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Abstract: Hyperspectral image processing is like a super tool that combines high-tech photography, smart computing, 
and nature-inspired problem-solving. It helps us gather, understand, and make sense of information from different 
kinds of light. This special tool is super important in areas like farming, keeping an eye on the environment, and even 
in defence. Scientists have recently integrated unique problem-solving methods influenced by nature with self-learning 
deep learning computer algorithms. The way we perceive and utilize hyperspectral pictures has changed significantly 
as a result of this potent combination. It's similar to providing us with an extremely clear image of items and materials. 
The key concepts, techniques, and most current advancements in hyperspectral image processing are clearly illustrated 
in this study. It focuses particularly on the interplay between these evolutionary and deep learning methods. It also 
emphasizes how this combination can be quite beneficial in a wide range of professions. This serves as a reminder to 
continue investigating and learning about this fascinating field, which holds great promise for a wide range of scientific 
and technological fields. 
Keywords: Hyperspectral Image Processing, Remote Sensing, Spectral Information, Spatial Information, 
Classification. 
 
I. INTRODUCTION: 
In digital terms, a hyperspectral image (HSI) is a picture that includes a wide variety of electromagnetic 
wavelengths or spectral bands. HSIs include thousands of narrow, contiguous bands that cover a large 
range, in contrast to standard images that only have three RGB bands [1]. An HSI is produced by 
splitting the electromagnetic spectrum into numerous contiguous, narrow bands, which results in a 
sizable number of spectral channels. Every channel represents a specific wavelength or a narrow range 
of wavelengths. The spectral signature of each pixel in a hyperspectral image is made up of intensity 
values that represent the object's reflectance or radiance at different wavelengths. This spectral 
information makes it possible to identify and analyze the composition and properties of the items that 
were photographed. A representation of   HSI   is shown in Fig. 1. 

 
Figure 1: Representation of HSI 
The HSI has many application areas which include remote sensing and earth observation [6], agriculture 
and crop monitoring [7], geology and mineralogy [8], forestry [9], urban planning and infrastructure [10], 
medical imaging and diagnostics [11], food quality and safety [12].  
In the processing of HSIs, various classification methods were employed to classify the pixels or regions 
into distinct classes by leveraging their spectral characteristics. Some of the widely used classification 
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methods were KNN [13], SVM [14], RF [14], maximum likelihood classifier (MLC) [15]and decision 
trees (DT) [16].   These approaches' performance was unsatisfactory because they suffer from coupled 
spectral bands, limited training samples, spectral variability, excessive computing cost, and the curse of 
dimensionality. Addressing these limitations often requires the development of specialized algorithms.  
 
II. LITERATURE REVIEW 
Last few years, deep learning (DL) methods demonstrated huge success across a wide array of 
applications, particularly in hyperspectral image processing [17]. Amid various DL approaches, CNN is 
very popular due to its powerful feature extraction technique. In [24], introduces a CNN architecture 
that transforms 1D spectral vectors into 2D matrices to entirely leverage the spectral information. 
Likewise, [28] introduces a new CNN model for HSI classification that reduces overfitting by using 
smaller spatial patches. In [30], authors tackle the overfitting problem by using a combination of 2D-
CNN and Gabor filtering. Moreover, spectral-spatial information integration is explored in HSI 
classification. In [32], proposes an efficient 3D-CNN framework that exploits both spectral-spatial 
information simultaneously. In [33], a II-stage hybrid deep context jointly extracts spectral-spatial 
features using CNN and stacked AE. Similarly, [34] introduces a 3D-CNN model that effectively 
incorporates spectral and spatial features. [35] proposes a double-channel CNN built outline where one 
Dimension CNN and two Dimension CNN are utilized to extract spectral and spatial structures, 
respectively. In [37], a combined metric learning based framework with CNN is employed to fuse spectral 
and spatial features. [38] employs multiscale filtering in the CNN framework to enhance the HSI 
representational ability. [39] extracts spatial information from a three-channel virtual RGB image and 
sends them to CNN for multi-scale feature extraction. A semi-supervised 3D-CNN with an adaptive 
band selection technique is presented in [40] in order to simultaneously exploit spectral-spatial 
characteristics. Similarly, in [41], a hybrid unsupervised 3D convolutional-autoencoder is used to jointly 
extract spectral-spatial information. Uses a hybrid strategy in [42] that combines a 2D-CNN model for 
getting abstract spatial characteristics with a 3D-CNN for utilizing spectral-spatial information. It is clear 
from the explanation above that enhancing the HSI classification requires both spectral and spatial 
information. Other than spectral and spatial information, removing noisy bands is important criteria 
for improving the classification performance. Evolutionary algorithms (EAs) have a substantial impact 
on processing hyperspectral images for remote sensing, as they effectively tackle intricate issues linked 
with tasks like feature selection and classification. Paper [71] states that Particle Swarm Optimization’s 
cooperative particle interactions drive iterative fitness improvement, while its application to hyper-
parameter selection has shown promise in achieving optimal solutions for tasks such as classification 
accuracy enhancement in hyperspectral imaging. In [70][52] the proposed Improved Ant Colony 
Algorithm (IMACA-BS) demonstrated superiority in selecting informative bands for classification of 
complex land cover classes. [68] introduced methods to enhance classification accuracy in hyperspectral 
images by removing correlated bands. EAs form a group of optimization and search procedures that 
draw inspiration from the mechanisms of biological evolution and natural selection [47]. Their primary 
application lies in answering difficult optimization glitches, particularly in scenarios where conventional 
gradient-based approaches may not be suitable or efficient. EAs replicate the mechanism of natural 
selection, favouring individuals possessing advantageous traits to survive and reproduce, thereby passing 
these traits to the succeeding generation [48]. Likewise, in EAs, potential solutions to a problem are 
considered individuals in a population, and their fitness is assessed based on their performance in the 
given task. Unlike traditional optimization techniques that work with a single solution, EAs maintain a 
population of candidate solutions. Through successive generations, these solutions evolve to achieve 
better fitness values. In recent times, evolutionary algorithms (EAs) have gained widespread use in 
feature selection due to their effective search capability in vast feature spaces [66]. The Genetic, 
Differential Evolution, Cuckoo Search and Artificial Bee Colony algorithms are known for their 
potential to effectively handle feature selection tasks and offer superior performance [67]. Application 
of EAs on hyperspectral image (HSI) analysis has emerged as a highly engaging area in the realm of 
remote sensing, offering significant potential in comprehensively sensing vast environmental landscapes 
[68]. [69] uses support vector machines as a classifier and genetic algorithms as an optimizer to find the 
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most effective waveband combination of a hyperspectral image for the early detection of disease 
symptoms in soybean stems. Ant Colony Optimization algorithm has been used in the area of image 
processing, pattern recognition, and feature selection [70].FCN, a variant of CNN, is precisely crafted 
for semantic separation duties. It substitutes the fully connected layers found in conventional CNN’s to 
retain spatial details. FCN is highly suitable for tasks involving per-pixel classification and segmentation, 
such as recognizing objects or notable areas in images. Its adaptation to hyperspectral image processing 
involves accommodating the numerous spectral bands in hyperspectral data and segmenting objects or 
land cover categories within these images. This design involves an encoder path (contracting) and a 
decoder path (expansive), forming a "U" shape. The encoder captures context, and the decoder reinstates 
spatial details, creating segmentation masks. U-Net proves valuable for tasks requiring meticulous 
segmentation with well-defined boundaries, like discerning land cover categories in hyperspectral 
images. The versatility of ResUNET's design allows it to be easily tailored to hyperspectral image 
processing tasks. It is capable of addressing the complexities introduced by the extensive spectral bands 
present in hyperspectral data and generating precise segmentation results for various categories of 
importance.  
III. Standard CNN Architecture: 
CNN are a specific kind of neural network with multiple layers, designed to identify visual patterns in 
pixel-based images [43]. In CNN, the word "convolution" refers to a scientific operation that involves 
multiplying two functions to produce a 3rd function, which describes how one function's shape can be 
modified by the other. In simpler terms, CNN uses matrix multiplication of two image representations 
to generate an output that extracts information from the image. CNN shares similarities with other neural 
networks, but its distinguishing feature is the inclusion of convolutional layers, which add a layer of 
complexity to the overall structure [44]. A convolutional neural network consists of several levels, 
including convolution layer, pooling layer, and fully connected layer. The details of each layer are given 
below: 
 

 
Fig 2: CNN architecture. 
Convolutional Layer: 
At the core of the CNN lies the convolutional layer. This pivotal layer applies convolutional filters, also 
known as kernels, to the input data in order to detect features such as edges, textures, and patterns. Each 
filter is relatively small in size compared to the input data and slides over the entire input using a specified 
stride. At each position, the filter performs element-wise multiplication with the corresponding input 
elements and sums the results to produce a feature map. The feature map can be represented as follow: 

f(i, j) = ΣΣ(l(i + m, j + n) ∗ k(m, n) 
Where:f(i, j) is the value at position (i, j) in the feature map. 
l( i+m, j+n) is the value at position (i+m, j+n) in the input data. 
K(m,n) is the value at position (m,n) in the convolutional filter. 
 ΣΣ represents the summation of overall  

spatial positions (m, n) in the convolutional filter. 
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Pooling Layer: 
In order to reduce the feature maps' spatial dimensions while maintaining important information, 
pooling layers are needed. These layers help manage overfitting and lower computing complexity. Max 
pooling is a popular method in which the maximum value within a small area (the pooling window) is 
kept and the remainder is discarded. The most notable elements of the feature map are preserved through 
this down sampling procedure.  
Fully Connected Layer: 
One or more fully connected layers are frequently included in the CNN model after a number of 
convolutional and pooling layers. In order to create a conventional neural network architecture, these 
layers connect each neuron in the current layer to every other neuron in the layer above. Using the 
features that the preceding layers have learnt, fully linked layers help discover global relationships and 
make predictions. 
Output Layer: 
The output layer represents the final layer of the CNN model. In classification tasks, it typically consists 
of neurons equal to the number of classes to predict. The values of these neurons indicate the model's 
confidence in assigning the input data to each class.  
In the process of training, these layers collaborate through forward propagation to learn the optimal set 
of weights and biases that optimize the model's performance on the given task. The learning process is 
facilitated through backpropagation and the optimization algorithm, which iteratively updates the model's 
parameters based on the inclines of the loss function with deference to the model's parameters. 
IV. Some notable CNN Architectures: 
LeNet: 
LeNet, introduced in 1989 by Yann LeCun [72], stands out as one of the earliest deep neural network 
(DNN) models, characterized by its straightforward architecture. This model gained prominence for its 
capacity to execute computations more rapidly compared to its contemporaries. The LeNet architecture 
encompasses several layers, incorporating both convolutional and fully connected layers. These 
components play a pivotal role in extracting features from images. When applied to hyperspectral image 
processing, the LeNet framework can be adjusted to address the unique complexities of hyperspectral 
data. Hyperspectral imagery holds extensive spectral data, with each pixel encompassing information from 
numerous spectral bands. This abundant data can be effectively harnessed by modifying LeNet's structure 
to encompass the spectral dimension. The convolutional layers can be configured to accommodate the 
distinct spectral bands, enabling the capture of spectral features. 
 

 
Fig 3: LeNet-5 Architecture 
Furthermore, LeNet's convolutional layers' capacity for hierarchical feature learning is beneficial in 
identifying intricate spectral patterns that signify specific land cover categories. These acquired features 
can be employed in classification jobs, anywhere the objective to allocate individual pixel to a particular 
land cover class. LeNet architecture, featuring its convolutional layers and feature extraction capabilities, 
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can be customized for handling hyperspectral image data. Through adaptation and training on 
hyperspectral datasets, LeNet emerges as a respected resource for tasks such as land cover arrangement, 
detection of spectral-based patterns, and various other applications within hyperspectral image analysis. 
AlexNet: 
Image recognition is accomplished with AlexNet. It was first presented by Alex Krizhevsky in 2012. The 
architecture of AlexNet has served as a foundation for numerous different CNNs. It is a novel structure 
of a convolutional neural network (CNN), originally designed for picture organization persistence in 
computer vision. The principles and features of AlexNet have prompted adaptations and applications in 
a variety of domains, including hyperspectral image analysis, despite its primary focus on RGB images. In 
order to automatically extract layered characteristics from input photos, AlexNet's convolutional layers 
are built to capture several degrees of abstraction, from simple edges and textures to complex patterns. In 
hyperspectral images, where each pixel contains many spectral bands, these convolutional layers can be 
used to extract important spectral and spatial information. For identifying subtle patterns and 
differentiating across land cover types based on their spectral characteristics, this is very helpful. 

 
Fig 4: Architecture of AlexNet 
Visual Geometry Group - VGG: 
Visual Geometry Group members Andrew Zisserman and Karen Simonyan of the University of Oxford 
developed the VGG convolutional neural network (CNN) architecture. The CNN design is simple and 
effective, utilizing small 3x3 convolutional filters and max pooling layers. DenseNet, ResNet, Inception, 
and many other CNN designs have been built on top of VGG. VGG remains a popular CNN architecture 
for several purposes as object recognition, picture classification, and semantic segmentation. They use 
miniature 3x3 convolutional filters. Training is made easier and the network's computational efficiency 
is increased. Following each convolutional layer are max pooling layers. This lessens the feature maps' size 
and keeps overfitting from happening. It is made up of many layers. This enables the network to extract 
increasingly intricate elements from the pictures. 

 
Fig 5: VGG 16 architecture 
It is computationally costly to deploy and train. It can be challenging to adjust for particular tasks. 
Compared to some more recent CNN architectures, it is less efficient. 
GoogLeNet: 
GoogLeNet,, is a CNN planning that was developed by researchers at Google in the year 2014. On a 
number of tasks, such as semantic segmentation, object detection, and picture classification, GoogLeNet 
has produced state-of-the-art results. Even now, a lot of people still employ this strong CNN architecture. 
Uses inception modules to combine different sized convolutional filters. More efficient than previous 
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CNN architectures. Can learn more complex features from images. obtained cutting-edge outcomes on a 
range of challenges. 

 
Fig 6: GoogLeNet Framework 
GoogLeNet can be computationally spendy to train and deploy. It can be difficult to fine-tune for specific 
tasks. Not as efficient as some newer CNN architectures. 
ResNet: 
Researchers at Microsoft Research unveiled the Residual Network, a convolutional neural network 
(CNN) architecture, in 2015. It has served as a foundation for numerous different CNN designs and was 
the winner of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) that year. ResNet's 
utilization of residual connections is one of its distinguishing features. The output of one layer can be 
added to the input of the subsequent layer via residual connections. This aids in avoiding the vanishing 
gradient issue, which arises when the loss function's gradients get progressively smaller as the network gets 
deeper. ResNet has a very deep architecture. The original ResNet architecture has 152 layers, but there 
are also smaller versions of ResNet with 50, 101, and 182 layers. The first few layers of ResNet are liable 
for mining low-level structures from the images, such as edges and textures.  

 
Fig 7: ResNet Architecture 
DenseNet: 
Researchers from Hong Kong University of Science and Technology unveiled DenseNet, a convolutional 
neural network architecture, in 2016. It has served as a foundation for numerous different CNN designs 
and was the winner of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) that year. The 
usage of dense connections is what distinguishes DenseNet. 
All of the network's layers can be directly connected to one another using dense connections. By doing 
this, the network's information flow is enhanced and the vanishing gradient issue is avoided. DenseNet's 
architecture is incredibly small. Although there are lesser versions of DenseNet with 169 and 201 layers, 
the original DenseNet architecture has 121 layers. Low-level elements like edges and textures are extracted 
from the images by DenseNet's initial layers. High-level information like object components and objects 
themselves are extracted by DenseNet's later layers. On a number of tasks, such as semantic segmentation, 
object detection, and picture classification, DenseNet has produced state-of-the-art results. It is a prevailing 
CNN construction that is still widely used today.  
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Fig 8: DenseNet Architecture 
UNet: 
UNet (short for Universal Network) also a convolutional neural network architecture is used for image 
segmentation. It was first introduced in the paper "U-Net: Convolutional Networks for Biomedical Image 
Segmentation" by Olaf Ronneberger in 2015. UNet makes it more efficient for image segmentation tasks, 
as fully connected layers are not able to handle the spatial information of images. The architecture of 
UNet is U-shaped, with a decreasing path and an expanding path. The contracting path is responsible for 
extracting features from the input image, while the expanding path constructs the output segmentation 
map by up sampling the features. The contracting route consists of a series of convolutional and max 
pooling layers. The max pooling layers reduce the feature maps in the input image, while the 
convolutional layers extract features. The expanding path is composed of convolutional layers and a series 
of up sampling. The convolutional layers up sample the features at the same time that the up-sampling 
layers enlarge the feature maps. Concatenation is performed between the features extracted from the 
contracting path and the up-sampled features from the expanding path. This allows the input image's 
local and global characteristics to be learned by UNet. UNet has demonstrated state-of-the-art 
performance on a variety of image segmentation tasks, such as sequence segmentation, biological image 
segmentation, and instance segmentation. Because of its strength and versatility, this CNN design is still 
in use today. 
V.   Evolutionary Algorithms:   
The genetic representation can be customized to suit the particular problem domain, offering adaptability 
in managing different types of variables. EAs utilize a selection mechanism to pick individuals from the 
population based on their fitness. Individuals with superior performance have a greater probability of 
being chosen, emulating the thought of "survival of the fittest" in normal choice. Crossover is a genetic 
operator that involves merging two parent solutions to produce new offspring. This process fosters 
exploration and facilitates the exchange of advantageous traits between solutions, potentially leading to 
improved solutions. As seen in figure 2, mutation introduces random changes to the candidate solutions, 
protecting against early convergence to poor solutions and maintaining population variety. Until a 
predetermined termination condition is met, such as reaching a maximum number of generations or 
achieving a certain degree of solution quality, EAs continue to evolve the population. 
Feature extraction and feature selection are two popular techniques for reducing the number of 
dimensions in hyperspectral datasets. Principal component analysis (PCA) [50], independent component 
analysis (ICA) [49], and local linear embedding (LLE) [51] are examples of feature extraction approaches 
that convert the original data into a feature space that is less redundant and has fewer dimensions. But 
in the process of compression, they may lose some physical information [52]. However, feature selection, 
a prominent technique for dimension reduction, keeps the most important characteristics while 
maintaining the physical meaning of the original data [53]. Conventional filter approaches use metrics 
like distance, correlation, and information to evaluate the feature subset, which is chosen independently 
of the classifier or classification algorithm [54]. Wrapper methods, on the other hand, employ the 
classifier model to estimate feature subsets, resulting in more accurate selections [55]. Although filter 
methods are computationally efficient, they tend to be less accurate than wrapper methods since they lack 
classifier guidance [56]. The availability of example tags determines whether feature-selection techniques 
are supervised or unsupervised [57]. Although bands without class labels can be chosen using 
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unsupervised approaches, the lack of prior knowledge may make them unstable and biased [58]. On the 
other hand, supervised approaches, which use class labels to help, produce better feature-selection 
outcomes. 

 
Fig 9: U-Net Architecture 
IV. Summery : 

CNN Architecture Dataset Focus Remote Sensing Applications 
AlexNet ImageNet Land cover classification with hyperspectral 

data 
VGGNet ImageNet Land use classification, feature extraction 
GoogLeNet (Inception) ImageNet Land cover classification, multi scale feature 

extraction 
ResNet ImageNet Object detection, feature extraction 
DenseNet ImageNet Land cover classification, feature reuse 
MobileNet It is not dataset 

specific 
Real time object detection, classification with 
resource constraints 

UNet Biomedical Image 
Segmentation 

Road Extraction, building segmentation 

Fully Convolutional Networks 
(FCN) 

Semantic 
Segmentation 

Land cover classification, detailed image 
labelling. 

SegNet Road Scene 
understanding 

Semantic Segmentation in aerial and satellite 
imagery 

DeepLab Semantic 
Segmentation 

Land cover mapping, precise segmentation in 
high-resolution energy. 

Table 1: Summery of various CNN architectures, their dataset focuses and their application in remote 
sensing. 
 

Evolutionary Algorithm Datasets Applications 
Genetic Algorithms (GA) Hyperspectral, Multispectral ➢ Feature Selection for 

classification. 
➢ Optimization of remote 
sensing parameters. 
➢ Land cover 
classification 
➢ Change Detection 

Differential Evolution (DE) Multispectral, Hyperspectral ➢ Feature Selection for 
classification. 
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➢ Spectral Unmixing. 
➢ Land use classification. 
 

Particle Swarm Optimization 
(PSO) 

Satellite, Aerial Imagery  ➢ Feature Selection for 
classification. 
➢ Object Detection. 
➢ Sensor Network 
Optimization. 

Artificial Bee Colony (ABC) Multispectral, Hyperspectral ➢ Selecting features for 
classification. 
➢ Optimization for Image 
segmentation and clustering.  

Cuckoo Search (CS) Hyperspectral, SAR ➢ Feature Selection for 
classification. 
➢ Image registration for 
remote sensing tasks. 
 

Evolutionary Strategies (ES) Multispectral, Hyperspectral ➢ Parameter optimization 
for remote sensing algorithms. 

Genetic Programming (GP) Hyperspectral ➢ Feature Generation for 
improved classification and 
analysis.  

Table 2: Summery of evolutionary algorithms used in remote sensing 
 
V. RESULTS COMPARISON: 
In the domain of hyperspectral image (HSI) band selection, various algorithms have been explored by 
different researchers. Nagasubramanian et al.[59] utilized Genetic Algorithm [GA] to identify the 
optimum subgroup of bands in addition SVM for classifying infested and vigorous trials. They replaced 
the cataloguing accuracy with F1-Score to address the issue of unstable datasets, and their results 
demonstrated that the selected bands provided more informative data related to RGB pictures. A band 
selection technique for HSI classification was presented by Xie et al. [60] and was based on the Artificial 
Bee Colony (ABC) algorithm and enhanced subspace decomposition. After achieving subspace 
decomposition by calculating the importance between adjacent bands, they optimized the combination 
of chosen bands by guiding the ABC algorithm with increased subspace decomposition and maximum 
entropy. Their approach outperformed six related techniques, achieving high classification accuracy. 
Wang et al. [61] suggested a wrapper feature-selection method that reduced the dimension of HSI by 
combining wavelet SVM with an enhanced Ant Lion Optimizer (ALO). To help ALO escape local optima, 
they used Lévy flight, and wavelet SVM improved the stability of the classification outcomes. With fewer 
frequency bands, their approach showed acceptable categorization accuracy. Using chaos operation to 
generate matching indices for the top three gray wolves, Wang et al. [62] further developed a new band 
selection technique that enhanced the Grey Wolf Optimizer's (GWO) optimization capabilities. 
Experimental results showed that this approach had a high classification accuracy and generated a good 
band subset. Using a Discrete Wavelet transform with eight and four taps for feature extraction, Kavitha 
and Jenifa [63] used Particle Swarm Optimization (PSO) to identify the optimal band subsets. SVM was 
then employed as a classifier for effective HSI categorization. A new band selection framework based on 
the binary Cuckoo Search (CS) algorithm was presented by Medjahed et al. [64]. By using a few examples 
for training, they tested CS's optimization abilities under two distinct objective functions and showed 
that it performed better than pertinent methods. By optimizing the objective function's minimal values, 
Su et al. [65] suggested a modified version of the Firefly Algorithm (FA) to address the band selection 
issue. Their approach outperformed PSO and Sequential Forward Selection (SFS) in terms of 
performance. Even with these algorithms' advancements, band selection is still a difficult NP-hard task. 
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The aforementioned algorithms may experience early convergence and optimization stagnation as the 
number of bands rises. 
Some of the false colour and ground truth hyperspectral images are shown below: 

 
Fig 10: (a) Botswana HIS. (b) Ground Truth 
In northwest Indiana, the AVIRIS sensor collected the Indian pines dataset.  

 
Fig 11: (a) Indian Pines.          (b) Ground Truth 
The Salinas dataset remained found by an AVIRIS sensor on Salinas valley.  

 
Fig 12. (a) Salinas HIS. (b) Ground Truth 
Pavia university dataset is a 610x340 pixels image, collected from Pavia University in 2002.  

 
Fig 13. (a) Pavia University. (b) Ground Truth 
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Table 4: Parameters of standard evolutionary algorithms and their values. 
 
VI CONCLUSION: 
In conclusion, the incorporation of deep-learning methods with evolutionary algorithms in 
hyperspectral image processing marks a significant leap forward in our ability to extract meaningful 
insights from complex data. This powerful combination enhances our capacity for precise material 
characterization and classification, with applications spanning agriculture, environmental monitoring, 
and Défense. The dynamic and evolving nature of this field underscores the need for ongoing research 
and exploration. As we continue to unlock the full potential of hyperspectral imaging, we open new 
doors to understanding and leveraging the rich spectrum of electromagnetic frequencies for a multitude 
of scientific and technological advancements. 
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