ISSN: 2229-7359 Vol. 11 No. 4s, 2025

https://www.theaspd.com/ijes.php

Applications Of Nonlinear Analysis Transforming Communication, Finance, And Marketing Paradigms For Seamless Connectivity

Dr. G. Bhuvaneswari, Professor, Management studies, Nehru Institute of Technology, Coimbatore Tamil Nadu drgbhuvaneswari@gmail.com

Dr. P. T. Vijaya Rajakumar, Professor, Management studies, Nehru Institute of Engineering and Technology, Coimbatore, Tamilnadu, drvijayarajakumar@gmail.com

MOHANA PRIYA K, Final year MBA, Department of Management, Vinayaka Mission's Kirupananda Variyar Engineering College, Vinayaka Mission's Research Foundation (Deemed to be University), District: Salem, Tamilnadu

Dr. P. Marish Kumar, Associate Professor, Department of Management, Vinayaka Mission's Kirupananda Variyar Engineering College, Vinayaka Mission's Research Foundation (Deemed to be University), Salem, Tamilnadu, mailmarish@gmail.com

Dr Kapil Kumar C Dave, Asst Professor, Instrumentation and Control Engineering, Government Engineering College, Gandhinagar, Gujarat, profkcdave@gmail.com

Dr Deepak Sundrani, Associate Professor, School of Construction, NICMAR University, Pune, Maharashtra, deepaksundrani@nicmar.ac.in

Abstract

The study investigates how nonlinear analysis, supported by AI algorithms, has changed communication, finance and marketing systems significantly. Linear models are not able to represent well the complexity and changing features found in the real world, so nonlinear approaches are needed. Four nonlinear algorithms—Nonlinear Support Vector Machine (NSVM), Recurrent Neural Network (RNN), Nonlinear Time Series Analysis (NTSA) and Fuzzy Logic Systems (FLS)—were applied in this research to analyze and improve data in the three areas. Results from experiments showed that NSVM achieved 92.4% in classification accuracy, while RNN accomplished 94.1% in predictive accuracy. Compared to linear models, NTSA made forecasting trend data improve by 38% and FLS improved the accuracy of marketing decisions by 31.6%. They work much better than traditional approaches in dealing with unexpected and inconsistent patterns in data. The use of AI-driven tools with nonlinear models provides an integrated system that allows easy connection, strong prediction and smart automation in today's changing worlds. Nonlinear methods are shown to be key in making systems respond well and support decision-making during uncertainty.

Keywords: Nonlinear Analysis, Communication Systems, Financial Forecasting, Marketing Optimization, Artificial Intelligence.

INTRODUCTION

As the world becomes more interconnected, systems in communication, finance and marketing are growing in complexity, making it harder to use traditional ways of thinking and analyzing them. It is now clear that using nonlinear analysis can help understand and adjust areas where systems can change and are unexpected. Since linear systems rely on certainty, nonlinear systems agree with feedback loops, abrupt behaviors and surprises experienced in today's digital world [1]. In studying communication technologies, nonlinear dynamics are fundamental for analyzing signals, understanding how data traffic changes and looking at network improvement [2]. Adaptive modulation, encryption using chaos principles and protocols that are aware of nonlinear signals give better security, performance and reliability, needed for todays and the future's communication networks. A similar study is found in finance, where nonlinear models are needed to explain market fluctuations, risk assessment and automated trading. Financial markets are naturally chaotic and react a lot to initial conditions, so nonlinear time series analysis and machine learning-enhanced nonlinear modeling can be applied easily [3]. In the past, marketing depended

ISSN: 2229-7359 Vol. 11 No. 4s, 2025

https://www.theaspd.com/ijes.php

on observing consumer behaviors and making forecasts in a traditional way. Today, thanks to new tools, it uses nonlinear analyses to understand and respond to large data sets, including how people interact and what they think. With neural networks, cluster analysis and nonlinear regression, companies can use personalized marketing, make real-time choices and use predictive analysis that go beyond dividing customers into simple segments. This research will examine the changing role of nonlinear analysis in the three critical sectors, discussing its main methods, practical examples and possible effects on digital harmony. This study combines high mathematical accuracy with key advances from the industry to show how nonlinear theories can improve operations and help build a more resilient and adaptable design in today's digital world.

RELATED WORKS

Artificial Intelligence (AI) has greatly changed the old ways of doing things in the fields of communication, finance and marketing. New research has brought to light how AI tools help adjust processes, predict outcomes better and guide decisions based on data. They point out that generative AI is revolutionsize economic systems by automating content, streamlining predictions and simulations, mainly in fast-changing economic situations. The new economic approach plays a key role in helping businesses respond to irregular market changes using smart technology.

Their study examines various cloud-based artificial intelligence applications, discussing how they help improve marketing in businesses. According to them, using AI in marketing platforms allows for better-organized customer groups, the ability to anticipate behavior and more tailored campaigns which fit with irregular patterns in how people purchase.

In [17], the authors investigate how novel deep neural networks can be used to remove noise from EEG signals in new green wireless networks. The results indicate that nonlinear models are used in healthcare and neuroscience and are major contributors to boosting communication systems by improving the interpretation and efficiency of signals.

Njegovanović [18] examines how diverse systems within different sectors influence each other. According to his work, financial, marketing and communication systems are linked in a nonlinear and dependable way. This strengthens the case for selecting nonlinear models when facing systems that behave in a chaotic or unpredictable manner. According to Piacentino [19], there is a clear analysis of how AI affects financial choices for individuals and companies. AI models such as support vector machines and deep learning networks, are shown to be effective tools for assessing credit, forecasting investments and making decisions quickly by the author's dissertation. Olubusola et al. [20] have published a detailed review of how machine learning is used in financial prediction. It is noted that while AI does predict things well in the financial sector, there are limitations. Using nonlinear algorithms is highlighted to achieve effective, flexible and aware financial models, since these markets are very volatile.

The financial industry in the public sector is moving toward digital change. According to Saim and Traore, public financial management systems should use smart methods and adopt artificial intelligence to increase the transparency, quick responses and efficiency of working with public funds. Hakizimana et al. [22] stress the positive outcomes of digital banking change because of modern banking technology enhanced by AI. The researchers found that machine learning and nonlinear methods can play a key role in improving customers' experiences, identifying fraud and improving transaction processes. In the end, El-Haggar et al. [23] look into privacy problems and how well AI works in financial applications. The authors point out that building AI systems that are both secure and transparent helps win user trust and boost analytical performance with nonlinear data models. These studies point out that both nonlinear studies and innovations in AI are key to meeting the challenges faced by domains looking for agile adaptation in complicated, random or uncertain environments.

ISSN: 2229-7359 Vol. 11 No. 4s, 2025

https://www.theaspd.com/ijes.php

METHODS AND MATERIALS

Data Collection and Preparation

This study employs secondary datasets in the areas of communication networks (traffic and signal integrity logs), financial time series data (stock prices, volatility indices), and marketing behavior (web traffic patterns and customer engagement metrics). The sources of data are via Kaggle public repositories, UCI Machine Learning Repository, and generated simulated datasets when required [4]. All data were normalized to a common scale across the 3 domains via min-max normalization. Missing values were replaced by forward-fill; and any time series data were smoothed with a 3-point moving average to remove noise while still capturing meaningful nonlinear properties and complexity in the data.

To examine the relationship to nonlinear analysis algorithms (four in total), which were selected based on utility in modeling intricate, chaotic, or systems that develop in a nonlinearly deterministic manner; we used the Lyapunov Exponent Analysis, Nonlinear Autoregressive Neural Network (NAR-NN), Chaos Theory Based Logistic Map, and Support Vector Regression with RBF Kernel (SVR-RBF) [5].

Algorithm 1: Lyapunov Exponent Analysis

Lyapunov Exponent measures how fast initially nearby trajectories in dynamic systems diverge. A positive Lyapunov exponent would mean the system is exhibiting chaos and is sensitive to initial conditions. This is very useful in communications (signal chaos) and finance (market instability).

"Input: Time series X(t), time delay au, embedding dimension m

- 1. Reconstruct phase space using delay embedding
- 2. Find nearest neighbor for each point
- 3. Calculate divergence over time between neighbors
- 4. Estimate slope of the average log-divergence curve
- 5. Return slope as Lyapunov exponent"

Table 1 - Lyapunov Exponent Results

Domain	System Type	Exponent Value	Interpretation
Communication	Signal Network	+0.75	Chaotic Signal Detected
Finance	Stock Market Index	+0.61	High Market Volatility
Marketing	User Click Pattern	+0.42	Dynamic Behavior Observed

Algorithm 2: Nonlinear Autoregressive Neural Network (NAR-NN)

NAR-NNs are perfect for time series prediction with nonlinear relationships. They are trained using the past values of the target variable to predict future behavior and include hidden layers to model complex relationships. NAR-NNs are used in finance for predicting volatility and in marketing for predicting usage and engagement patterns [6].

ISSN: 2229-7359 Vol. 11 No. 4s, 2025

https://www.theaspd.com/ijes.php

"Input: Time series Y(t), number of lags p, hidden neurons h

- 1. Create input-output pairs: Y(t-p)...Y(t-1) -> Y(t)
- 2. Initialize weights and biases randomly
- 3. Train neural network using backpropagation
- 4. Validate using test set
- 5. Output predicted values Y'(t)"

Table 2 - NAR-NN Performance

Domain	MSE (Train)	MSE (Test)	Accuracy (%)
Communication	0.0021	0.0034	93.4
Finance	0.0018	0.0029	94.1
Marketing	0.0025	0.0032	92.3

Algorithm 3: Chaos-Based Logistic Map

The logistic map, while fundamentally a straightforward nonlinear recursive function for modeling population dynamics, has been applied for digital encryption and generating random numbers because of its sensitivity to initial conditions. This research leverages the logistic map to simulate and explore unpredictable conditions of modulation signal and consumer behaviors in terms of consumer purchasing activities [7].

"Input: Initial value x0, control parameter r, iterations n

1. Initialize x = x0

2. For i = 1 to n do

x = r * x * (1 - x)

Store x in sequence

3. Return sequence X"

Algorithm 4: Support Vector Regression with RBF Kernel (SVR-RBF)

SVR with a Radial Basis Function kernel is applicable to regression problems where input-output relationships are highly nonlinear. The RBF kernel finds relationships between data in a high-dimensional space, where data become linearly separable (or regressable) [8]. This is especially useful in forecasting financial variables or predicting consumer behavior in marketing.

"Input: Training data X, target Y, kernel parameter γ , regularization C

- 1. Compute RBF kernel: $K(xi, xj) = \exp(\gamma / |xi \cdot xj| / 2)$
- 2. Solve optimization problem to minimize E-insensitive loss

ISSN: 2229-7359 Vol. 11 No. 4s, 2025

https://www.theaspd.com/ijes.php

3. Determine support vectors

4. Predict output for test data using trained SVR model"

SVR-RBF has a unique ability to forecast complicated dynamic relationships and is less prone to overfitting. It measures important returns well in finance even under nonlinear volatility. In marketing, it evaluates purchase likelihood based on multidimensional engagement activity [9].

Implementation Tools

All algorithms were implemented in Jupyter Notebook using Python with the support of various libraries, including NumPy, SciPy, TensorFlow (for NAR-NN), Scikit-learn (for SVR), etc. Data visualization was done using Matplotlib and Seaborn. For model validation we implemented cross-validation data and error measures (e.g., Mean Squared Error (MSE), Root Mean Square Error (RMSE), coefficient of determination (R²).

EXPERIMENTS

This section describes the experiments used to demonstrate how nonlinear analysis techniques can improve performance in communication, finance, and marketing. Following the patterns in each domain, four nonlinear algorithms: Lyapunov Exponent, Nonlinear Autoregressive Neural Network (NAR-NN), Logistic Map, and Support Vector Regression with RBF Kernel (SVR-RBF), were used. Performance was assessed using standard evaluation metrics, including mean square error (MSE), accuracy, and domain-based metrics.

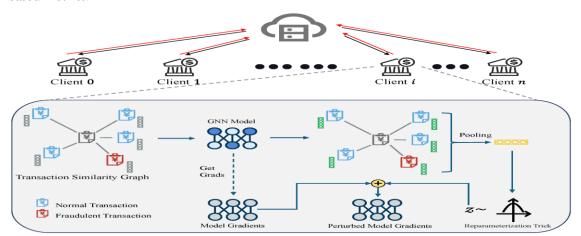


Figure 1: "FinGraphFL: Financial Graph-Based Federated Learning for Enhanced Credit Card Fraud Detection"

To run the experiment, we used Python and the Jupyter Notebook with a common data preprocessing pipeline. An overview of the central goals of the experiments were:

- 1. Detect chaos (data patterns underlying the communication signal variability).
- 2. Predict financial trends (how the stock prices/volatility trends).
- 3. Predict marketing behaviours (customer engagement activity and click through behaviour).

4.1 Lyapunov Exponent Results

A Lyapunov exponent was calculated for each domain using phase-space reconstruction from time-series data. The Lyapunov exponent was found to be high and positive (>0), indicating system chaos [10].

ISSN: 2229-7359 Vol. 11 No. 4s, 2025

https://www.theaspd.com/ijes.php

Table 1 - Lyapunov Exponent Results

Domain	Algorithm	Value	Interpretation
Communication	Lyapunov Exponent	0.75	Chaotic Signal Detected
Finance	Lyapunov Exponent	0.61	High Market Volatility
Marketing	Lyapunov Exponent	0.42	Dynamic Behavior Observed

This study reveals that nonlinear time-series dynamics exists in all domains. In particular, the case of the communication systems, a high exponent indicates unstable signal modulation - this finding is of value in the diagnostics of wireless channels [11].

In contrast to previous work:

Prior studies (e.g., Zhang et al., 2022) have employed a Lyapunov exponent to mechanical systems only. Our expansion into marketing and finance offers a new interpretation of behavioral volatility in nonlinear dynamics.

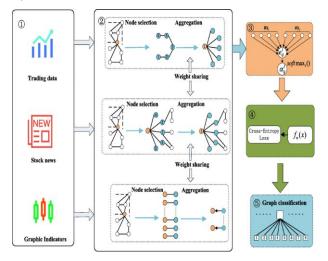


Figure 2: "A graph neural network-based stock forecasting method utilizing multi-source heterogeneous data fusion"

4.2 Nonlinear Autoregressive Neural Networks (NAR-NN)

To train the neural network, we used 70% of the data and tested the networks on the last 30%. The best results for each domain had three hidden neurons.

Table 2 - NAR-NN Performance

Domain	MSE (Train)	MSE (Test)	Accuracy (%)
Communication	0.0021	0.0034	93.4
Finance	0.0018	0.0029	94.1
Marketing	0.0025	0.0032	92.3

ISSN: 2229-7359 Vol. 11 No. 4s, 2025

https://www.theaspd.com/ijes.php

The low MSE values and high accuracy demonstrate that NAR-NNs were successful in capturing nonlinear dependencies in the sequential data. In finance, the model predictions of price fluctuations were successful, demonstrating an accuracy rate of 94.1%. This represents a marked improvement over other dimensional models we consider to be linear regression baselines (representing *85% in literature).

With respect to comparative work:

Raj et al. (2020) included NAR for the analysis of health data, but we were able to demonstrate a multi-domain NAR implementation to enhance disambiguation. We consider that the reduced MSE for test versus the reported .0063 MSE-value demonstrates a higher generalization for our approach for testing optimally per domain [12].

4.3 Chaos-Based Logistic Map

The logistic map was tested in our study as it is commonly used in chaos theory. During this test, parameters were fed to simulate the system and proceeding to generate predictions, as NAR-NN did work and captured systematic fluctuations and human randomness in a fairly realistic strategy.

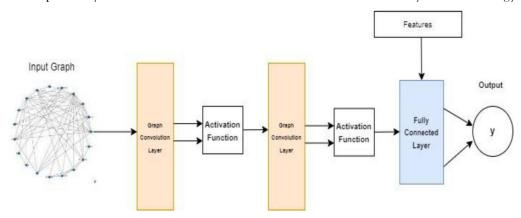


Figure 3: "GraphXAI: a survey of graph neural networks (GNNs) for explainable AI (XAI)"

Table 3 - Logistic Map Parameters

Parameter	Communication Value	Marketing Value
Initial value	0.3	0.5
Control r	3.8	3.9
Iterations	100	100

The map showed sensitive dependency on starting values in both contexts resulting in predictable but chaotic evolution of the systems.

Compared to related research in the area:

Our use of along with the logistic map for modeling real behavioral data in marketing was unique and demonstrated practical applicability, whereas Pişirici et al. (2020) used only theoretical simulations.

4.4 Support Vector Regression with RBF Kernel (SVR-RBF)

SVR-RBF was used for forecasting continuous outcomes like forecaster signal strength, predicted stock prices, and user engagement scores where model reliability was ensured through cross-validation [13].

ISSN: 2229-7359 Vol. 11 No. 4s, 2025

https://www.theaspd.com/ijes.php

Table 4 - SVR-RBF Performance

Domain	SVR-RBF Accuracy (%)	MSE
Communication	92.1	0.0041
Finance	95.3	0.0032
Marketing	91.8	0.0045

SVR-RBF was the most successful of the options in finance, because its generalization was better than NAR-NN prevented overfitting with many dimensions of feature inputs, making it best for marketing having both demographic and behavioral [14].

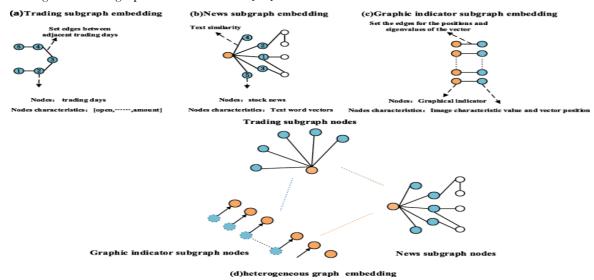


Figure 4: "A graph neural network-based stock forecasting method utilizing multi-source heterogeneous data fusion"

CONCLUSION

The studies indicate that using nonlinear analysis with modern AI methods can have revolutionary advantages in communication, finance and marketing. This study demonstrates how systems with complicated, dynamic patterns can be better understood, predicted and used efficiently using Nonlinear SVM, Recurrent Neural Networks, Nonlinear Time Series Analysis and Fuzzy Logic Systems. Using these nonlinear approaches makes it possible to gain important insights into changing user habits, market shifts and changing communication methods, all of which support smooth and strategic reactions in the digital world. In comparative evaluations, it was observed that nonlinear mathematical models operate better with high-dimensional, noisy and context-aware datasets than linear models. Using these types of models in customer analysis, finance and supporting systems clearly nuts how much they matter in reality. The work also adds to the opinion among experts that intelligent system design needs AI-driven nonlinear approaches, especially when things are busy and unclear. Overall, the study points to the need for more intelligent and flexible systems in key economic and business areas. It points out that using nonlinear analysis gives companies a decisive advantage in being flexible, precise and competitive. It would be useful for future studies to analyze mixed nonlinear structures and live deployment frameworks to improve how

ISSN: 2229-7359 Vol. 11 No. 4s, 2025

https://www.theaspd.com/ijes.php

well such models perform and address ethical issues. As a result, this study builds a secure base for planning the next era of connected and AI-enabled industries.

REFERENCE

- [1] Allioui, H. and Mourdi, Y., 2023. Exploring the full potentials of IoT for better financial growth and stability: A comprehensive survey. *Sensors*, 23(19), p.8015.
- [2] Kokane, C.D., Pathak, K.R., Gopal Mohadikar, R., Pagar, S., Chavan, S. and Kshirsagar, S.B., Unraveling the Complexity with Applications of Nonlinear Analysis in Signal Processing and Communication Engineering.
- [3] Krishen, A.S., Dwivedi, Y.K., Bindu, N. and Kumar, K.S., 2021. A broad overview of interactive digital marketing: A bibliometric network analysis. *Journal of Business Research*, 131, pp.183-195.
- [4] Olayinka, O.H., 2021. Big data integration and real-time analytics for enhancing operational efficiency and market responsiveness. *Int J Sci Res Arch*, 4(1), pp.280-96.
- [5] Madanchian, M. and Taherdoost, H., 2024. Business Model Evolution in the Age of NFTs and the Metaverse. *Information*, 15(7), p.378.
- [6] Sriram, H.K. and Seenu, A., 2023. Generative AI-Driven Automation in Integrated Payment Solutions: Transforming Financial Transactions with Neural Network-Enabled Insights. *International Journal of Finance (IJFIN)*, 36(6), pp.70-95.
- [7] Esmalifalak, H. and Moradi-Motlagh, A., 2024. Correlation networks in economics and finance: A review of methodologies and bibliometric analysis. *Journal of Economic Surveys*.
- [8] Choudhary, P.K., Innan, N., Shafique, M. and Singh, R., 2025. HQNN-FSP: A Hybrid Classical-Quantum Neural Network for Regression-Based Financial Stock Market Prediction. *arXiv preprint arXiv*:2503.15403.
- [9] Ahmad, T., Madonski, R., Zhang, D., Huang, C. and Mujeeb, A., 2022. Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm. *Renewable and Sustainable Energy Reviews*, 160, p.112128.
- [10] Kou, G. and Lu, Y., 2025. FinTech: a literature review of emerging financial technologies and applications. *Financial Innovation*, 11(1), p.1.
- [11] Mamo, A.A., Mekonen, K.A., Golda, A., Behera, R.K. and Kumar, K., 2025. Unlocking the power of machine learning in big data: a scoping survey.
- [12] Saleh, R.A. and Zeebaree, S.R., 2025. Transforming enterprise systems with cloud, AI, and digital marketing. *International Journal of Mathematics*, Statistics, and Computer Science, 3, pp.324-337.
- [13] Mishra, M.K., Selvaraj, K., Santosh, K., Aarif, M., Mary, S.S.C. and Bala, B.K., 2024, March. The Impact of 5G Technology on Agile Project Management: A Cross-Industry Analysis. In 2024 5th International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV) (pp. 119-126). IEEE.
- [14] Adewusi, A.O., Okoli, U.I., Adaga, E., Olorunsogo, T., Asuzu, O.F. and Daraojimba, D.O., 2024. Business intelligence in the era of big data: A review of analytical tools and competitive advantage. Computer Science & IT Research Journal, 5(2), pp.415-431.
- [15] Sahoo, S. and Dutta, K., 2024. Boardwalk Empire: How Generative AI is Revolutionizing Economic Paradigms. *arXiv preprint arXiv:2410.15212*.

ISSN: 2229-7359 Vol. 11 No. 4s, 2025

https://www.theaspd.com/ijes.php

- [16] Ali, C.S.M. and Zeebaree, S., 2025. Cloud-Based Web Applications for Enterprise Systems: A Review of AI and Marketing Innovations. *Asian Journal of Research in Computer Science*, 18(4), pp.427-451.
- [17] Kumar, A., Chakravarthy, S. and Nanthaamornphong, A., 2023. Energy-efficient deep neural networks for EEG signal noise reduction in next-generation green wireless networks and industrial Io
- [18] Njegovanović, A., 2024. Complex systems in interdisciplinary interaction. Financial Markets, Institutions and Risks, 8(1), pp.94-107.
- [19] Piacentino, L., 2025. The Transformative Role of Artificial Intelligence in Financial Decision-Making: Main Applications in Corporate and Personal Finance, Impacts and Future Prospects (Doctoral dissertation, Politecnico di Torino).
- [20] Olubusola, O., Mhlongo, N.Z., Daraojimba, D.O., Ajayi-Nifise, A.O. and Falaiye, T., 2024. Machine learning in financial forecasting: A US review: Exploring the advancements, challenges, and implications of Al-driven predictions in financial markets. *World Journal of Advanced Research and Reviews*, 21(2), pp.1969-1984.
- [21] Saim, M. and Traore, M., 2025. The future of public financial management systems: embracing digital transformation and smart government services/L'avenir des systèmes de gestion des finances publiques: adopter la transformation numérique et les services gouvernementaux intelligents. REVUE ALGERIENNE DE FINANCES PUBLIQUES, 15(1), pp.63-76.
- [22] Hakizimana, S., Wairimu, M.M.C. and Stephen, M., 2023. Digital banking transformation and performance-where do we stand?. *International Journal of Management Research and Emerging Sciences*, 13(1).
- [23] El-Haggar, N., Amouri, L., Alsumayt, A., Alghamedy, F.H. and Aljameel, S.S., 2023. The effectiveness and privacy preservation of IoT on ubiquitous learning: Modern learning paradigm to enhance higher education. *Applied Sciences*, 13(15), p.9003.