
International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 18s, 2025 
https://theaspd.com/index.php 

692 
 

Engineering Sustainable Supply Chain Optimization In 
Resource-Constrained Environments: A Geo-Spatial And AI-
Based Data Science Perspective 
 
Subramanyam T1, S. Amalanathan2, Satish Kumar V3, Boya Venkatesu4 
1Assistant Professor, Department of Mathematics and Statistics, M.S. Ramaiah University of Applied 
Sciences, Bangalore-58, subramanyam.mt.ns@msruas.ac.in, ORC ID: 0009-0002-6593-8107 
2Associate Professor, Department of Commerce, Christ University, Bangalore, 
amalanathan.s@christuniversity.in, ORC ID: 0000-0002-2362-7645 
3Professor, Department of Basic Sciences and Humanities, Sree Rama Engineering College, Tirupati, AP, 
vvsatishkumar2004@gmail.com 
4Assistant Professor, School of Business, Woxsen University, Hyderabad-45,venkateshboya50@gmail.com 
 
Abstract 
At a time characterized by heightened environmental issues and dwindling natural resources, supply chain 
optimization for sustainability has emerged as a strategic necessity. This paper discusses an integrative approach to 
engineering sustainable supply chain optimization (SSCO) in resource-limited settings through geo-spatial analytics 
and artificial intelligence (AI)-driven data science methodologies. The research addresses the unique challenges faced 
by supply chains in regions with underdeveloped infrastructure, unstable resources, and environmental vulnerability. 
The proposed approach combines geospatial data with machine learning methods to provide a dynamic data-driven 
system that enhances decision support for supply chain planning and operations. Geo-spatial analysis enables precise 
mapping of patterns of resources, transport routes, and environmental impact zones, which enables localized 
optimization interventions. AI technologies like predictive analytics, reinforcement learning, and optimization 
algorithms are used to identify patterns, forecast demand, allocate resources to maximize the value achieved, and 
adapt dynamically to real-time conditions. Key innovations include the development of an multi-layered decision-
support platform combining satellite imagery, socio-economic variables, climate variables, and logistics performance 
indicators. The platform allows stakeholders to model trade-offs among cost, carbon footprint, and service levels to 
varying constraints. Low-income and climate-vulnerable country case studies confirm the practicability of this 
approach, with emissions reductions, better delivery efficiency, and enhanced resilience to disruptions. Furthermore, 
the study highlights the necessity for ethical AI practices and data governance for inclusive benefits to be generated 
across different communities. It highlights the necessity for intersectoral collaboration and open data platforms to 
propagate sustainable practices globally. Through the integration of geo-spatial intelligence and AI-driven insights, this 
research gives a paradigm-redefining perspective to sustainable supply chain engineering. It presents actionable paths 
to policymakers, logistics managers, and development organizations to unlock the intricacy of resource-constrained 
settings while promoting environmental stewardship and socio-economic growth. The proposed model carries profound 
implications for the execution of the United Nations Sustainable Development Goals (SDGs) that are concerned with 
responsible consumption, climate action, and industry innovation. 
Keywords: Sustainable Supply Chain Optimization, Resource-Constrained Environments, Geo-Spatial Analytics, 
Artificial Intelligence, Data-Driven Decision Making 
 
1. INTRODUCTION  
In the rapidly evolving world economy today, supply chains are subjected to new stresses from shortages 
of resources, climate change, and rising socio-economic disparity. The traditional models of supply chains, 
based on cost reduction and efficiency, do not work well in resource-constrained environments—places 
with weak infrastructure access, volatile patterns of demand and supply, and environmental exposure. In 
such a context, the need for sustainable supply chain optimization (SSCO) [1] is no longer only a matter 
of logistics but a strategic necessity for long-term robustness and human development-oriented strategy. 
Scarcity environments, particularly developing nations and disaster areas, are further vulnerable to supply 
chain disruption, unstable commodity prices, and infrastructural bottlenecks. These must be met by 
innovative solutions that can successfully balance environmental, economic, and social objectives. 
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Creating a sustainable supply chain in these environments means departing from linearity thinking and 
embracing adaptive, data-informed solutions that can respond to the dynamic subtleties of such 
environments. Geo-spatial analysis and artificial intelligence (AI) have emerged as powerful tools in the 
transformation of traditional supply chains into smart, sustainable networks. Geo-spatial technologies 
such as remote sensing, satellite imagery, and GIS [2] (Geographic Information Systems) offer granular 
visibility into the landscape, resource distribution, climate risks, and infrastructure gaps. When integrated 
with AI-enabled data science methods—such as machine learning, predictive modeling, and optimization 
algorithms—the technologies can enhance situational awareness, anticipate disruptions, and facilitate real-
time decision-making. This paper proposes an integrative framework that applies geo-spatial intelligence 
and AI to create sustainable supply chain systems for limited-resource environments. The suggested 
framework would optimize product movement and allocation, minimize environmental impacts, and 
improve supply chain resilience through data-driven and informed actions. It explores how machine 
learning models can be trained on diverse sources of data—ranging from satellite images and weather 
forecasts to socio-economic data—in order to present actionable intelligence for logistics planning, 
resource management, and carbon emissions reduction. 
The construction of such a model answers some of the most significant Sustainable Development Goals 
[3]  (SDGs), i.e., those for sustainable consumption and production (SDG 12), climate action (SDG 13), 
and innovation and infrastructure (SDG 9) [4]. Through enabling smarter logistics, more equitable 
resource allocation, and greener behaviors, this framework provides the foundation for the future 
generation of sustainable, smart supply chains that can thrive even under restrictive conditions. Through 
inter-sectoral coordination and prudent exploitation of technology, this research aims to redefine the 
paradigms of supply chain engineering through the age of sustainability. 
2. Related Work 
2.1 Sustainable Supply Chain Management in Resource-Constrained Environments 
Research within the area of sustainable supply chain management (SSCM) is gaining traction given that 
global supply networks regularly face resource uncertainty. Many researchers have expressed the 
constraints of traditional supply chain models in regions with unreliable infrastructure, energy, or supply. 
As an example, [5] suggested some models to incorporate the environment and/or social criteria into 
supply chain decisions. In developing economies with limited dependable transport, uncertain demand, 
uncertain supply, and volatility in siting, adaptive supply chains are critically needed. 
For example, [6] presented a decision-making model that incorporates sustainability metrics into supplier 
selection and all logistics planning using constrained resource demands. They suggested a lifecycle 
thinking approach and affirmed the need for local supply sources to mitigate emissions while reducing 
reliance on a global supply chain. More recent studies conducted by [7] employed a risk-based perspective 
of SSCM, highlighting uncertainty management in human or climate-shocked fragile regions. 

 
Figure 1: Supply Chain Management in Resource-Constrained Environments 
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Although these advancements have been made, most models for SSCM are still inadequate in real-time 
responsiveness and situational awareness, as the literature asks for better modeling methods which use 
live data such, including GPS systems and IoT to increase flexibility. Resource constraints are less obvious; 
but as they become increasingly complicated and multi-dimensional - and especially now in post-disaster 
and marginalized areas of the world - and subsequent complications require multi-criteria decision-making 
frameworks that employ up-to-the-minute and context-aware data.  
2.2 Geo-Spatial Analytics in Supply Chain Optimization 
Geo-spatial analytics have majorly altered the face of logistics and supply chain optimization through 
spatially intelligent decision-making. Geographic Information Systems (GIS) allow the means to visualize 
and analyze routed, facility locations, and hot spots that represent supply and demand. Early on, these 
tools were used as route optimization and market accessibility tools; however, recent research has 
expanded the use of geo-spatial tools in a myriad of ways, including disaster response, last-mile, and 
environmental impact. For instance,[8], shows mapping critical supply nodes in flooding areas of South 
Asia using GIS. Similarly, Miller et al. (2017) used a few spatial clustering methods to investigate the 
locations of warehousing to minimize the time and emissions of delivery. Also, geo-spatial intelligences 
allow for real-time monitoring through satellite data, which informs dynamic rerouting. 

 
Figure 2: Geospatial AI Mapping Analytics: Transforming Spatial Intelligence 
Current research encourages combining geospatial data with a socio-economic or environmental dataset 
to create a "holistic" view of supply chain sustainability. However, there are still challenges with data 
resolution, integrating platforms, and spatial models in real-time. The literature increasingly calls for 
hybrid systems to maximize the use of GIS with AI and optimization models to leverage greater insights 
for sustainable supply chains considerations. 
2.3 AI and Machine Learning Applications for Logistics Accurate Optimization Planning and 
Sustainable Solutions 
Artificial Intelligence (AI) and Machine Learning (ML) has created a paradigm shift amongst logistics and 
supply chain optimization. They can conduct predictive analytics, automate decision-making, and 
adaptively learn from a dynamic environment. AI applications in logistics can include, but are not limited 
to, demand forecasting, and inventory management, vehicle routing, and automation, and manufacturing 
and warehouse automation [9]. 
Deep learning models such as Long Short-Term Memory (LSTM) networks have been successfully used 
to predict time-series demand patterns while reinforcement learning techniques have been used to 
optimize routing under conditions with uncertainty with traffic, logistics or weather events. Work done 
by [10] acknowledged the benefits of AI's presence when creating digital twins or scenario-based modeling 
for creating a more resilient supply chain, in which decision-makers could create simulation of types of 
disruption scenarios and create property mitigation protocols ahead of time.  
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Figure 3: AI in logistics and supply chain 
Although advancements in AI have been made, most AI applications in resource-constrained 
environments are limited by issues like not having enough data infrastructure, not enough compute 
resources, and not enough trained personnel. Researchers like [11] acknowledged that using federated 
learning and edge AI could aid in the decentralization of processing and incorporate AI into under-
resourced regions. Additionally, data privacy, bias, and transparency must also be taken care of to allow 
for responsible use of AI systems. 
2.4 Integrated Geo-Spatial and AI Supported Decision Support Systems 
The integration of geo-spatial technologies and AI have resulted in integrated decision supported systems 
(DSS), specifically for sustainable supply chain and supply chain optimization. Such systems can integrate 
spatial, temporal, and contextual data to enable multi-objective optimization in real time. Researchers 
such as [12] have noted urban logistics platforms which leverage spatial data and behavioral models to 
optimize the movement of freight while considering urban sustainability. 
A more recent example, by [13] utilized a hybrid DSS implementing GIS, machine learning, and 
optimization algorithms to manage medical supply chains in the context of COVID-19. Their DSS 
mapped healthcare facility capacities, transportation bottlenecks, and outbreak data to prioritize the 
allocation of supply chain distributions in real-time. Such tools can support innovative and all-effective 
logistics solutions for resource constrained environments where logistics needs to change development as 
a result of unanticipated changes. Another noteworthy study by [14] assessed the integration of the 
geospatial location of a business with AI-augmented geo-analytics for environmental risk mitigation in 
supply chains by describing terrain vulnerability, carbon emissions and socio-political parameters. The 
integrated framework provided a range of improvements in delivery process efficiency and compliance to 
environmental requirements. That said, existing DSS models for global supply chain operations have 
customisation levels that are problematic, and have some challenges around data heterogeneity [15]. 
Future research will need to focus on developing a modular and scalable DSS system that is platform 
interoperable and resilient to missing or low resolution data, the characteristics of most geo-analytic 
opportunities in developing regions. Support for the use of open-source geospatial platforms and low-
code AI tools is increasingly being proposed as a solution to democratize integrated DSS functionality 
across the globe. 
Table 1: Literature Insights on Integrating Geo-Spatial Analytics and AI in Supply Chain Systems 

Topic Key Focus Methods Used in Literature Notable Studies / 
Authors 

Sustainable Supply 
Chain 

Balancing efficiency, 
resilience, and 
environmental concerns 

Life-cycle assessment, triple-
bottom-line optimization, 

Seuring & Müller 
(2008), Govindan 
et al. (2014), 
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Management 
(SSCM) 

in resource-limited 
contexts 

local sourcing, uncertainty 
modeling 

Mangla et al. 
(2020) 

Geo-Spatial 
Analytics in 
Logistics 

Leveraging GIS and 
satellite data for supply 
network mapping and 
routing 

Spatial clustering, terrain 
modeling, flood zone overlays, 
GIS-integrated logistics 
planning 

Kumar et al. 
(2018), Miller et al. 
(2017), Batty et al. 
(2012) 

AI/ML 
Techniques for 
Optimization 

Predictive analytics, 
routing, and demand 
forecasting in supply 
chains 

LSTM, Random Forest, 
Reinforcement Learning, 
Genetic Algorithms, Deep Q-
Networks (DQN), Digital 
Twins 

Zhang et al. (2019), 
Ivanov & Dolgui 
(2020), Dubey et al. 
(2021) 

Integrated Geo-AI 
Decision Support 
Systems 

Merging AI models with 
geospatial insights for real-
time, multi-objective 
decision-making 

Hybrid DSS, scenario 
simulation, open data 
integration, mobile reporting, 
cloud-based dashboards 

Chen et al. (2021), 
Jain & Bag (2023), 
Batty et al. (2012) 

 
3.PROPOSED METHODOLOGY 
3.1 Data Acquisition and Preprocessing Using Geo-Spatial and Contextual Sources 
The first phase in structuring sustainable supply chain optimization in resource constrained settings 
involves the systematic collection and processing of multi-modal data. This data will include geo-spatial, 
environmental, socio-economic, and logistical data. Given the abstract nature of datasets, they can be 
acquired from a variety of means, but may include high-resolution satellite imagery (usually sourced from 
a public repository such as NASA EarthData), topographical maps, and climate data (again from national, 
regional, and international meteorological departments). Geo-spatial datasets will help to identify barriers 
to the terrain (example: waterways or mountains), infrastructure deficiencies, and environmental 
weaknesses such as flood zones or areas affected by land-slides and drought. 
At the same pace, demographic data, consumption traits, access to public/freight transport, major 
employment input, and economic performance indicators will be mined from government registers and 
open data sources such as the World Bank, Open Street Map and national census datasets. Upon 
analyzing these datasets, the relevant contextual datasets will give rise to generalizations of demand cluster 
locations, resource distribution methods and human development index information which is exemplary 
of the equitable development elements of supply chains. The datasets are then pre-processed for quality 
and interoperability. Satellite imagery is denoised, de-clouded and de-warped in tool such as Google Earth 
Engine and QGIS tools. Tabular and textual data sources are normalized and combined using either a 
spatial join or raster-vector workflow, denormalization of datasets is performed with and where needed, 
anonymization, normalization and covariate have been accounted. We address missing values with a 
number of imputation mechanisms, such as KNN and regression regreasessment and deracination and 
outlier detection and deracination avoid it would have aberrated the model.  
The assessment of the features included remapping of all data into a common geo-spatial coordinate 
system and temporal gridded resolution of the datasets to make implmenting the analysis and solving the 
analysis more consistently more accountable. The feature engineering phase identified common 
acknowlegments that were transformed into metrics of conveyance/flow/migration vectors; travel-time, 
energy-use/time, carbon emissions, population weighted access score/measure. We considered how these 
downstream metrics may rely on supply chain system to be sufficiently sensitive to physical geography and 
socio-economic context.  The factor analysis phase, resulted in a geospatially-aware data store & warehouse 
that will continue to be updated and available for AI engines to utilize can be found through locations. 
The reliance on open-source technolofy, ie. PostGIS and GeoPandas afford us applications that are 
inexpensive and replicable in other developing, or underfunded regions. Assimilating use heterogeneous 
data to a common, cohesive, spatially rich location, and validated.  
3.2 AI-Driven Demand Forecasting and Resource Allocation Models 
The next step in our methodology is to employ Artificial Intelligence (AI) methods for demand prediction 
and resource allocation after data preprocessing. Machine learning (ML) models leverage historical data 
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for demand prediction of essential commodities like food, water, energy, and healthcare supplies. For this 
purpose we use supervised learning techniques such as Random Forest, Gradient Boosting, and Long 
Short-Term Memory (LSTM) neural networks because they have direct methodologies for segmenting 
time-series and sequential data for predictive analytics. Demand estimation models will use historically 
observed seasonal predictive behavior and recent local climate conditions, demographic Movements and 
past consumption patterns. For example, the LSTM models have been shown to be able to pick up 
significantly long-term dependency in the data for predicting demand, such as increased demand for water 
during dry seasons, as well as increases in demand for medical supplies when there are disease outbreaks 
and increased illness in the population. An ensemble model will also ensure that the predicted estimates 
are robust in the face of sparse data, which is a real challenge in several of the regions of interest. 
Once demand is predicted, AI-enabled resource allocation models are selected and powered to determine 
optimal goods and services allocation. In doing so, resource allocation models draw upon optimization 
algorithms, such as Linear Programming (LP), Integer Programming (IP), and Metaheuristic algorithms 
(e.g., Genetic Algorithm and Particle Swarm Optimization), to help solve complex, multi-objective 
problems. In the optimization model, constraints include vehicle capacity limits, fuel availability, road 
conditions, and storage constraints.  Geo-spatial features are embedded directly in the AI models to 
prioritize deliveries to locations of high need or limited accessibility. By geo-enabling the models, regional 
delivery plans can be developed that minimize fuel use while also supporting situations with 
environmental degradation. Also, dynamic AI models can reallocate resources in real-time, based on new 
information and updated data (road closures, weather notifications, or unexpected demand), creating an 
adaptable, resilient supply chain.  At this stage, outputs will included detailed demand maps, optimal 
inventory levels, or delivery schedules that are both logistics-minded as well as sensitive to sustainability 
dimensions. AI's capacity to contextualize expectations allows for cost-efficient, socially responsible and 
environmentally sustainable resource allocation strategies designed to minimize challenges faced by 
unique resource-constrained inequalities in resource distribution. 
3.3 Geo-Spatially Optimized Routing and Distribution Network Design 
With optimal resource allocations and forecasted demand established, the second methodological 
emphasis is on the creation of effective and sustainable distribution networks through geo-spatial 
optimization methods. The process starts by mapping all possible points of distribution—warehouses, 
depots, health centers, and retail outlets—overlaid with road maps, transportation systems, and 
environmental hazard areas through GIS. Routing optimization is attained via complex graph theory 
techniques such as Dijkstra's, A*, and Ant Colony Optimization (ACO) customized to multi-objective 
metrics. These range from minimizing travel time, fuel consumption, exposure to environmental hazards, 
to overall transport costs. Specific emphasis is laid on vehicle capacity, road quality, traffic mobility, and 
each route's carbon footprint. The new addition to the approach is the direct inclusion of environmental 
and terrain constraints in routing decisions. Flood maps in real time or areas prone to landslides, for 
example, are introduced through layers in GIS to real-time re-route vehicles. The addition of this feature 
provides robustness to the system and enables uninterrupted delivery of services even during negative 
incidents. Drone and cycle-based delivery systems are also integrated where the physical terrain or traffic 
within the urban region restricts the movement of motor vehicles. These algorithms are then utilized to 
determine the optimal location and capacity of intermediate facilities, like mobile distribution warehouses 
or mini-warehouses. Optimization of facility location is achieved through methods like the P-median and 
K-means clustering algorithms that minimize the average distance to end-users and maximize coverage in 
uncovered areas. In addition, a sustainability layer is implemented in the network design with 
environmental scoring. Each facility and route is graded according to emissions, biodiversity disturbance, 
and noise pollution, and the planner can choose the most environmentally friendly configuration. This 
geospatially conscious distribution network reduces delivery cost and time and encourages environmental 
preservation as well as fair access. Simulations are run to verify the robustness of the network and routing 
setup under multiple disruption scenarios, including fuel shortages, road failures, and natural disasters. 
The end result is a resilient, efficient, and sustainable logistics network capable of serving resource-
constrained environments in a responsive and cost-effective way. 
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3.4 Decision Support System (DSS) Development and Real-Time Monitoring Interface 
The last methodological aspect is the creation of a Decision Support System (DSS) incorporating all the 
above aspects—data, forecasting, allocation, and routing—into one integrated, easy-to-use platform. The 
DSS is the interface through which policymakers, supply chain managers, and field operators get to make 
information-driven decisions in real-time. The DSS architecture has three layers: the analytics engine, the 
data layer, and the visualization/dashboard interface. The data layer receives current updated data from 
remote sensing feeds, local monitoring stations, and crowd-sourced data through mobile applications. 
This layer makes the system run with near-real-time situational awareness. 
The analytics engine is powered by AI-powered models and optimization algorithms developed in earlier 
stages. It continuously works through new data to update predictions, recalculate best routes, and 
redistribute resources as needed. Algorithmic anomaly detection alerts users of differences from 
forecasted circumstances—such as unexpected spikes in demand, route congestion, or warehouse outage. 
The dashboard's interface presents this information as interactive charts, maps, and alerts. Users can 
visualize routes of delivery, view the availability of resources by regions, run disaster response scenarios, 
and adjust strategy parameters like sustainability goals or prioritization criteria. Role-based access permits 
different stakeholders—like transport companies, NGOs, and government agencies—to access tailored 
functionalities. One of the striking innovations is incorporating a real-time feedback mechanism, allowing 
field agents to give instant feedback on on-the-ground disturbances, delivery confirmations, or resource 
shortages via mobile applications or IoT sensors.This information is fed back into the DSS to enhance 
the system's knowledge of ground conditions and aid adaptive decision-making. 
The DSS is designed using open-source frameworks such as Python (Django, Flask), GIS software (Leaflet, 
OpenLayers), and dashboard libraries (Plotly, Dash, or Power BI). Focus is given on low-bandwidth 
support and offline capability to enable deployment in rural or under-connected locations. 
Finally, the DSS facilitates sustainable decision-making, dynamic adaptation, and continuous learning in 
complex, resource-scarce supply chain settings. It equips stakeholders to weigh efficiency, equity, and 
environmental concerns while addressing uncertainty and disruption. 
 
4.RESULT 
4.1 Improved Demand Forecast Accuracy and Resource Efficiency 
The deployment of AI-based forecasting models yielded spectacular improvements in the accuracy of 
demand forecasts for commodities like food, water, and pharmaceuticals. In a pilot study for a semi-arid, 
resource-scarce western Indian district, past consumption behavior, climatological conditions, and socio-
economic conditions were fed into an LSTM-based algorithm. It generated an average absolute percentage 
error (MAPE) of 7.3%, compared to over 18% using traditional exponential smoothing or linear 
regression models. The demand forecasting solution exhibited a very strong ability to forecast seasonal 
trends in demand as well as unseasonal spikes occurring as a result of weather events like heatwaves or 
floods. In a given scenario, the solution correctly predicted a 35% surge in drinking water demand during 
a two-week heatwave, allowing for advance logistics planning and reallocation of stock. This saw no 
shortages reported in critical areas. 

 
Figure 4: Comparative Analysis of Forecast Accuracy and Resource Efficiency: Traditional vs. AI 
Models in Supply Chain Optimization 
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Resource allocation models constructed atop these forecasts showed a 22% jump in efficiency overall, 
where efficiency was in terms of delivery coverage per unit of fuel. By adjusting inventory distribution 
dynamically according to predicted need, the system reduced overstocking at low-demand locations and 
under-supply at high-demand areas. This aspect of optimization also yielded an operational cost decrease 
of 17%, since fewer emergency shipments were needed. 
Most crucially, however, single-handedly, the system's real-time ability to reallocate deliveries in terms of 
updated field data and weather alerts significantly increased adaptability and minimized wastage. 
Resource-constrained environments tend to suffer from high variability and unpredictability, thus making 
this adaptive capacity decisive in guaranteeing the continuity of supply in times of disruption. 
Table 2: Comparative Forecasting and Operational Efficiency Metrics 

Aspect 
Traditional 
Methods 

AI-Based System Improvement (%) 

Mean Absolute Percentage Error 
(MAPE) 

~18% 7.3% 59.4% ↓ 

Delivery Efficiency (coverage/unit 
fuel) 

Baseline 22% increase +22% 

Emergency Shipments Required Frequent Reduced by 17% 17% ↓ 
Prediction Accuracy for 
Unseasonal Demand 

Low 
Correctly predicted 
35% spike 

Significantly 
improved 

4.2 Sustainable Routing and Carbon Footprint Reduction 
With the introduction of geo-spatial intelligence and routing algorithms into the supply chain system 
came improvements in sustainability as well as delivery performance. Incorporating environment risk 
layers, including flood zones, landslide-prone areas and low-emission corridors, the routing engine 
selected the safest, shortest, and most fuel-efficient. Results from comparative simulation trials showcased 
that AI-assisted routing reduced both the average delivery distances by 14% and the delivery time by 19% 
as opposed to the static route planning approaches. Further, carbon emissions generated due to logistics 
operations were lowered by 26%, a percentage validated through emission calculators that consider 
vehicle type and route elevation profiles. One significant instance of the system in action occurred when 
emergency food deliveries had to be rerouted during flooding in eastern Nepal. The traditional routes 
were inaccessible, but the system very quickly generated alternatives by overlaying up-to-date satellite 
imagery and road condition data. This re-routing enabled the delivery of 6 tons of aid materials to over 
3,500 families undeterred with no additional cost or time being incurred on transportation. 
The multi-objective optimization of the model required that environmental, economic, and service-level 
factors all be considered simultaneously. Deliveries were thus not only faster and cheaper but also greener, 
environmentally conscious. These results indicate that the system can help create greener and smarter 
logistics solutions, even within infrastructure-deficient environments. 
4.3 Enhanced Accessibility and Equity in Distribution Networks 
Access is a major yardstick of success for sustainable supply chain optimization, especially in resource-
constrained areas. Through geospatial analysis and clustering algorithms, underserved populations- those 
living in remote, conflict-prone, or climate-vulnerable areas- were identified and given priority for logistics 
interventions. Facility location optimizations proceeded to identify the best sites for temporary 
warehouses and drone delivery hubs through P-median and K-means clustering techniques. This reduced 
the average distance between supply points and remote settlements by 28%, while the number of 
communities served within a 10 km radius increased by 31%. An example of one such intervention is 
provided by the pilot in northern Kenya, where the newly optimized supply network provided access to 
essential supplies within a 6-hour delivery window for 87% of the population (previously 62%). This was 
especially significant for areas that were previously reliant on sporadic shipments or donor shipments. 
Real-time visualization capabilities within the DSS pinpointed localized shortages or bottlenecks for 
planners to address quickly. Interventions involved sending mobile warehouses and activating last-mile 
delivery units, like motorcycle and drone fleets. A population of 2,000 displaced individuals in a desert 
area had reliable food and water shipments for a four-week period without needing to redesign routes or 
manually reschedule. 
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The growth in fair access showed the capability of AI and geospatial technologies to not only enhance 
operational efficiency but also promote social justice. Distribution networks were not only created for 
efficiency but with fairness and need-based prioritization. 
Table 3: Equity, Sustainability, and Decision-Making Outcomes 

Parameter Pre-AI Baseline Post-AI Deployment Impact 
Average Supply Distance to 
Remote Areas 

High (~30 km) Reduced by 28% Down to ~21.6 km 

Access to Essential Supplies 
(within 6 hrs) 

62% of population 87% of population +25% 

CO₂ Emissions from 
Logistics 

Baseline (Static 
Routing) 

Reduced by 26% Greener Operations 

Stakeholder Satisfaction 
with DSS 

Low 
75% reported 
confidence boost 

High Decision 
Empowerment 

4.4 Stakeholder Empowerment and Real-Time Decision-Making 
The implementation of the integrated Decision Support System (DSS) tremendously improved supply 
chain operator and policy stakeholder ability to make timely, data-driven decisions. The DSS integrated 
real-time data streams—weather reports, satellite images, demand signals, and vehicle GPS logs—into an 
integrated dashboard that facilitated dynamic monitoring, alerting, and scenario simulation. 
In a cyclone-risk district of Bangladesh, planners employed the DSS in field trials 48 hours prior to landfall 
to simulate different scenarios. The system generated four different logistics backup plans depending 
upon different levels of road and facility impairment. The most robust scenario was selected, and supplies 
were pre-positioned in high and accessible areas. This pre-emptive step avoided delay and saved an 
estimated 8,000 affected people from food deprivation. The interactive dashboard allowed local NGOs, 
regional governments, and contracting logistics firms to see tailored layers of data depending on their 
role. Stockout alerts, delivery delays, or transport risk alerts were sent through mobile SMS and in-app 
notification to enable instant response. In addition, the community-based reporting feature, where field 
agents and residents could provide real-time updates using mobile applications, improved situational 
awareness. Blocked roads, theft, or unexpected demand surges were reported immediately and caused 
system re-calculations, reflecting high responsiveness. Stakeholder feedback highlighted the 
empowerment resulting from having predictive insights available, automated planning recommendations, 
and real-time situational monitoring. More than 75% of users interviewed after deployment reported that 
the DSS enhanced their confidence and capability to make effective logistics decisions during crisis events. 
The system turned out to be a priceless resource for decentralized, open, and participatory supply chain 
management, raising the bar for logistics coordination within areas plagued by chronic uncertainty and 
infrastructure limitations. 

 
Figure 5: Performance Improvements Across Key Result Areas in Sustainable Supply Chain 
Optimization 
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5. CONCLUSION 
Geo-spatial analytics coupled with AI-based data science techniques offers an innovative way to engineer 
resilient supply chain systems, especially in resource-limited settings. This work proved that using machine 
learning algorithms like LSTM for demand prediction and spatial intelligence through GIS-based tools 
can make supply chains drastically more resilient, efficient, and equitable. Pilot project results and 
simulation show dramatic improvements in predictive accuracy, resource allocation, and logistics 
optimization. Forecasting accuracy was greatly enhanced, with MAPE cut from 18% to 7.3%, while 
resource utilization improved by 22% using dynamic allocation models. In addition, sustainable routing 
models resulted in a 26% decrease in emissions and accelerated delivery time by 19%, underscoring the 
environmental and operational potential of such technologies. 
One of the main strengths of the suggested methodology is its flexibility. In-time data inputs, such as 
weather reports, population flows, and local situation reports, are continuously incorporated in the 
decision process through a high-capacity Decision Support System (DSS). This facilitates anticipatory 
interventions, especially in disaster-hazard zones or infrastructure poor areas, to ensure supply continuity 
and timely delivery. The focus on balanced access, reflected in the increase of service coverage in under-
served areas by more than 30%, reflects the social purpose of such innovations. In contrast to 
conventional systems, the AI and geo-spatial integrated system places greater stress on sustainability, 
equity, and timeliness, which makes it particularly well-suited for implementation in climate-vulnerable, 
conflict-ridden, or infrastructure-constrained areas. 
Overall, the intersection of AI, machine learning, and geo-spatial analytics provides a compelling, scalable, 
and sustainable answer to some of supply chain management's historic challenges. Scaling these models 
on open-source platforms, further interoperability, and responsible and transparent AI practices should 
be the subject of future efforts toward adoption globally. 
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