps, and alerts. Users can
visualize routes of delivery, view the availability of resources by regions, run disaster response scenarios,
and adjust strategy parameters like sustainability goals or prioritization criteria. Role-based access permits
different stakeholders—like transport companies, NGOs, and government agencies—to access tailored
functionalities. One of the striking innovations is incorporating a real-time feedback mechanism, allowing
field agents to give instant feedback on on-the-ground disturbances, delivery confirmations, or resource
shortages via mobile applications or IoT sensors.This information is fed back into the DSS to enhance
the system's knowledge of ground conditions and aid adaptive decision-making.

The DSS is designed using open-source frameworks such as Python (Django, Flask), GIS software (Leaflet,
OpenlLayers), and dashboard libraries (Plotly, Dash, or Power BI). Focus is given on low-bandwidth
support and offline capability to enable deployment in rural or under-connected locations.

Finally, the DSS facilitates sustainable decision-making, dynamic adaptation, and continuous learning in
complex, resource-scarce supply chain settings. It equips stakeholders to weigh efficiency, equity, and
environmental concerns while addressing uncertainty and disruption.

4.RESULT

4.1 Improved Demand Forecast Accuracy and Resource Efficiency

The deployment of Al-based forecasting models yielded spectacular improvements in the accuracy of
demand forecasts for commodities like food, water, and pharmaceuticals. In a pilot study for a semi-arid,
resource-scarce western Indian district, past consumption behavior, climatological conditions, and socio-
economic conditions were fed into an LSTM-based algorithm. It generated an average absolute percentage
error (MAPE) of 7.3%, compared to over 18% using traditional exponential smoothing or linear
regression models. The demand forecasting solution exhibited a very strong ability to forecast seasonal
trends in demand as well as unseasonal spikes occurring as a result of weather events like heatwaves or
floods. In a given scenario, the solution correctly predicted a 35% surge in drinking water demand during
a two-week heatwave, allowing for advance logistics planning and reallocation of stock. This saw no

shortages reported in critical areas.
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Resource allocation models constructed atop these forecasts showed a 22% jump in efficiency overall,
where efficiency was in terms of delivery coverage per unit of fuel. By adjusting inventory distribution
dynamically according to predicted need, the system reduced overstocking at low-demand locations and
under-supply at high-demand areas. This aspect of optimization also yielded an operational cost decrease
of 17%, since fewer emergency shipments were needed.

Most crucially, however, single-handedly, the system's real-time ability to reallocate deliveries in terms of
updated field data and weather alerts significantly increased adaptability and minimized wastage.
Resource-constrained environments tend to suffer from high variability and unpredictability, thus making
this adaptive capacity decisive in guaranteeing the continuity of supply in times of disruption.

Table 2: Comparative Forecasting and Operational Efficiency Metrics

Traditional o
Aspect Methods Al-Based System Improvement (%)
Mean Absolute Percentage Error | ~. o o
(MAPE) 18% 7.3% 59.4% |
Elzlll)very Efficiency (coverage/unit Baseline 2% increase +22%
Emergency Shipments Required | Frequent Reduced by 17% 17% |
Prediction Accuracy for L Correctly  predicted | Significantly
Unseasonal Demand oW 35% spike improved

4.2 Sustainable Routing and Carbon Footprint Reduction

With the introduction of geo-spatial intelligence and routing algorithms into the supply chain system
came improvements in sustainability as well as delivery performance. Incorporating environment risk
layers, including flood zones, landslide-prone areas and low-emission corridors, the routing engine
selected the safest, shortest, and most fuel-efficient. Results from comparative simulation trials showcased
that Al-assisted routing reduced both the average delivery distances by 14% and the delivery time by 19%
as opposed to the static route planning approaches. Further, carbon emissions generated due to logistics
operations were lowered by 26%, a percentage validated through emission calculators that consider
vehicle type and route elevation profiles. One significant instance of the system in action occurred when
emergency food deliveries had to be rerouted during flooding in eastern Nepal. The traditional routes
were inaccessible, but the system very quickly generated alternatives by overlaying up-to-date satellite
imagery and road condition data. This re-routing enabled the delivery of 6 tons of aid materials to over
3,500 families undeterred with no additional cost or time being incurred on transportation.

The multi-objective optimization of the model required that environmental, economic, and service-level
factors all be considered simultaneously. Deliveries were thus not only faster and cheaper but also greener,
environmentally conscious. These results indicate that the system can help create greener and smarter
logistics solutions, even within infrastructure-deficient environments.

4.3 Enhanced Accessibility and Equity in Distribution Networks

Access is a major yardstick of success for sustainable supply chain optimization, especially in resource-
constrained areas. Through geospatial analysis and clustering algorithms, underserved populations- those
living in remote, conflict-prone, or climate-vulnerable areas- were identified and given priority for logistics
interventions. Facility location optimizations proceeded to identify the best sites for temporary
warehouses and drone delivery hubs through P-median and K-means clustering techniques. This reduced
the average distance between supply points and remote settlements by 28%, while the number of
communities served within a 10 km radius increased by 31%. An example of one such intervention is
provided by the pilot in northern Kenya, where the newly optimized supply network provided access to
essential supplies within a 6-hour delivery window for 87% of the population (previously 62%). This was
especially significant for areas that were previously reliant on sporadic shipments or donor shipments.
Real-time visualization capabilities within the DSS pinpointed localized shortages or bottlenecks for
planners to address quickly. Interventions involved sending mobile warehouses and activating last-mile
delivery units, like motorcycle and drone fleets. A population of 2,000 displaced individuals in a desert
area had reliable food and water shipments for a four-week period without needing to redesign routes or
manually reschedule.
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The growth in fair access showed the capability of Al and geospatial technologies to not only enhance
operational efficiency but also promote social justice. Distribution networks were not only created for
efficiency but with fairness and need-based prioritization.

Table 3: Equity, Sustainability, and Decision-Making Outcomes

Parameter Pre-Al Baseline Post-Al Deployment Impact

Average Supply Distance to | 1 =301 0 | Reduced by 28% Down to ~21.6 km
Remote Areas

Access to Essential Supplies o i o ) o

(within 6 hrs) 62% of population | 87% of population +25%

CO.Z . Emissions  from Basel} ne  (Static Reduced by 26% Greener Operations
Logistics Routing)

Stakeholder Satisfaction L 75% reported | High Decision
with DSS ow confidence boost Empowerment

4.4 Stakeholder Empowerment and Real-Time Decision-Making

The implementation of the integrated Decision Support System (DSS) tremendously improved supply
chain operator and policy stakeholder ability to make timely, data-driven decisions. The DSS integrated
real-time data streams—weather reports, satellite images, demand signals, and vehicle GPS logs—into an
integrated dashboard that facilitated dynamic monitoring, alerting, and scenario simulation.

In a cyclone-risk district of Bangladesh, planners employed the DSS in field trials 48 hours prior to landfall
to simulate different scenarios. The system generated four different logistics backup plans depending
upon different levels of road and facility impairment. The most robust scenario was selected, and supplies
were pre-positioned in high and accessible areas. This pre-emptive step avoided delay and saved an
estimated 8,000 affected people from food deprivation. The interactive dashboard allowed local NGOs,
regional governments, and contracting logistics firms to see tailored layers of data depending on their
role. Stockout alerts, delivery delays, or transport risk alerts were sent through mobile SMS and in-app
notification to enable instant response. In addition, the community-based reporting feature, where field
agents and residents could provide real-time updates using mobile applications, improved situational
awareness. Blocked roads, theft, or unexpected demand surges were reported immediately and caused
system re-calculations, reflecting high responsiveness. Stakeholder feedback highlighted the
empowerment resulting from having predictive insights available, automated planning recommendations,
and real-time situational monitoring. More than 75% of users interviewed after deployment reported that
the DSS enhanced their confidence and capability to make effective logistics decisions during crisis events.
The system turned out to be a priceless resource for decentralized, open, and participatory supply chain
management, raising the bar for logistics coordination within areas plagued by chronic uncertainty and
infrastructure limitations.
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Figure 5: Performance Improvements Across Key Result Areas in Sustainable Supply Chain
Optimization
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5. CONCLUSION

Geo-spatial analytics coupled with Al-based data science techniques offers an innovative way to engineer
resilient supply chain systems, especially in resource-limited settings. This work proved that using machine
learning algorithms like LSTM for demand prediction and spatial intelligence through GIS-based tools
can make supply chains drastically more resilient, efficient, and equitable. Pilot project results and
simulation show dramatic improvements in predictive accuracy, resource allocation, and logistics
optimization. Forecasting accuracy was greatly enhanced, with MAPE cut from 18% to 7.3%, while
resource utilization improved by 22% using dynamic allocation models. In addition, sustainable routing
models resulted in a 26% decrease in emissions and accelerated delivery time by 19%, underscoring the
environmental and operational potential of such technologies.

One of the main strengths of the suggested methodology is its flexibility. In-time data inputs, such as
weather reports, population flows, and local situation reports, are continuously incorporated in the
decision process through a high-capacity Decision Support System (DSS). This facilitates anticipatory
interventions, especially in disaster-hazard zones or infrastructure poor areas, to ensure supply continuity
and timely delivery. The focus on balanced access, reflected in the increase of service coverage in under-
served areas by more than 30%, reflects the social purpose of such innovations. In contrast to
conventional systems, the Al and geo-spatial integrated system places greater stress on sustainability,
equity, and timeliness, which makes it particularly well-suited for implementation in climate-vulnerable,
conflictridden, or infrastructure-constrained areas.

Overall, the intersection of Al, machine learning, and geo-spatial analytics provides a compelling, scalable,
and sustainable answer to some of supply chain management's historic challenges. Scaling these models
on open-source platforms, further interoperability, and responsible and transparent Al practices should
be the subject of future efforts toward adoption globally.
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