International Journal of Environmental Sciences ISSN: 2229-7359 Vol. 11 No. 18s, 2025 https://theaspd.com/index.php

Stem Cell Therapy In Retinal Diseases: Advances, Challenges, And Future Perspectives

Pooja Sri S¹, Sozhamadevi S², Ezhilvendhan K³, Arthi K⁴

¹Final Year Junior Resident, Department of Ophthalmology, Vinayaka Mission's Kirupananda Variyar Medical College & Hospitals, Vinayaka Mission's Research Foundation (DU), Salem, India

²Professor, Department of Ophthalmology, Vinayaka Mission's Kirupananda Variyar Medical College & Hospitals, Vinayaka Mission's Research Foundation (DU), Salem, India

³Professor, Department of Ophthalmology, Vinayaka Mission's Kirupananda Variyar Medical College & Hospitals, Vinayaka Mission's Research Foundation (DU), Salem, India

⁴Senior Resident, Department of Ophthalmology, Vinayaka Mission's Kirupananda Variyar Medical College & Hospitals, Vinayaka Mission's Research Foundation (DU), Salem, India

Abstract

Retinal diseases like age-related macular degeneration, diabetic retinopathy, and retinitis pigmentosa are major causes of vision loss. Stem cell therapy offers a regenerative approach, utilizing embryonic, induced pluripotent, mesenchymal, and retinal progenitor cells for retinal repair. This review explores advancements in stem cell therapy, highlighting its potential to restore vision while addressing challenges like ethical concerns, immune rejection, and delivery issues. With promising clinical trials and innovations in gene editing and biomaterials, stem cell therapy is poised to transform retinal disease management.

Keywords: stem cell therapy, retinal diseases, regenerative medicine, AMD, diabetic retinopathy, iPSCs, retinal progenitor cells.

INTRODUCTION: Retinal diseases, such as age-related macular degeneration (AMD), diabetic retinopathy (DR), and retinitis pigmentosa (RP), are among the leading causes of vision loss worldwide. These conditions often result from irreversible damage to retinal cells, including photoreceptors and retinal pigment epithelial (RPE) cells [1]. While existing treatments manage disease progression, they rarely restore lost vision, underscoring the need for innovative approaches. Stem cell therapy has emerged as a promising regenerative solution, offering the potential to repair damaged retinal tissue and restore visual function [2]. This approach leverages the unique ability of stem cells to self-renew and differentiate into retinal-specific cell types. Recent advancements in stem cell research, including the development of induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs), have expanded the possibilities for treating retinal diseases [3, 4]. This review highlights the progress in stem cell therapy for retinal diseases, discussing the types of stem cells used, their mechanisms of action, clinical applications, and challenges. By examining these aspects, this review underscores the transformative potential of stem cell therapy in addressing the unmet needs of retinal disease management. Retinal diseases, including agerelated macular degeneration (AMD), diabetic retinopathy (DR), and retinitis pigmentosa (RP), lead to progressive and often irreversible vision loss [5]. These conditions are characterized by damage to critical retinal cells, such as photoreceptors and retinal pigment epithelial (RPE) cells. Traditional therapies, including anti-VEGF injections and laser photocoagulation, focus on slowing disease progression but rarely restore lost vision [6]. Stem cell therapy offers a novel solution by leveraging the regenerative potential of stem cells to repair or replace damaged retinal tissues. Recent advancements in stem cell research have demonstrated significant potential for retinal regeneration, marking a paradigm shift in the treatment of retinal diseases [7, 8].

Types of Stem Cells in Retinal Therapy: Stem cell therapy for retinal diseases relies on various types of stem cells, each with distinct properties and applications. These include embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and retinal progenitor cells (RPCs). ESCs are pluripotent cells derived from early embryos, capable of differentiating into retinal pigment epithelial (RPE) cells and photoreceptors [9]. Despite their potential, ethical concerns and risks of tumorigenesis limit their clinical use. iPSCs, reprogrammed from adult cells to mimic ESC properties, offer similar benefits without ethical issues, making them a preferred choice for personalized therapies.

International Journal of Environmental Sciences ISSN: 2229-7359

Vol. 11 No. 18s, 2025 https://theaspd.com/index.php

MSCs, derived from bone marrow or adipose tissue, possess anti-inflammatory and neuroprotective properties, promoting retinal repair through paracrine signalling [10]. They are particularly useful for reducing inflammation and supporting neuronal survival in retinal conditions. RPCs, isolated from the developing retina, can differentiate into photoreceptors and other retinal cell types, making them ideal for direct tissue replacement [11].

Each stem cell type offers unique advantages, and ongoing research aims to optimize their use in clinical applications. Combining these approaches with advancements in gene editing and biomaterials could enhance the efficacy and safety of stem cell-based retinal therapies [12].

Mechanisms of Action: Stem cell therapy works through multiple mechanisms to repair retinal damage and restore function. The primary mechanism is cell replacement, where stem cells differentiate into retinal pigment epithelial (RPE) cells or photoreceptors to replenish damaged or lost cells [13,14]. This is particularly effective in degenerative conditions like age-related macular degeneration (AMD) and retinitis pigmentosa (RP). Another key mechanism is neuroprotection, where stem cells secrete neurotrophic factors that protect existing retinal cells from further degeneration. Mesenchymal stem cells (MSCs) and retinal progenitor cells (RPCs) are especially effective in releasing these factors, reducing oxidative stress and inflammation in the retinal environment [15, 16]. Stem cells also contribute to angiogenesis, promoting the repair of damaged retinal vasculature, which is critical in diseases like diabetic retinopathy (DR). Paracrine signalling, a process where stem cells release signalling molecules to influence surrounding cells, further supports tissue regeneration by modulating the immune response and enhancing cellular survival [17].

By integrating these mechanisms, stem cell therapy offers a multifaceted approach to treating retinal diseases. Current research focuses on refining these processes to maximize therapeutic outcomes and minimize associated risks [18].

Clinical Applications and Trials: Stem cell therapy for retinal diseases has advanced significantly, with multiple preclinical studies and clinical trials demonstrating its potential [19]. In conditions like agerelated macular degeneration (AMD) and retinitis pigmentosa (RP), embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have been used to generate retinal pigment epithelial (RPE) cells, showing improvements in visual acuity and retinal structure [20]. Mesenchymal stem cells (MSCs) and retinal progenitor cells (RPCs) have been tested in conditions like diabetic retinopathy (DR) and retinal vascular occlusions, primarily for their neuroprotective and anti-inflammatory effects. Several trials have highlighted their safety and efficacy, with reduced inflammation and preservation of retinal function reported in early phases [21].

While promising, clinical translation remains limited by challenges such as immune rejection, delivery methods, and variability in patient responses. Ongoing trials aim to refine protocols and expand the therapeutic potential of stem cell therapy in broader retinal conditions [22].

Challenges and Limitations: Despite its promise, stem cell therapy in retinal diseases faces significant challenges. Ethical concerns, particularly with embryonic stem cells (ESCs), limit their widespread acceptance. Tumorigenesis remains a risk, especially with pluripotent stem cells like ESCs and induced pluripotent stem cells (iPSCs), necessitating rigorous safety protocols [23, 24]. Immune rejection is another concern, as transplanted cells may trigger an immune response, particularly in allogeneic settings. Technical challenges in cell delivery and integration, such as ensuring precise localization and functional connectivity within the retina, further complicate clinical application. Variability in patient responses also underscores the need for personalized approaches [25].

Regulatory hurdles and high costs remain barriers to large-scale implementation. Addressing these limitations through innovations in gene editing, biomaterials, and personalized medicine is critical to advancing the clinical viability of stem cell therapy in retinal diseases [26].

Future Directions and Innovations: Advancements in stem cell therapy for retinal diseases focus on overcoming current limitations and enhancing efficacy. Gene editing technologies like CRISPR-Cas9 are being integrated with stem cell research to correct genetic mutations in inherited retinal disorders, improving treatment specificity [27]. Biomaterials, such as scaffolds and hydrogels, are being developed to enhance cell survival and precise delivery to the retina, ensuring better integration and functionality [28]. The use of patient-derived induced pluripotent stem cells (iPSCs) is paving the way for personalized

International Journal of Environmental Sciences

ISSN: 2229-7359 Vol. 11 No. 18s, 2025

https://theaspd.com/index.php

medicine, reducing the risk of immune rejection and tailoring treatments to individual needs. Combining stem cell therapy with other approaches, such as pharmacological agents and gene therapy, holds promise for synergistic effects in retinal repair [29].

Ongoing research and collaboration across disciplines aim to refine these innovations, bringing stem cell therapy closer to becoming a transformative option in retinal disease management [30].

CONCLUSION:

Stem cell therapy represents a groundbreaking advancement in the management of retinal diseases, offering hope for restoring vision in conditions previously considered untreatable. By leveraging the regenerative potential of various stem cell types, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and retinal progenitor cells (RPCs), this approach addresses the critical need for innovative solutions in ophthalmology. While clinical trials have demonstrated promising outcomes, challenges such as ethical concerns, immune rejection, and technical complexities must be addressed to ensure widespread adoption. Advances in gene editing, biomaterials, and personalized medicine are steadily paving the way for safer and more effective therapies.

Stem cell therapy is poised to transform the future of retinal disease treatment, offering not just management but the potential for true regeneration and restoration of vision. Continued research, collaboration, and innovation are essential to fully realize its potential and improve the quality of life for millions affected by vision loss.

REFERENCES:

- 1.Chen X, Xu N, Li J, Zhao M, Huang L. Stem cell therapy for inherited retinal diseases: a systematic review and meta-analysis. Stem Cell Res Ther. 2023 Oct 5;14(1):286. doi: 10.1186/s13287-023-03526-x. PMID: 37798796; PMCID: PMC10557171.
- 2. Holan V, Palacka K, Hermankova B. Mesenchymal Stem Cell-Based Therapy for Retinal Degenerative Diseases: Experimental Models and Clinical Trials. Cells. 2021 Mar 7;10(3):588. doi: 10.3390/cells10030588. PMID: 33799995; PMCID: PMC8001847.
- 3.Maeda A, Mandai M, Takahashi M. Gene and Induced Pluripotent Stem Cell Therapy for Retinal Diseases. Annu Rev Genomics Hum Genet. 2019 Aug 31;20:201-216. doi: 10.1146/annurev-genom-083118-015043. Epub 2019 Apr 24. PMID: 31018110.
- 4.Jin ZB, Gao ML, Deng WL, Wu KC, Sugita S, Mandai M, Takahashi M. Stemming retinal regeneration with pluripotent stem cells. Prog Retin Eye Res. 2019 Mar;69:38-56. doi: 10.1016/j.preteyeres.2018.11.003. Epub 2018 Nov 9. PMID: 30419340.
- 5. Park SS, Moisseiev E, Bauer G, Anderson JD, Grant MB, Zam A, Zawadzki RJ, Werner JS, Nolta JA. Advances in bone marrow stem cell therapy for retinal dysfunction. Prog Retin Eye Res. 2017 Jan;56:148-165. doi: 10.1016/j.preteyeres.2016.10.002. Epub 2016 Oct 23. PMID: 27784628; PMCID: PMC5237620.
- 6.Han F, Xu G. Stem Cell Transplantation Therapy for Retinal Degenerative Diseases. Adv Exp Med Biol. 2020;1266:127-139. doi: 10.1007/978-981-15-4370-8_9. PMID: 33105499.
- 7.MacLaren RE, Bennett J, Schwartz SD. Gene Therapy and Stem Cell Transplantation in Retinal Disease: The New Frontier. Ophthalmology. 2016 Oct;123(10S):S98-S106. doi: 10.1016/j.ophtha.2016.06.041. PMID: 27664291; PMCID: PMC5545086. 8.Uyama H, Mandai M, Takahashi M. Stem-cell-based therapies for retinal degenerative diseases: Current challenges in the establishment of new treatment strategies. Dev Growth Differ. 2021 Jan;63(1):59-71. doi: 10.1111/dgd.12704. Epub 2021 Jan 21. PMID: 33315237; PMCID: PMC7986097.
- 9. Chen X, Jiang Y, Duan Y, Zhang X, Li X. Mesenchymal-Stem-Cell-Based Strategies for Retinal Diseases. Genes (Basel). 2022 Oct 19;13(10):1901. doi: 10.3390/genes13101901. PMID: 36292786; PMCID: PMC9602395.
- 10. Georgiou M, Fujinami K, Michaelides M. Inherited retinal diseases: Therapeutics, clinical trials and end points-A review. Clin Exp Ophthalmol. 2021 Apr;49(3):270-288. doi: 10.1111/ceo.13917. Epub 2021 Mar 20. PMID: 33686777.
- 11. Ben M'Barek K, Habeler W, Monville C. Stem Cell-Based RPE Therapy for Retinal Diseases: Engineering 3D Tissues Amenable for Regenerative Medicine. Adv Exp Med Biol. 2018;1074:625-632. doi: 10.1007/978-3-319-75402-4_76. PMID: 29721996.
- 12. Huang Y, Enzmann V, Ildstad ST. Stem cell-based therapeutic applications in retinal degenerative diseases. Stem Cell Rev Rep. 2011 Jun;7(2):434-45. doi: 10.1007/s12015-010-9192-8. PMID: 20859770; PMCID: PMC3408315.
- 13. Sachdeva MM, Eliott D. Stem Cell-Based Therapy for Diseases of the Retinal Pigment Epithelium: From Bench to Bedside. Semin Ophthalmol. 2016;31(1-2):25-9. doi: 10.3109/08820538.2015.1115253. PMID: 26959126.
- 14. Yalla GR, Kuriyan AE. Cell therapy for retinal disease. Curr Opin Ophthalmol. 2024 May 1;35(3):178-184. doi: 10.1097/ICU.000000000001034. Epub 2024 Jan 24. PMID: 38276971.
- 15. Jeon S, Oh IH. Regeneration of the retina: toward stem cell therapy for degenerative retinal diseases. BMB Rep. 2015 Apr;48(4):193-9. doi: 10.5483/bmbrep.2015.48.4.276. PMID: 25560700; PMCID: PMC4436854.
- 16. Balmer J, Stanzel BV, Fischer MD. Stammzelltherapie für Netzhauterkrankungen [Stem cell therapy for retinal diseases]. Ophthalmologe. 2015 Sep;112(9):728-37. German. doi: 10.1007/s00347-015-0119-2. PMID: 26271739.
- 17. Mead B, Tomarev S. Extracellular vesicle therapy for retinal diseases. Prog Retin Eye Res. 2020 Nov;79:100849. doi: 10.1016/j.preteyeres.2020.100849. Epub 2020 Mar 10. PMID: 32169632; PMCID: PMC9460937.

International Journal of Environmental Sciences

ISSN: 2229-7359 Vol. 11 No. 18s, 2025

https://theaspd.com/index.php

- 18. Ehmann D, Shahlaee A, Ho AC. Cell therapy for retinal disease. Curr Opin Ophthalmol. 2016 May;27(3):185-90. doi: 10.1097/ICU.000000000000254. PMID: 26859132.
- 19. Li H, Hou L. Personalized stem cell-based therapy for degenerative retinal diseases. Stem Cell Rev Rep. 2020 Oct;16(5):1013-1015. doi: 10.1007/s12015-020-10003-y. PMID: 32643085.
- 20. Heřmánková B, Holáň V. Perspektivy buněčné terapie v oftalmologii2. Potenciál kmenových buněk pro léčbu onemocnění sítnice [Perspectives of the Cell Therapy in Ophthalmology.2. The Potential of Stem Cells for the Retinal Diseases Treatment]. Cesk Slov Oftalmol. 2016 Feb;72(1):272-5. Czech. PMID: 27041282.
- 21. Osborne A, Khatib TZ, Songra L, Barber AC, Hall K, Kong GYX, Widdowson PS, Martin KR. Neuroprotection of retinal ganglion cells by a novel gene therapy construct that achieves sustained enhancement of brain-derived neurotrophic factor/tropomyosin-related kinase receptor-B signaling. Cell Death Dis. 2018 Sep 26;9(10):1007. doi: 10.1038/s41419-018-1041-8. PMID: 30258047; PMCID: PMC6158290.
- 22. Jia Z, Lv Y, Zhang W, Zhang X, Li F, Lu X, Zhao S. Mesenchymal stem cell derived exosomes-based immunological signature in a rat model of corneal allograft rejection therapy. Front Biosci (Landmark Ed). 2022 Mar 8;27(3):86. doi: 10.31083/j.fbl2703086. PMID: 35345318.
- 23. Namestnikova DD, Cherkashova EA, Sukhinich KK, Gubskiy IL, Leonov GE, Gubsky LV, Majouga AG, Yarygin KN. Combined Cell Therapy in the Treatment of Neurological Disorders. Biomedicines. 2020 Dec 15;8(12):613. doi: 10.3390/biomedicines8120613. PMID: 33333803; PMCID: PMC7765161.
- 24. Kinouchi R, Takeda M, Yang L, Wilhelmsson U, Lundkvist A, Pekny M, Chen DF. Robust neural integration from retinal transplants in mice deficient in GFAP and vimentin. Nat Neurosci. 2003 Aug;6(8):863-8. doi: 10.1038/nn1088. PMID: 12845328.
- 25. Xu ND, Huang LZ, Zhu L, Tang X, Li Y, Zhao MW. [Human umbilical mesenchymal stem cells-derived exosomes modulate the proliferation, apoptosis and migration of human retinal pigment epithelial cells in hypoxia]. Zhonghua Yan Ke Za Zhi. 2019 Dec 11;55(12):933-941. Chinese. doi: 10.3760/cma.j.issn.0412-4081.2019.12.012. PMID: 31874508.
- 26. Ba G, Hua Z, Xu N, Zhang S, Liu Z, Thiele CJ, Li Z. Novel agent DMAMCL suppresses osteosarcoma growth and decreases the stemness of osteosarcoma stem cell. Cell Cycle. 2020 Jun;19(12):1530-1544. doi: 10.1080/15384101.2020.1762041. Epub 2020 May 13. PMID: 32401122; PMCID: PMC7469659.
- 27. Kang EY, Liu PK, Wen YT, Quinn PMJ, Levi SR, Wang NK, Tsai RK. Role of Oxidative Stress in Ocular Diseases Associated with Retinal Ganglion Cells Degeneration. Antioxidants (Basel). 2021 Dec 5;10(12):1948. doi: 10.3390/antiox10121948. PMID: 34943051; PMCID: PMC8750806.
- 28. Papaioannou I, Owen JS, Yáñez-Muñoz RJ. Clinical applications of gene therapy for rare diseases: A review. Int J Exp Pathol. 2023 Aug;104(4):154-176. doi: 10.1111/iep.12478. Epub 2023 May 13. Erratum in: Int J Exp Pathol. 2024 Jun;105(3):114. doi: 10.1111/iep.12505. PMID: 37177842; PMCID: PMC10349259.
- 29. Chahine Karam F, Loi TH, Ma A, Nash BM, Grigg JR, Parekh D, Riley LG, Farnsworth E, Bennetts B, Gonzalez-Cordero A, Jamieson RV. Human iPSC-Derived Retinal Organoids and Retinal Pigment Epithelium for Novel Intronic RPGR Variant Assessment for Therapy Suitability. J Pers Med. 2022 Mar 21;12(3):502. doi: 10.3390/jpm12030502. PMID: 35330501; PMCID: PMC8951517.
- 30. Elshaer SL, Park HS, Pearson L, Hill WD, Longo FM, El-Remessy AB. Modulation of p75^{NTR} on Mesenchymal Stem Cells Increases Their Vascular Protection in Retinal Ischemia-Reperfusion Mouse Model. Int J Mol Sci. 2021 Jan 15;22(2):829. doi: 10.3390/ijms22020829. PMID: 33467640; PMCID: PMC7830385.