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Abstract 
This exploratory study employed Geary’s Contiguity Ratio and Moran’s Index to analyze spatial patterns of cities and 
towns within the four Southern States in India which are characterized by similar geographical features and distinct 
demographic characteristics. Using the 2001 Census data of India, it found that the cities and towns in Tamil Nadu, 
Andhra Pradesh and Kerala exhibited a largely random patterns, reflecting the preference of residents in these states 
for smaller cities that are unique. However, the results are mixed for Karnataka, where a clustering pattern is suggested 
by Moran’s I at the 10% level of significance, but a random pattern revealed by Geary’s C. The nuanced findings for 
the latter highlight the need for further research into this state to resolve the conflicting results. 
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1. INTRODUCTION 
Analysing patterns using spatial statistics is important for several reasons, especially when it comes to 
understanding and solving real-world problems, whether related to urban planning, disease management, 
resource distribution, environmental conservation, etc. Such analyses are very effective in identifying 
patterns, relationships, and trends that may otherwise remain hidden in purely nonspatial analysis. The 
two main methods for these analyses are showing features on a map and using statistical measures to see 
how features are clustered, dissimilar across geographic space, or randomly arranged. Statistical measures 
make it easier to compare patterns across different feature sets over time. The real data values for each 
feature are used in place of maps, resulting in more accurate identification of patterns without the 
influence of how the data is displayed. This study builds on the work of Kumar and Subbarayan (2011) 
by employing Geary’s Contiguity Ratio and Moran’s Index to analyze the patterns across four states in 
South India. In their 2011 study, the authors examined Andhra Pradesh and applied Zipf’s law, which 
assumes that the city size is represented by a Pareto distribution. In contrast, the techniques used in this 
study do not assume any distribution and are more effective in terms of analyzing spatial relationships 
when compared to Zipf’s law used by Kumar and Subbarayan (2011). Importantly, our study also 
considers multiple states in India, including Andhra Pradesh. To the authors’ knowledge, no previous 
work employed these techniques before to study the spatial patterns of cities and towns in India. The 
structure of the paper is as follows: Section 2 provides a detailed account of the urban scenario in the 
southern states of India. Section 3 discusses the theoretical aspects involved in calculating indices used to 
study the spatial patterns of cities and towns. Section 4 presents the empirical findings, followed by 
Section 5, which discusses the conclusions based on the study's results. 
 
2. REVIEW OF LITERATURE 
In spatial statistics and analysis of geographic phenomenon, various tools are used to explore patterns of 
distribution and spatial relationships. Among these are, Zipf’s law, Geary’s Contiguity Ratio and Moran’s 
Index. In particular, these indices are used to explore city size distribution and also allow for in-depth 
analysis of spatial relationships between observations, such as the spatial clustering or the level of 
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interaction that may exist in spatial data.  Auerbach (1913) which applied the Zipf’s law to study city size, 
found an inverse relationship between the population of cities and their ranking. Since the pioneering 
work of Auerbach, this technique has been successfully employed to describe city-size distribution across 
various countries (Gan et al, 2006) as well as specific countries such as the United States (Mills and 
Hamilton, 1994), France (Guerin-Pace, 1995), China (Song and Zhang, 2002), India (Kumar and 
Subbarayan, 2011) etc at different points in times. Notwithstanding its utility in describing overall city 
size distribution, Zipf’s law has been challenged by both empirical and theoretical research. In a 
comprehensive review of the literature, Arshad et al (2018) found that Zipf’s law: (i) is not always 
observable even as an approximation of city size distribution, (ii) is inadequate in terms of describing the 
rank-size relationship, and (iii) the hypothesis of the law is more often rejected resulting in other 
distributions being sought.  Importantly, the Zipf’s law is inadequate in terms of analysing geographical 
patterns and understanding how spatial variables interact with each other, which is where Geary’s 
Contiguity Ratio (GCR) and Moran’s Index (MI), are extremely useful. The former provides insights into 
local spatial relationships, especially when neighbouring areas are more likely to be similar or dissimilar 
due to geographical proximity. The latter, on the other hand, offers important global overarching 
perspectives on spatial clustering. The Geary’s Contiguity Ratio (GCR) was introduced by Geary (1954). 
In that study, the author illustrated the utility of the GCR using data for 26 counties of the Republic of 
Ireland. Since the publication of this seminal work, the technique has been used in numerous countries 
and a wide range of fields. Getis and Ord (1992), for instance employed the GCR to investigate the 
sudden infant death syndrome in Counties in North Carolina and the dwelling unit prices in San Diago. 
In this study the authors argued that the GCR is effective in terms of identifying pockets of dependence 
that may complement the Moran’s I.  Comparing the Getis Index (Gi) with GCR, Mynt et al. (2007), 
found evidence that these statistical techniques were effective when measuring the variability of complex 
urban land cover and land use. The study revealed that the Gi identified hot spots and cold spots more 
accurately than the Geary’s C. However, Mynt et al (2007) argued that the Gi was not as effective as the 
Geary’s C in detecting degree of dispersion or clustering. Examining various types of crimes in Turkey, 
Erdogan et al (2011), found the clustering of these activities, except for crimes related to firearm and 
knifes. According to the authors, the findings confirmed that geographical proximity is relevant in 
explaining criminal activities. Griffith and Chun (2022), compares the Moran’s I with the GCR and 
introduces the Geary scatterplot to distil properties of the GCR that should encourage its utilisation by 
spatial econometricians and statisticians. Applying the indices to 2017 mortality rates in the United 
States, Griffith and Chun confirmed that the GCR is more closely aligned with geostatistics while the 
Moran’s I is aligned with spatial autoregression. The authors argued that the GCR should be a standard 
computation in standard as Moran’s I and be supplemented with GR graphics. More recently, Wywial 
(2025) applied generalised GCR and MI to several economic variables in neighbouring Polish voivoeships. 
The study confirmed that the generalised coefficients captures the degree of similarities of neighbouring 
objects based on the distance between the observed variables in the observation vectors.  Like the GCR, 
the Moran’s Index (MI), has been used in spatial analysis to examine the degree to which adjacent areas 
exhibit similar or dissimilar patterns. Indeed, this technique is more widely employed spatial analysis 
when compared with the GCR (Chen, 2013).  
Bai et al. (2012) examined the inter-regional growth spillovers in China using the Moran’s I. It found 
positive spillover effects among in China. Using the Moran’s I, Ferreira (2020), found that population 
that was vulnerable to the COVID-19 pandemic were spatially distributed in districts with lower salaries, 
higher concentration of slums and lower population with residents 60 years and older. Arguing that 
Moran’s I was also successfully employed to in hotspot identification of diseases, environmental planning 
and environmental, Zhang et al., (2008), used this spatial statistical tool to examine pollution hotspots in 
Galway City in Ireland. Meanwhile, de Almeida et al (2005), employed the Moran’s I to examine the 
distribution of crime rates in 750 municipalities in Brazil, found that crime rates were distributed non-
randomly. Ratcliffe (2010), also employed the Moran’s I to examine the pattern of crime in Philadelphia. 
It found evidence of clustering of robberies in the north and inner northeast and the southwest in the 
city in Philadelphia. More recently, dos Santos et al. (2024), found a high positive correlation between 
deforestation and CO2 emissions. The study also showed that above average temperature were identified 
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in municipalities with high deforestation rates. Based on these findings, do Santos et al (2024) argued 
that Moran’s I is an efficient tool that can be applied for similar studies to guide policy decisions to 
combat deforestation in across the world.  
Based on the foregoing, the GCR and Moran’s I are used in a variety of contexts and countries to explore 
spatial patterns. Notwithstanding the extensive use of these tools, their application in India is sparse. This 
exploratory study will enrich the literature by applying the GCR and MI to patterns of cities in India. 
3. The Urban Conditions of South Indian States 
India provides a valuable source of data for urban studies through its census records (Kumar and 
Subbarayan, 2011). These records are available at national, state, and district levels and offer important 
insights into rural and urban areas, showing the changes that have happened over the past century. Census 
data is essential for researchers and planners, as it reveals detailed information about demographic, social, 
and economic changes. It is also useful for studying trends and patterns over time. This data helps us 
better understand urban development and changes in different regions of India. 
3.1 South India's Demographic Profile 
South India includes the states of Andhra Pradesh, Karnataka, Kerala, and Tamil Nadu, along with the 
union territories of Lakshadweep and Puducherry. Together, these states are approximately 635,780 
square kilometres (or 245,476 square miles) and cover 19.31% of India’s land area. Located on the 
Deccan Plateau, South India is bordered by the Arabian Sea to the west, the Indian Ocean to the south, 
and the Bay of Bengal to the east. These states registered growth in population between 1991 and 2001. 
The urban populations of Tamil Nadu (43.68%) and Karnataka (33.98%) were above the national average 
for urban populations (27.78%), whereas Andhra Pradesh (27.08%) and Kerala (25.97%) were below this 
average.  It is important to note that various socioeconomic indicators for these states were above the 
national average, indicating that the social well-being and overall quality of life of residents in these states 
were superior. Table 1 shows the per capita GDP for the four states in the study area exceeded the national 
average. This suggest that the average earnings of residents in South India were higher than average for 
India.  The percentage of the population living below the poverty line was lower than the national average, 
with Tamil Nadu (22.5%), Andhra Pradesh (15.8%), Karnataka (25%), and Kerala (15%), compared with 
the national average of 27.5% (table 1). This suggests that fewer residents in these states live below the 
poverty line than the overall average for the country (table 1). The percentage of residents with access to 
electricity in these states surpassed the national average (table 1). Except for Kerala, the percentage of 
residents with access to safe drinking water exceeded the national average (table 1). 
Table 1: Demographic Profile of South Indian States and India: 2001 Census Insights 

State Population 
Growth 
Rate (%) 

Urbanization 
Rate (%) 

Per 
capita 
GDP (in 
Rs) 

Literacy 
Rate (%) 

Poverty 
Rate (%) 

Access to 
Electricity 
(%) 

Access to 
Safe 
Drinking 
Water 
(%) 

Andhra 
Pradesh 

13.9 27.08 17,195 60.5 15.8 59.65 80.10 

Karnataka 17.3 33.98 18,344 66.6 25.0 72.16 84.60 
Kerala 9.4 25.97 20,094 73.5 22.5 71.18 85.60 
Tamil 
Nadu 

11.2 43.68 20,972 90.9 15.0 65.53 23.40 

India 21.3 27.78 16,688 64.8 27.5 43.53 77.90 
Source: Preliminary Census Report 2001 
3.2 Cities and Towns in South Indian Districts 
The 2001 Census categorized the urban population into five distinct classes as follows: 
         Class  -      Population 
I  -  Over 100,000 
II  -  50,000 to 100,000 
          III  -  20,000 to 50,000 
IV  -  10,000 to 20,000 
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V  -  5,000 to10, 000 
VI  -  Less than 5,000 
 
Table 2 shows the number of cities and towns in the four South Indian states, according to the 2001 
Census. Based on the table, Tamil Nadu has the largest number of cities and towns (832), followed by 
Karnataka (270), then Andhra Pradesh (211) and Kerala (159).  An important observation is that Tamil 
Nadu predominantly comprised Class IV Cities and Towns, which accounted for 40.8% of the total. 
However, Class III Cities and Towns were the most prevalent in Andhra Pradesh (26.5%), Kerala (45.3%) 
and Karnataka (39.3%).  
Table 2: Number of Cities and Towns by Size in South Indian States – 2001 Census 

 >100,000 
 
(Class I) 

50,000 
-1,00,000 
(Class II) 

20,000 
-50,000 
(Class III) 

10,000 
-20,000 
(Class IV) 

5,000 
-10,000 
(Class V) 

< 5000 
 
(Class VI) 

Total 

Tamil Nadu 26 56 183 340 214 13 832 
Andhra Pradesh 47 52 56 33 21 2 211 
Kerala 10 24 72 37 15 1 159 
Karnataka 30 28 106 61 37 8 270 

Source: Census 2001 
Figures 1(a), 1(b), 1(c), and 1(d) depict the maps of Tamil Nadu, Andhra Pradesh, Kerala, and Karnataka, 
respectively. Each map lists the names of the districts, which are the administrative units of the states. 
Additionally, tables 3(a), 3(b), 3(c), and 3(d) shows the distribution of the cities and towns within these 
districts. Based on these tables, cities/towns in within the districts in Tamil Nadu exhibit clustering while 
the cities/towns in the districts of the other states are more widely dispersed. On average, the number of 
towns and cities per district in Tamil Nadu was approximately 26, compared with an average of 9 per 
district in Andhra Pradesh, 11 in Kerala and 10 in Karnataka. 
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Table: 3 (a) District wise Number of Cities and Towns in Tamil Nadu 

S.No District No. of Cities and Towns 
1 Thiruvallur 32 
2 Chennai 1 
3 Kancheepuram 56 
4 Vellore 49 
5 Dharmapuri 11 
6 Krishnagiri 10 
7 Tiruvannamalai 16 
8 Viluppuram 18 
9 Salem 45 
10 Namakkal 28 
11 Erode 58 
12 The Nilgiris 18 
13 Coimbatore 49 
14 Tiruppur 39 
15 Dindigul 29 
16 Karur 15 
17 Tiruchirappalli 25 
18 Perambalur 5 
19 Ariyalur 4 
20 Cuddalore 23 
21 Nagapattinam 12 
22 Thiruvarur 11 
23 Thanjavur 29 
24 Pudukkottai 12 
25 Sivaganga 15 
26 Madurai 25 
27 Theni 28 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 5, 2025 
https://theaspd.com/index.php 

187 
 

28 Virudhunagar 27 
29 Ramanathapuram 11 
30 Thoothukkudi 26 
31 Tirunelveli 45 
32 Kanniyakumari 60 
 Total 832 

Table: 3(b) District wise Number of Cities and Towns in Andhra Pradesh 
 

S.No District No. of Cities and Towns 
1 Adilabad 15 
2 Nizamabad 3 
3 Karimnagar 7 
4 Medak 11 
5 Hyderbad 3 
6 Rangareddi 17 
7 Mahbubnagar 7 
8 Nalgonda 9 
9 Warangal 2 
10 Khammam 9 
11 Srikakulam 6 
12 Vizianagaram 12 
13 Visakhapatam 9 
14 East Godavari 14 
15 West Godavari 8 
16 Krishna 7 
17 Guntur 11 
18 Prakasam 8 
19 Nellore 5 
20 Cuddapah 12 
21 Kurnool 10 
22 Anantapur 11 
23 Chittoor 15 
 Total 211 

Table: 3(c) District wise Number of Cities and Towns in Kerala 
 

S.No District No. Of Cities and Towns 

1 Alappuzha 11 

2 Ernakulum 25 

3 Idukki 2 

4 Kannur 45 

5 Kasaragod 7 

6 Kollam 3 

7 Kottayam 6 
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8 Kozhikode 13 

9 Malappuram 5 

10 Palakkad 5 

11 Pathanamthitta 3 

12 Thiruvananthapuram 5 

13 Thrissur 28 

14 Wayanad 1 

 Total 159 
Table: 3(d) District Wise Number of Cities and Towns in Karnataka 
 

S.No District No. Of Cities and Towns 
1 Belgam 22 

2 Bagalkot 12 

3 Bijapur 6 

4 Gulbarga 17 

5 Bidar 6 

6 Raichur 9 

7 Koppal 5 

8 Gadag 9 

9 Dharwad 6 

10 Uttar kannada 13 

11 Haveri 9 

12 Bellary 11 

13 Chitradurga 6 

14 Davanagere 6 

15 Shimoga 9 

16 Udupi 6 

17 Chikmagalur 9 

18 Tunkur 11 

19 Kolar 12 

20 Bangalore 19 
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4. METHODOLOGY  
4.1. Binary Weight Matrix 
We started by selecting a district and identifying its neighbouring districts. From this information, we 
created a binary weight matrix for each state. The spatial binary weight matrix for a specific state is shown 
in Table 4.1. We have developed these matrices for different states, and they are essential for calculating 
indices that help study the spatial patterns of cities and towns in South India. 
Table 4.1: Binary Weight Matrix 

     j            
i 

1 2 … j … n 

1 x11 x12  x1j  x1n 
2 x21 x22  x2j  x2n 
. 
. 
.  

      

i xi1 xi2  xij  xin 
       
n xn1 xn2  xnj  xnn 

 
  In the above table i, j = 1, 2 , … n. Suppose xij = 1  if j is a neighborhood of i and xij = 0   
  Otherwise. 
Geary's Coefficient is a statistical measure of spatial autocorrelation that checks how similar or different 
values are at nearby locations. Unlike Moran's Index, which focuses on the covariance of values, Geary's 
Coefficient looks more closely at the differences between neighboring values. Geary's Coefficient focuses 
on the differences between values of paired observations. This approach allows Geary's Coefficient to 
assess the extent of variation among values in adjacent areas. 
4.2. Geary’s Coefficient 
Geary (1954) has given the following expression for computing the following index 
 

C =
(n−1) ∑ ∑ Wij(xi−xj)2

ji

2[∑ ∑ Wij](xi−x̅)2
ji

     … (1) 

 
The weight value is applied in both the numerator and denominator to represent the total differences in 
attribute values between neighbouring features. This approach highlights spatial relationships, unlike 
standard measures like variance. By multiplying the differences by weights, it becomes clear how close or 
far apart similar values are. When the difference between neighbouring features is small, it indicates that 
similar values are clustered closely together. A large difference means similar values are less likely to be 
near each other. Geary’s Coefficient ranges from 0 to 2. Values near 0 show clustering, while values above 
1 indicate dispersion. Geary’s Coefficient behaves in the opposite way to Moran’s Index. 

21 Bangalore (Rural) 10 

22 Mandya 8 

23 Hassan 9 

24 Dakshina Kannada 20 

25 Kodagu 5 

26 Mysore 11 

27 Chamarajanagar 4 

 Total 270 
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4.3. Moran’s Index 
The calculation is derived from the cross-products of the deviations from the mean, specifically for n 
observations of a variable x at positions “i” and “j“. 
 

I =
n ∑ ∑ Wij(xi−x̅)ji (xj−x̅)

S0 ∑ (xi−x̅)2
i

                       … (2) 

where “ x  represents the mean of the variable x”. 
In the weight matrix of the general cross-product statistic, let Wij represent he elements such that 
• Wij = 1 if the locations “i” and “j” are adjacent. 
• Wij = 0 if they are not adjacent. 
• By convention Wii = 0. 
 
1. Positive Sum of Cross-Products: If there are more pairs of similar values than dissimilar ones, the sum 
of the cross-products will be positive. This means that “I” will be greater than 0, indicating that identical 
values are grouped. 
2. Negative Sum of Cross-Products: If there are more pairs of dissimilar values, the sum of the cross-
products will be negative, making “I” less than 0. This indicates that the values are dispersed. 
Goodchild (1986) created a table showing possible values of Geary’s Coefficient and Moran’s Index to 
help identify these patterns (see Table 4.2). 
Table 4.2: Identification of Pattern 

Geary’s 
Coefficient  

Moran’s Index Pattern 

C < 1 I > 0 Clustered (similar values close together) 
C = 1 I = 0 Random (no clear pattern) 
C > 1 I < 0 Dispersed  (high and low values are spread out) 

4.4 Testing Geary's Coefficient 
The distribution of Geary's Coefficient can be analyzed through analytical expectations and variances, as 
articulated by Cliff and Ord (1973). Such analyses depend on the neighborhood structure established by 
the spatial weighting matrix. Both Geary's Coefficient and Moran's Index follow a normal distribution. It 
therefore means that the results are more predictable and reliable the larger the sample size. This attribute 
significantly enhances the reliability of statistical analyses in the context of spatial studies. 
4.5 Determining the Expected Value of Geary's Coefficient 
When there is no spatial autocorrelation, according to the null hypothesis, the expected value of Geary's 
Coefficient is 1. This means that if data values are randomly spread across the area, Geary's C should be 
equal to 1. 
4.6 Variance of Geary's Coefficient 
Assuming normality, we can calculate the variance of Geary's C. Cliff and Ord introduced the formula 
for this variance in their 1973 study. This formula helps us understand how Geary’s Coefficient is 

distributed under the null hypothesis and is important for statistical testing,    VarN(C) [
1

2(n+1)S0
2 {(2S1 +

S2)(n − 1) − 4S0
2}] 

 
The expected value of Moran’s Index is given by 

EN(I) = −
1

(n − 1)
 

 
Under the assumption of normality, the variance of Moran's I, represented as VarN(I), is calculated as 
follows, 

 VarN(I) = [
1

(n2 − 1)S0
2

{(n2S1 − nS2 + 3S0
2)}] − EN(I)2 

The variables outlined in the variance equation are specified as: 
n = Number of observations/features 
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S0 = ∑ ∑ Wij = The Sum of the spatial weight matrix

n

j=1

n

i=1

 

 

S1 =
∑ ∑ (Wij + Wji)

2n
j=1

n
i=1

2
= If the weight matrix is symmetric,  

then S1 = 2 ∑ ∑ Wij

n

j=1

n

i=1

 

S2 = ∑(Wi + Wi)
2 = The sum of the (ithcolumn + ithrow)2 of weight matrix 

n

i=1

 

 
If symmetric,  then S2 = 4 ∑ Wi

n
i=1  

 
4.7 Z-score and Inference for Geary’s Coefficient and Moran’s Index 
(i) Geary’s C 
We use the test statistic 

  
)(CS

CC
Z

EE

E0

C

−
=    where  

C0 : The observed value of Geary’s Coefficient 
CE : The expected  value of Geary’s Coefficient 
SE(CE) : Standard deviation of Geary’s Coefficient 
 
(ii) Moran’s Index 
Here also we use the test statistic 

)(IS

II
Z

EE

E0

M

−
=  

where 
C0 : The observed value of Moran’s Index 
CE : The expected value of Moran’s Index 
SE(IE) : Standard deviation of Moran’s Index 
5. Analysis of the Results 
Using the Binary Weight Matrix, we calculated Geary’s C and Moran’s I values for the states, which are 
shown in Table 5.1. The results revealed that Geary’s Coefficient is positive across all four states. 
Specifically, the results suggest a clustering pattern for Tamil Nadu, random pattern for Andhra Pradesh 
and Karnataka and dispersed pattern for Kerala. The Moran’s Index statistic presents negative values for 
Andhra Pradesh, Kerala, and Karnataka, while Tamil Nadu records a positive value. Based on the Moran’s 
I, there is a clustering pattern for Tamil Nadu, and random pattern for the other states. Except for Kerala, 
the results are consistent for Geary’s C and Moran’s I. In order to test the statistical significance of the 
results, Z-score and associated p-values are examined. 
Table 5.1: Geary’s C and Moran’s I for the Cities and Towns in the South Indian States 

S.No State Geary’s C Moran’s I 
1 Tamil Nadu 0.772  0.078  
2 Andhra Pradesh 1.001  -0.185  
3 Kerala 1.111  -0.122  
4 Karnataka  1.002  -0.173  

 
Table 5.2 provides the parameters n, S0, S1 and S2, which are utilized in the computation of Mean and 
Variance for Geary’s C and Moran’s I for each of the four states. 
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Table 5.2: Mean and Variance of Geary's C and Moran's I for Cities and Towns in South Indian States 
S. 
No 

State n S0 S1 S2 Mean Variance 
Geary’s 
C 

Moran’s I Geary’s C Moran’s I 

1 Tamil Nadu 32 138 273 2788 1 - 0.032 0.022 0.012 
2 Andhra Pradesh 23 84 168 1432 1 - 0.045 0.032 0.019 
3 Kerala 14 44 88 616 1 - 0.070 0.044 0.032 
4 Karnataka  27 122 244 2416 1 - 0.038 0.019 0.013 

 
Table 5.3 contains the value of Z-score and p-values for the 4 states. The pattern emerged for each state 
on the basis of the Z-scores and associated p-values are also presented in Table 5.3. Based on these results, 
Tamil Nadu, Andhra Pradesh, and Kerala exhibited random patterns according to the Geary’s C and 
Moran’s I. However, the results for Karnataka are mixed. The Geary’s C suggests a random pattern, but 
Moran’s I revealed a clustering pattern at the 10% level of significance (Z-score -1.852, p-value 0.06). 
Table: 5.3 Z-Score and Spatial Pattern of Cities and Towns in South Indian States 

S.No State Z-Score Pattern 
Geary’s C Moran’s I 

1 Tamil Nadu    -1.541 
(0.12) 

1.004 
(0.32) 

Random 

2 Andhra Pradesh 0.006 
(0.99) 

-1.014 
(0.31) 

Random 

3 Kerala  0.526 
(0.59) 

-1.109 
(0.26) 

Random 

4 Karnataka  0.044 
(0.96) 

-1.852 
(0.06) 

Mixed results 

 
Figures 2(a), 2(b), 2(c), and 2(d) depict the spatial patterns of Tamil Nadu, Karnataka, Andhra Pradesh, 
and Kerala. From these figures, it is clear that spatial patterns of all the southern states were generally 
random. This is consistent with the results from Greary’s C and Moran’I. 
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6. CONCLUSION 
In this paper, we analyzed the spatial patterns of cities and towns in the southern states of India. Using 
the 2001 Census and the Geary’s C and Moran’s I and 2001, we found the following: 
(i) Tamil Nadu was the Southern state with the largest number of cities and towns, followed by Karnataka, 
then Andhra Pradesh and Kerala.   
(ii) Class IV Cities and Towns were the most prevalent in Tamil Nadu, while the other states 
predominantly comprised Class III Cities and Towns.  
(iii) The spatial patterns in Tamil Nadu, Andhra Pradesh and Kerala exhibited a largely random 
arrangement of cities and towns. This conclusion is supported by the results from Geary’s C and Moran’s 
I, which revealed this pattern. These results suggested that the cities and towns are not clustered together 
but are rather spread across the respective districts. This may be due to several factors, including the 
preference for small towns and cities as opposed to large urban centers.  
(iv) In contrast, the Karnataka exhibited a dispersed pattern based on the Geary’s C but clustering 
according to Moran’s I at the 10% level of significance.  
Based on these findings there is conclusive evidence that the spatial pattern is random for three of the 
four south Indian States, while for Karnataka the evidence is mixed. The latter results highlight the need 
for further investigation into the reason(s) for the conflicting results. 
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