

Anti Bacterial Activity Of *Leucaena Leucephala* Seeds Extract Against Pathogenic Bacteria

Eman Muslim Ganem¹, Wejdan Ridha Al-Awani², Basheer Hamza Al-Alwani³

University of Babylon , College of Science, Biology Department

iman.hamza167@student.uobabylon.edu.iq¹, sci.wijdan.r.taj.al-daan@uobabylon.edu.iq²,

basalwani73@gmail.com³

Abstract

Introduction and aim. The development of urgent therapeutic alternatives is necessary to address the global problem of pathogenic bacteria, which can cause a wide range of diseases, from simple to opportunistic, and are resistant to many antibiotics. The most significant types of these bacteria are *Staphylococcus aureus*, *Escherichia coli*, and *Klebsiella pneumoniae*. Medicinal plants are one type of alternative. The antibacterial, antioxidant, and anticancer qualities of *Leucaena leucocephala* seeds have been utilized, and studies have validated their significance in lowering our reliance on antibiotics. **The aim was to** determine the antibacterial activity of aqueous, hexane and ethanol extract of *L. leucephala* seed on *S. aureus*, *E. coli* and *K. pneumonia*. Study the synergistic of ethanolic extract and antibiotics (CAZ/CIP/OFX/) against antibiotic-resistant bacteria.

Material and methods: In the Babylon Governorate, 120 bacterial isolates from various clinical specimens (urine, wounds, and brine) were described in this investigation between September 2024 and February 2025. Each isolate was cultivated on both MacConkey agar and blood agar. The identification of these isolates was carried out using a combination of methods, including microscopic examination, biochemical assays, and the VITEK automated system. The extracts were analyzed using GC-MS (Gas Chromatography-Mass Spectrometry), High-Performance Liquid Chromatography (HPLC) to identify and quantify phenolic compounds, tannins, and vitamin E. The antibacterial activity was assessed using the well diffusion method across a range of concentrations.

Results : three major pathogenic bacteria from 120 clinical isolates collected in Babylon Governorate: *S. aureus* (50 isolates), *E. coli* (35 isolates), and *K. pneumoniae* (35 isolates). *S. aureus* was prevalent in burn (50%) and wound (50%) samples, and also found in urine (33.33%). *E. coli* was notably high in urine (35.56%), with lower presence in wound (13.3%) and burn (5%) specimens. *K. pneumoniae* was exclusively isolated from urine samples (38.89%). Gram staining confirmed 50 positive isolates as *S. aureus* and 70 negative isolates (35 *E. coli* and 35 *K. pneumoniae*). Biochemical tests provided distinct profiles for the identified bacteria. All *S. aureus* isolates were catalase-positive and showed mannitol fermentation. Conversely, *E. coli* and *K. pneumoniae* were catalase-negative. The Indole test was positive only for *E. coli*, while *S. aureus* and *K. pneumoniae* were negative. For the Methyl Red (MR) test, *E. coli* was positive, and *S. aureus* and *K. pneumoniae* were negative. The Citrate test was positive for *K. pneumoniae*, but negative for *S. aureus* and *E. coli*. the antibacterial efficacy of *L. leucocephala* seed extract using different solvents (aqueous, ethanolic, hexane) against the isolated bacteria. The aqueous extract showed no inhibitory effect against *S. aureus* or the Gram-negative bacteria (*E. coli* and *K. pneumoniae*).

Ethanolic extract exhibited significant inhibitory effects against *S. aureus*, with mean inhibition zone diameters ranging from 14.5 mm to 18 mm across various concentrations (25% to 100%). However, neither the ethanolic nor the hexane extracts showed any inhibitory effect against *E. coli* or *K. pneumoniae*, suggesting their active compounds may not penetrate Gram-negative bacterial cell membranes. The hexane extract showed limited efficacy against *S. aureus*, with a slight effect only at 25% concentration (16 mm inhibition zone). Ethanol was identified as the optimal solvent for extracting active compounds with potent antimicrobial properties, particularly against *S. aureus*. 50 isolates of *S. aureus* were tested against 11 common antibiotics. The highest resistance was observed against Cefuroxime (CX) at 54%, followed by Tetracycline (TE) at 30%, and Linezolid (LZ) at 26%. Moderate resistance was seen against Ciprofloxacin (CIP) at 24% and Azithromycin (AZM) at 22%. The isolates showed least resistance to Rifampicin (RA) and Levofloxacin (LEV) at 12% each, and Cefotaxime (CPT) at 6%. Conversely, *S. aureus* isolates demonstrated high sensitivity to RA (88%), Gentamicin

(CN) (84%), Ofloxacin (OFX) (80%), and CPT (74%). Combining the ethanolic extract of *L. leucocephala* seeds with certain antibiotics showed a synergistic effect against *S. aureus*. The extract significantly enhanced the activity of Ciprofloxacin (CIP), increasing its inhibition zone diameter from 13 mm to 30 mm, and Ofloxacin (OFX), increasing it from 10 mm to 25 mm. A less pronounced, but still suggestive, synergistic trend was observed with Cefazolin (CAZ), where the inhibition zone increased from 0 mm to 10 mm. This indicates that the extract can augment the effectiveness of certain antibiotics against *S. aureus*. GC-MS analysis of the ethanolic extract of *L. leucocephala* seeds identified 12 bioactive compounds, including Methyl linoleaide, Hexadecanoic acid, methyl ester, and Diisooctyl phthalate. HPLC analysis revealed significant concentrations of phenolic compounds (263.9 mg/100gm) and a lower concentration of tannins (1.58%). Vitamin E was also detected at 0.36%. These compounds likely contribute to the observed antimicrobial activity, particularly the robust efficacy against *S. aureus*.

Conclusions: This study, conducted in Babylon Governorate, revealed the prevalence of *S. aureus*, *E. coli*, and *K. pneumoniae* as key causative agents in clinical infections. *S. aureus* was notably prevalent in burn and wound samples, while *E. coli* and *K. pneumoniae* were primarily isolated from urine. Traditional methods proved effective for bacterial identification. The ethanolic *L. leucocephala* seed extract showed potent inhibitory activity against *S. aureus* but no effect on Gram-negative bacteria. Importantly, the ethanolic extract demonstrated a synergistic effect when combined with certain antibiotics (e.g., ciprofloxacin, ofloxacin) against *S. aureus*, suggesting enhanced therapeutic potential. Phytochemical analysis confirmed the presence of bioactive compounds in the extract, supporting its therapeutic promise as an antimicrobial or an adjunct therapy against *S. aureus* infections.

Key words: Bacteria , Antibiotics , Resistance ,Antibacterial activity ,*leucaena leucephala* seed

INTRODUCTION

Most pathobacteria are a few microns in size and originate from a range of environmental sources, such as food, water, soil, animals, and human bodies. They are classified as membrane-bound organelles, which are prokaryotic bacteria without a nucleus or mitochondria. These sources can cause a number of diseases¹ . Numerous cells, tissues, organs, and bodies can be impacted by bacterial infections, which can result in a number of clinical illnesses² . Gram-positive, catalase-positive cocci that belong to the *Staphylococcus* ae family are the most common pathogenic bacteria. They are facultative, non-motile, spore-forming anaerobes with a diameter of 0.5 to 1.5 μm that typically form in clusters³ . High salt concentrations can support its growth, and golden colonies are frequently formed. A wide range of temperatures is ideal for this facultative anaerobe to flourish in. Positive catalase and coagulase responses, novobiocin sensitivity, and mannitol fermentation are important characteristics for identification⁴ . Bloodstream infections have a significant fatality rate, making *S. aureus* a major cause of infections in clinical settings⁵ .

Gram-negative In addition to commensally inhabiting the gut, *E. coli* bacteria, which are members of the Enterobacteriaceae family, can cause a number of ailments, including major invasive disorders⁶ . It is a major contributor to newborn meningitis and bacteremia in high-income nations motility is peritrichous and grows best at 37°C. Extended-spectrum beta-lactamase (ESBL) synthesis is a major resistance mechanism of multidrug-resistant *E. coli* bacteria⁷ which provide a global treatment challenge and contribute to rising morbidity and death globally⁸ . *K. pneumoniae* is a Gram-negative encapsulated bacteria that can infect different parts of the body⁹ . This bacterium is widely found in nature and thrives in a variety of settings. It has the ability to colonize human mucosal surfaces, especially those in the gastrointestinal tract, asymptotically. Nonetheless, *K. pneumoniae* is known to have the ability to cause a variety of diseases, making it a pathogen¹⁰ .

The main components necessary for *K. pneumoniae*'s pathogenicity are polysaccharide capsules and lipopolysaccharide. Additionally, *K. pneumoniae* has the capacity to create biofilms¹¹ . the quest for new sources of natural inhibitors that can increase the effectiveness of current treatments is increasingly critical. In this perspective, the plant *L. leucocephala* (Lam.) De Wit. of the family Fabaceae presents a promising subject of study. Other names for this perennial evergreen tree include *Acacia leucocephala*, *Mimosa leucocephala*, and *L. glabrata*¹² . is beneficial as a human food source because its seeds are high in proteins,

carbs, and fats. It can also be used in cooking and as a coffee substitute ¹³ as well as for livestock feed and soil improvement. It may also have therapeutic uses. According to research, this plant's natural compounds may be a promising source of inhibitors that alter the way antibiotics work against bacteria that are resistant to multiple drugs. This could be done through mechanisms like bacterial cell wall modification, efflux pump inhibition, cell division inhibition, protein synthesis, and gene expression ¹⁴.

Aim

The aim was to determine the antibacterial activity of aqueous, hexane and ethanol extract of *L. leucephala* seed on *S. aureus*, *E. coli* and *K. pneumonia* and Study the synergistic of ethanolic extract and antibiotics (CAZ/ CIP/OFX/) against antibiotic_resistant bacteria.

Materials and Methods

Bacteria used in the study

S. aureus, *E. coli* and *K. pneumonia*

Plants used in the study

Seeds of *Leucaena leucocephala* were collected from the Al-Wardiya area, Babylon Governorate, Iraq, during the period spanning from 2024 to 2025.

preparation of *Leucena lecocephala* seed Extracts

L. leucocephala seeds were collected from Babylon Governorate, Iraq. Using a 1:10 (w/v) mixture of 100% water, 70% ethanol, and 70% hexane as solvents, 50 grams of powdered *L. leucocephala* seeds were macerated for 24 hours. A rotary evaporator was then used to evaporate the filtrate for 90 minutes at a temperature equivalent to the solvent's boiling point. Vial bottles were used to store the resultant extracts¹⁵.

Detection of pathogenic bacteria from Diverse Clinical Isolates Using Traditional Methods

In a study involving 120 bacterial isolates collected across different age groups, over a period from September 2024 to February 2025, from various hospitals in Babylon Governorate. The urine specimen used in this investigation was collected in a sterile, clean container and brought to the lab in a maximum of two hours. Burn and wound swabs (wound and burn specimens, which are retrieved from patients using a gel swab and sent to the laboratory) were gathered from patients who were admitted to Babylon hospitals. Before being cultured on various media for the identification of *E. coli*, *K. pneumonia*, and *S. aureus*, such as blood agar, MacConkey agar, and Manitol salt agar, using a sterile loop spread on the surface of agar media, all specimens were grown on Brain Heart Infusion Broth Medium and incubated at 37 C° for 24 hours ¹⁶. Purified colonies were stored at -20°C in brain-heart infusion broth with glycerol ¹⁶. Following the final diagnosis of the specimens, the patients were of both sexes and varying ages.

Biochemical Tests

Biochemical tests used in this study

Catalase Test : Added 1-2 drops of 3% H₂O₂ and mixed with bacterial colonies that have been moved from cultivation. A positive test result was indicated by the development of gas bubbles¹⁷.

Oxidase Test: After being soaked in 1% oxidase reagent, filter paper was allowed to dry. Using a sterile inoculation loop, a freshly made pure culture was incubated for 18 to 24 hours on filter paper before being monitored for color changes. When exposed to oxidase reagent, organisms that are positive oxidase emit a purple hue¹⁷.

Mannitol Fermentation Test: Each bacterial isolate was inoculated with mannitol salt agar for this test, which was then incubated for 24 hours at 37°C. The sample was positive when the color turned yellow¹⁷.

IMVC test

Indole test : A bacterial culture that had been evaluated overnight was added to peptide water medium, which was then incubated for 24 hours at 37 C°. Ten drops of Kovac's reagent were then added straight to the culture tube; a successful outcome is indicated by the red ring that forms on top of the broth following a gentle shake. The purpose of this test is to determine whether *E. coli* is capable of producing the tryptophanase enzyme, which hydrolyzes tryptophan to create ammonia, pyruvic acid, and indole¹⁸

Methyl red test: A bacterial culture was added to Methyl red-Voges proskauer medium, and the culture was cultured for 24 hours at 37 C°. The methyl red was then added in five drops. The medium hue of the appositive test shifted from yellow to red. The purpose of this test was to see whether bacteria could ferment glucose and ultimately create acid¹⁸.

Citrate Utilization Test: A positive result was shown by the medium's color changing from green to blue after a sterile loop loaded Simon's citrate slant agar with the tested bacterial culture and incubated it for 24 hours at 37 C°. The purpose of this test was to determine whether bacteria could use sodium citrate as a carbon source¹⁸

Preparation of Reagents and Solutions

McFarland Standard Solution

A pre-made 0.5 McFarland standard tube was employed in this investigation. This standard, which corresponds to a bacterial suspension concentration of roughly 1.5×10^8 colony-forming units per milliliter (CFU/ml), is used as a reference for turbidity. To determine the cell density of the bacterial suspensions under study, their turbidity was visually compared to this readily usable reference.

The Catalase Reagent

The ability of bacteria to create the enzyme catalyzes assessed for hydrogen peroxide was investigated using hydrogen peroxide synthesized at a concentration of 3% ¹⁷.

Vogas-Proskauer reagent

This substance consisted of two solutions: α -naphthol solution made by dissolving 5 gm of α -naphthol in 100 ml of (95 %) ethanol, storing the solution in a dark bottle, and mixing it prior to use. 40 percent Potassium hydroxide solution made by dissolving 40 grams of KOH in 100 milliliters of deionized water and mixing the solution prior to use ¹⁸.

Methyl red indicator : This solution was prepared by dissolving 0.2 gm of methyl red in 300 ml of (95%) ethanol, and then the volume was completed to 500 ml by D.W¹⁸.

Anti-Bacterial Activity

The antimicrobial activity of the plant extract was evaluated using a combined spread-plate and well diffusion method based on Egorov's method. Briefly, 0.1 mL of each bacterial suspension (standardized to a concentration of 1.5×10^8 cells/mL for all experiments) was uniformly spread onto the surface of Mueller-Hinton agar plates. Subsequently, wells of uniform diameter (6 mm) were aseptically formed in the agar utilizing a sterile cork borer. Following that, 0.1 milliliters of the plant extract was carefully added to each well and thoroughly mixed. In order to ensure that the extract was able to diffuse into the agar medium in an adequate manner, the inoculation plates were left at room temperature for a period of four to five hours. After that, the plates were kept in an incubator at 37 degrees Celsius for a week. After the incubation period had passed, a graduated ruler was used to measure the diameter of the inhibition zones that surrounded each well. This diameter was used to determine the degree to which the growth of bacteria was inhibited¹⁹.

Antibiotics Susceptibility Test

Two ml of Muller Hinton Broth were inoculated with an isolated colony of the tested bacteria and then incubated for 18 hours at 37° C. The turbidity of bacterial suspension was then adjusted with the turbidity of McFarland (0.5) standard, equivalent to the concentration of 1.5×10^8 CFU/ml. 0.1 ml of bacterial culture that was streaked all over the surface of the Mueller-Hinton medium, then left to dry. A maximum of five antibiotic discs were placed on the plate. The plates were incubated for 24 hours at 37° C. The resulting zones of inhibition were measured by a ruler and compared with the inhibition zones determined by ²⁰.

Antibacterial Susceptibility Testing of Seed Extract via Disk Diffusion Method

In the first part of the experiment, the disc diffusion method was used to evaluate bacterial susceptibility. A 100% concentration of the alcoholic seed extract was added to a Petri dish, followed by the addition of a calculated amount of Mueller-Hinton agar, which was then carefully mixed. After the medium solidified, the dish was inoculated with bacteria. Antibiotic discs (CAZ, , AZM, CIP, OFX) were placed at regular intervals

on the agar surface. The dishes were then incubated for 24 hours at 37°C. Subsequently, the resulting inhibition zones were measured and compared to those of the antibiotic discs used as controls²¹.

Phyto chemical analysis of ethanol extract of *L. lecocephala* seeds

Gas chromatography-mass spectrometry chromatographic conditions(GC-MS)

A thermal desorption TD-20 system, GCMSQP2010 Plus (Shimadzu, Nakagyo-ku, Kyoto, Japan), was used for GC-MS analysis. A mass spectrometer device using an RTx-5MS column (30 m × 0.25 mm × 0.25 µm) running in electron impact mode at 70 eV was interfaced to the gas chromatograph. The instrument's carrier gas, helium gas (99.99%), with a steady flow rate of 1.2 mL/min. At 80°C (isothermal for 4 minutes), the column's initial oven temperature increased by 5°C/min to 310°C. The flow rate was 1.21 mL/min, and the column pressure was 81.7 kPa. A mass scan from 40 to 650 m/z was used to prepare a mass spectrum at a 0.50 s scan interval ²².

Determination of total phenolic compounds

The total amount of phenolic compounds was determined in the ethanolic extract with a standard Folin - Ciocalteu reagent . The reaction mixture contained 100 µl of the extract, and 500 µl of the Folin-Ciocalteu reagent (Merck, Germany) and 1.5 ml of 20% sodium carbonate. The sample was then mixed on a vortex mixer and diluted with distilled water to the final volume of 10 ml. After 2 h reaction, the absorbance at 765 nm was determined and used to estimate the phenolic content using the calibration curve made with gallic acid (Sigma-Aldrich, Germany). The total amount of phenolic compounds was expressed in mg gallic acid equivalent (GAE) per g dry weight ²³.

Determination of total Tannins content

The sample extracts was 2mg mixed with water and ethanol (20 : 80) heated on water bath. The mixture was filtered and ferric chloride was added to the filtrate. A dark-green solution indicates the presence of tannins. One ml of extract was added to two ml of sodium chloride (2%), filtered and mixed with five ml of 1% gelatin solution. A precipitate indicates the presence of tannin. And measurement absorption at = 540 nm²⁴.

Determination of vitamin E content

Dried plant material (0.5 g) was immersed in 20 ml of ethanol for 30 min in a water bath at 85°C. The solution was allowed to cool and then filtered into a separating funnel. Heptane (10 ml) was added, and the solution was shaken for 5 min. Then, 20 ml of 1.25% sodium sulfate was added and the solution was shaken again for 2 min, and allowed to separate into layers. Total tocopherols were determined by UV- VIS 545 nm . A volume of 0.5 ml of a-tocopherols in ethanol was processed in the same way as a sample, and used as a standard²⁵.

Statistical Analysis

All experimental data were statistically analyzed using the Statistical Package for the Social Sciences (SPSS), version 26 (IBM Corp., Armonk, NY, USA). A two-way analysis of variance (ANOVA) was performed to test the significance of treatment effects. Whenever the ANOVA showed significant differences among means ($p \leq 0.05$), means were compared using Tukey's Honestly Significant Difference (HSD) test at the 5% level of significance to determine pairwise differences. The results are expressed as means \pm standard deviation (SD), and means with different letters indicate statistically significant differences. Additionally, a One-Sample T-Test was used.

RESULTS

Detection of pathogenic bacteria from Diverse Clinical Isolates Using Traditional Methods

In Table 1, 120 bacterial isolates collected across different age groups, over a period from September 2024 to February 2025, from various hospitals in Babylon Governorate, the clinical specimens included burn and wound swap and urine. All isolates were cultured on MacConkey agar and blood agar. The isolates were growing on both agar were transferred to Emb(Eosin Methylene Blue) medium. The appearance of a bright green color indicates the presence of *E.coli* bacteria, while the pink color of the isolates indicates *K.*

penumonia bacteria. As for the appearance of isolates only on blood agar, the isolate was transferred to manntiol medium. The color of the medium changed from red to yellow, indicating the fermentation of the bacteria in the Manntiol medium, which is *S. aureus* bacteria. The number of isolates positive for Gram stain was 50, which are *S. aureus*, while the number of negative isolates was 70, (35) of which were *E. coli* isolates and (35) of *K. pneumoniae* isolates. The distribution of the major bacterial species isolated according to the specimen source. *S. aureus* was observed to be the most prevalent in burn (12) isolates representing (80%) and wound specimens (13) isolates, representing (86.6%) of the total isolates and urine specimens (25) isolates, representing 27.7%). In contrast, the occurrence of *E. coli* was particularly notable in urine specimens, with 30 isolates of each being identified, accounting for (33.3%) and burn (3) isolates representing (20%) and wound specimens (2) isolates, representing (13.3%) of the total isolates, *K. pneumoniae* was particularly notable only in urine specimens, with (35) isolates of each being identified, accounting for (38.89%) as showing in Fig1

Table1:Distribution of Major Bacterial Species by specimen Source

specimen Source	specimen number	<i>S. aureus</i> (n)	% of Total	<i>E. coli</i> (n)	% of Total	<i>K. pneumoniae</i> (n)	% of Total
Urin	90	25	27.7%	30	33.3%	35	38.89%
Wound	15	13	86.6%	2	13.3%	-	0.00%
Burns	15	12	80%	3	20%	-	0.00%
Total	120	50	38.46%	35	26.92%	35	26.92%

In Figure1, the Pathogenic bacteria on different media(A) show yellow colonies on mannitol salt agar with surrounding yellow medium. (B). gray to white colonies with clear zoon (3- hemolysis) around the colony on blood agar(C). *K. pneumoniae* on EMB .(D)*E. coli* on EMB.

Fig .1.Pathogenic bacteria on different media

In Table 2,Detection Pathogenic bacteria by Biochemical Methods

In Figure 2,Catalase Test: All initial bacterial isolates, including *S. aureus*, showed a positive reaction, characterized by the rapid formation of bubbles upon the addition of hydrogen peroxide. However, *E. coli* and *K. pneumoniae* in the provided table showed a negative result .

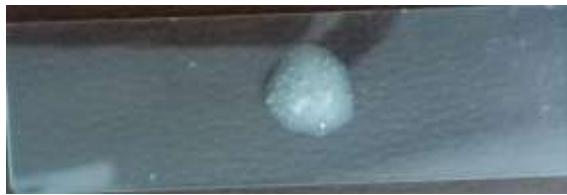


Fig .2.catalase test of *S.aureus*.

Indole Test: The initial isolates tested negative, meaning they could not break down tryptophan to form indole. The reagent layer remained yellow or slightly cloudy, without the expected "cherry-red ring." *E. coli*, however, showed a positive result in the table, while *S. aureus* and *K. pneumoniae* were negative.

Methyl Red (MR) Test: Initial isolates tested positive. For specific strains, *E. coli* was positive, while *S. aureus* and *K. pneumoniae* were negative.

In Figure 3, citrate Test: Initial isolates tested positive, evidenced by a pH indicator color change consistent with alkaline byproducts of citrate metabolism *K. pneumoniae* was positive in the table, whereas *S. aureus* and *E. coli* were negative.

Fig.3 .Biochemical test (Simmon citrate test).

Mannitol Fermentation: *S. aureus* showed a positive result, while *E. coli* and *K. pneumoniae* were negative.

Table2:Biochemical Tests of Differentiation bacteria isolated from different specimens

Biochemical Test	<i>S.aureus</i>	<i>E.coli</i>	<i>K.pneuominae</i>
Catalase	+	-	+
Indole	-	+	-
Citrate	-	-	+
Mannitol Fermentation	+	-	-
Methyl Red	-	+	-

Anti-Bacterial Activity

The study looked into how different solvents affected how well *L. leucocephala* seed extract worked against diverse bacterial strains. At four concentrations, 100%(0.1mg\ml), 75%(0.075mg\ml), 50%(0.05mg\ml), and 25%(0.025mg\ml), the effects of aqueous, ethanol, and hexane as solvents on inhibition zone diameters were assessed.

In Figure 5, Regarding Gram-negative bacteria, specifically *E. coli* and *K. pneumoniae*, none of the *L. leucocephala* seed extracts (aqueous, ethanolic, or hexane) demonstrated any inhibitory effect on their growth

across all tested concentrations. This suggests that the active compounds in the extracts may be unable to penetrate the complex outer cell membranes of Gram-negative bacteria, or that these bacteria possess specific resistance mechanisms that the extract cannot overcome.

the study revealed varying efficacy of *L. leucocephala* seed extract against the Gram-positive bacterium *S. aureus*, depending on the solvent used. The aqueous extract showed no inhibitory effect against *S. aureus* at any of the four concentrations (100%, 75%, 50%, 25%), recording a mean inhibition zone diameter of 0 mm in all cases (indicated by the letter 'a' in the table), confirming the lack of statistically significant differences and its ineffectiveness.

In Table 3, Figure 5, the ethanolic extract exhibited a clear and statistically significant inhibitory effect on *S. aureus* growth across all concentrations. The mean inhibition zone diameters for the ethanolic extract were 18 mm at 100%, 14.5 mm at 75%, 16.5 mm at 50%, and 16.6 mm at 25%. The type indicate a dose-dependent relationship, with varying efficacy across concentrations as shown by the statistical significance of the letters (c, b, bc). The hexane extract, however, showed very limited efficacy against *S. aureus*, demonstrating a slight inhibitory effect only at 25% concentration, with a mean inhibition zone diameter of 16 mm (indicated by the letter 'b'). It had no effect at higher concentrations (100%, 75%, 50%), which recorded 0 mm (indicated by the letter 'a').

*Given the superior effectiveness demonstrated by ethanol as the optimal solvent for extracting active compounds from *L. leucocephala*, which yielded a consistently potent extract, it was decided to continue the research by focusing on this specific ethanolic extract. This decision is based on preliminary findings confirming ethanol's ability to achieve the highest concentration of biologically active components with broad antimicrobial properties, notably exemplified by its remarkable capacity to inhibit the growth of *S. aureus*. Consequently, the research was completed by focusing on studying the efficacy of the *L. leucocephala* extract prepared with ethanol as a solvent against *S. aureus*. The biochemical properties of this particular extract were meticulously investigated, the compounds responsible for its robust efficacy were identified.

Table 3. Effect of Different Solvents and Concentrations on the Antibacterial Efficacy (Mean \pm S.D Inhibition Zone Diameter of *L. leucocephala* Seed Extract Against *S. aureus*)

Con. Solvents	100%(0.1mg\ml)	75%(0.075mg\ml)	50%(0.5mg\ml)	25%(0.025mg\ml)
Aqueous	Mean\pmS.D			
	0 a	0 a	0 a	0 a
Ethanol	18 \pm 1.5 c	14.5 \pm 1.3 b	16.5 \pm 2.0 b	16.6 \pm 2.1 bc
Hexane	0 a	0 a	0 a	16 \pm 2.3 b

*Different letters indicate statistically significant differences among the interaction treatments (Concentration \times Concentration) based on Tukey's HSD test at $P < 0.05$.

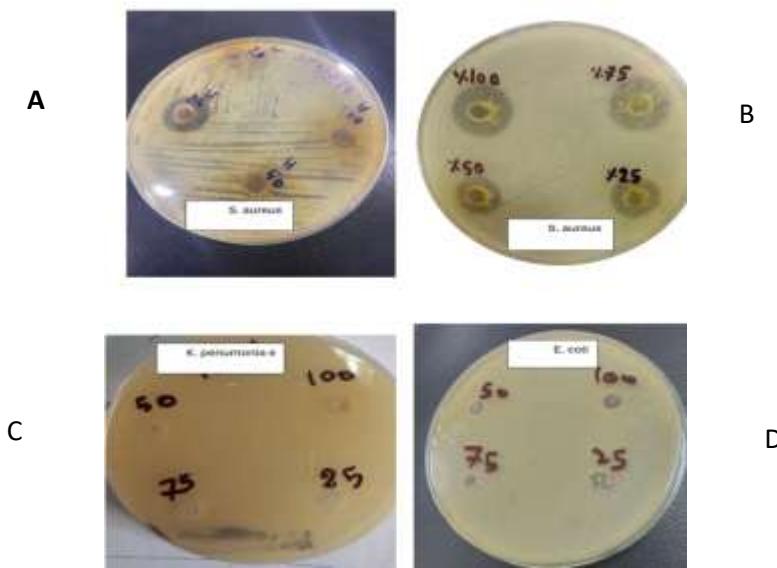


Fig .5 . A\anti-bacteria activity of hexane extract of *L. lepccephala* seeds on *S.aureus* B\ anti-bacteria activity of ethanol extract of *L. lepccephala* seeds on *S.aureus*
 c\ anti-bacteria activity of ethanol extract of *L. lepccephala* seeds on *K.penumoniae*
 D\ anti-bacteria activity of ethanol extract of *L. lepccephala* seeds on *E.coli*.

Antibiotic Susceptibility Test

In Figure 6, it is shown, 50 identified *S. aureus* isolates (1 to 50) are evaluated against 11 common antibiotics ((CIP) Ciprofloxacin, (CN) Gentamicin, (TE) Tetracycline, (RA) Rifampicin, (LZ) Linezolid, (OFX) Ofloxacin, (AZM) Azithromycin, (C) Chloramphenicol, (CPT) Cefotaxime, (LEV) Levofloxacin, (CX) Cefuroxime). Bacterial isolates exhibited varying resistance to the antibiotics under study. The highest resistance was notably observed against CX at 54%, followed by TE at 30%, and LZ at 26%. Resistance to CIP was found to be 24%, while AZM showed 22% resistance. Both OFX and C demonstrated 20% resistance, whereas resistance in CN decreased to 16%. The antibiotics to which the isolates showed the least resistance were RA and LEV at 12% each, and finally CPT at only 6%. On the other hand, the isolates were highly sensitive to RA at 88%, CN at 84%, OFX at 80%, and CPT at 74%. Good sensitivity was also observed towards AZM at 68%, LEV at 66%, C at 58%, and CIP at 54%. The antibiotics to which the isolates showed the least sensitivity were LZ at 44%, TE at 42%, and finally CX at only 36% .

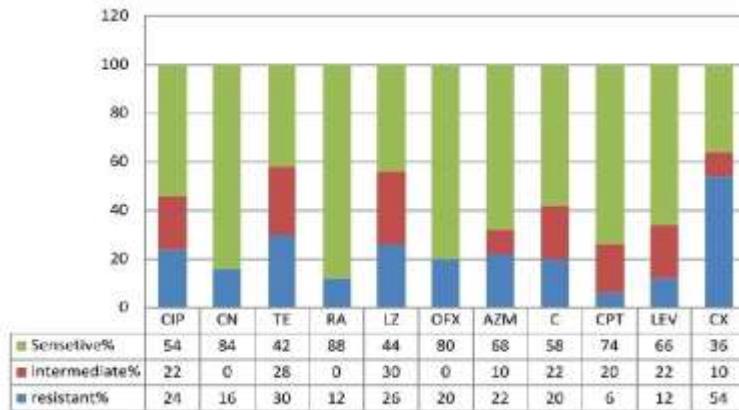
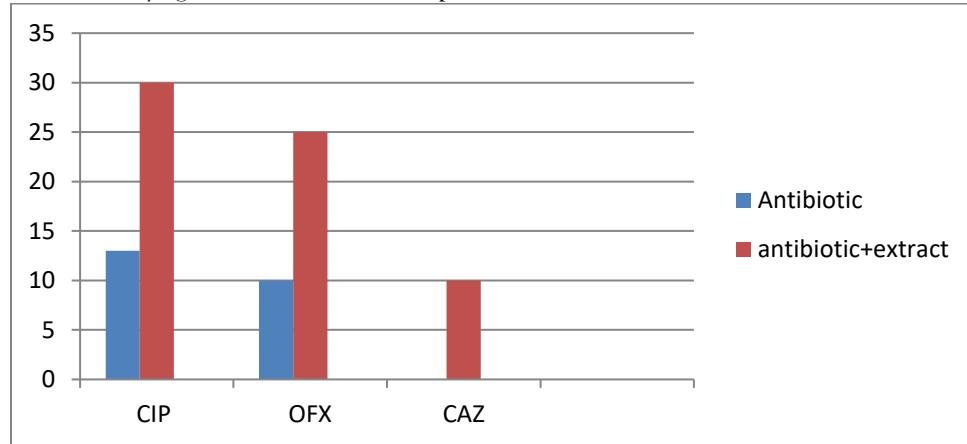



Fig. 6. Antibiotic Susceptibility Test

The Synergistic effect of Ethanol extract of *L. leucephala* seeds and antibiotic against *S.aureus*

In Figure 7, examine the mechanisms of action behind the interaction between ethanol extracts and specific antibiotics. Highlight case studies or research findings that demonstrate the successful use of ethanol extracts in clinical setting *s. aureus*. Specifically, the presence of the seed extract led to a substantial and statistically meaningful increase in the inhibition zone diameters for CIP (from 13 mm to 30 mm) and OFX (from 10 mm to 25 mm), demonstrating an enhanced antibacterial activity when the extract was combined with these antibiotics. While the increase in the inhibition zone diameter for CAZ in the presence of the extract (from 0 mm to 10 mm) suggests a potential synergistic trend, the effect was less pronounced compared to CIP and OFX. The statistically significant p-value therefore corroborates the visually evident enhancement of CIP and OFX activity against *S. aureus* in the presence of the seed extract.

Fig. 7. the Synergistic effect of Ethanol extract of *L. leucephala* seeds and antibiotic against *S.aureus*

Phtyo chemical analysis of ethanol extract of *L. lecocephala* seeds

GC-Ms(Gas Chromatography-Mass Spectrometry)

In Table 3, GC-MS analysis 12 bioactive compound were identified in ethanol extract of *L. lecocephala* seeds as showing in Table3

Table 3: GC-MS of Ethanol extract of *L. lecocephala* seeds

N	Name	Quality
1	Methyl linolelaidate	99
2	Hexadecanoic acid, methyl ester	95
3	Diisooctyl phthalate	72
4	9-Octadecenoic acid (Z)-, methyl ester	68
5	Dodecamethylcyclohexasiloxane	64
6	1,2-Benzenedicarboxylic acid, butyl 2-ethylhexyl ester	64
7	2-Azanorbornane	50
8	Diisopropoxy-1,1,7,7,7-hexamethyl-3,5-bis(trimethylsiloxy)tetrasiloxane	46
9	F2A 13,14-H2 ME ESTER 3TMS	45
10	5-dimethyl-4-methylene-2-(trimethylsilyl)-1-cyclopenten-1-yl]methoxy	45

11	Butanedinitrile, 2,3-diethyl-2,3-dimethyl-, (R*,S*)-	37
12	Benzoic acid, 2,6-bis(trimethylsilyl)-, trimethylsilyl ester	28

High performance liquid chromatography(HPLC) of Ethanol extact of *Lleucocephala* seeds.

In Table 4, Furthermore, significant concentrations of phenolic compounds (263.9 mg/100gm) and a comparatively lower concentration of tannins (1.58%) were identifiedas, Vitamin E was also detected at 0.36%.

Table4: The amount of phenolic and tannin in seeds extract.

Total phenolic content (mg / 100 gm)	Total tannin content %
263.9	1.58

DISCUSSION

Important epidemiological information on the frequency of major pathogenic bacteria from a variety of clinical isolates in Babylon Governorate is provided by this study. The results demonstrate the important roles that *K. pneumoniae*, *E. coli*, and *S. aureus* play as the main causes of the illnesses under investigation. Particularly, the elevated levels of *K. pneumoniae* (38.89%) and *E. coli* (35.56%) in urine samples align with accepted medical microbiology concepts. These results are consistent with research that shows *E. coli* is the most frequent cause of simple urinary tract infections (UTIs)¹⁶. Furthermore, *K. pneumoniae* is known to play a major role in complex diseases linked to healthcare, such as urinary tract infections. This emphasizes how important these Gram-negative bacteria are to the pathogenesis of UTIs in the area under study. According to global trends, UTIs are the second most common disease after respiratory tract infections, and they are frequently made worse by unfavorable environmental factors and poor health. Regarding burn and wound infections, *S. aureus* was found to be the most prevalent isolate. This observation is in agreement with findings from other studies which similarly reported *S. aureus* as a dominant pathogen in burn and wound samples. Infection remains a major obstacle in the treatment of burn injuries, often characterized by a complex microbial landscape involving multiple species. The frequent association of multi-drug resistant bacteria with poorer clinical outcomes and challenges in antimicrobial therapy further emphasizes the importance of identifying prevalent pathogens like *S. aureus* in these wounds. While factors like cross-infection from medical staff, air, and materials are potential contributors, the consistent isolation of *S. aureus* highlights its endogenous or acquired presence in these specific infection types²⁶.

The biochemical identification tests provided crucial insights into the metabolic characteristics of the isolated bacteria, aiding in their differentiation and diagnosis.

The positive catalase test results, particularly those observed in *S. aureus* isolates, are consistent with what was mentioned by(Cappuccino and Welsh in 2020) ¹⁷This test is considered a key diagnostic feature for distinguishing catalase-producing species. It is known for its ability to differentiate *Staphylococcus* species (catalase-positive) from *Streptococcus* species (catalase-negative) through the catalase enzyme's ability to break down hydrogen peroxide into oxygen gas and water, which is evident by the rapid formation of bubbles. The IMViC tests, a battery of examinations designed to differentiate members of the Enterobacteriaceae family, provided further characterization. The positive Methyl Red test result, along with positive citrate utilization as evidenced by alkaline byproducts, are important indicators of specific metabolic pathways within the isolates. The isolates tested belong to the Enterobacteriaceae family. The catalase test was positive, indicating the bacteria's ability to break down hydrogen peroxide. These findings align with the observations presented by Popovici ,(2024)²⁷.

Some studies have reported that the vast majority of *E. coli* strains are MR-positive, meaning that they are able to produce sufficient amounts of acid from glucose to cause a pH drop and a color change in the MR indicator. This observation aligns with findings from the current study, consistent with reports by ²⁸.

The observed ineffectiveness of *L. leucocephala* seed extracts (aqueous, ethanolic, and hexane) against Gram-negative bacteria such as *E. coli* and *K. pneumoniae* across all tested concentrations suggests that the active compounds in the extracts may be unable to penetrate their complex outer cell membranes, or that these bacteria possess specific resistance mechanisms that the extract cannot overcome. This lack of efficacy against *E. coli* specifically contradicts a previous study by Rosida et al. (2017)¹⁵, suggesting the need for further research to identify variables that might explain this discrepancy. While both studies utilized *L. leucocephala* seeds, the observed absence of efficacy against *E. coli* in our study might be attributed to the differing geographical origin of the plant, as the source¹⁵ was in Indonesia, a distinct environment compared to our study's plant source. Plant varieties are known for their genetic and environmental variability, which influences the chemical composition of active compounds. Overall, the results of this study reinforce, and are consistent with, the findings of ²⁹.

In contrast, the substantial variations in the antibacterial efficacy of *L. leucocephala* seed extracts against the Gram-positive bacterium *S. aureus* were highly dependent on the solvent used and its concentration. The ethanolic extract's clear and statistically significant inhibitory effect across all concentrations, with varying efficacy across concentrations as shown by the statistical significance of the letters (c, b, bc), indicates a dose-dependent relationship. These results highlight ethanol as the most effective solvent for extracting active compounds against *S. aureus* from *L. leucocephala* seeds. This partially aligns with previous research on the plant's chemical properties. For instance, the presence of phenolic content in the ethanolic extract of *L. leucocephala* seeds, believed to contribute to its effectiveness, is consistent with observations reported by Chowtivannakul et al. (2016)³⁰, whose research also indicated the presence of phenolic compounds within the seed extract of the same plant. Furthermore, the observed differences in extraction efficiency among various solvents like ethanol and hexane can be explained by variations in solvent polarity, which affects extraction capabilities³¹ and the ability of certain solvents like ethanol to increase bacterial cell wall permeability ³².

The study highlights the susceptibility of *S. aureus* to the ethanolic extract. Given that *S. aureus* is a major cause of both hospital- and community-acquired infections³³, these findings support the notion of using the extract as a potential alternative or adjunctive therapy. This effect is attributed to the presence of active compounds such as unsaturated fatty acids (e.g., oleic and linoleic acid), vitamin E, and palmitic acid, which are known for their antimicrobial properties. This hypothesis is consistent with other studies on natural compounds and their antimicrobial efficacy³⁴. Antimicrobial resistance (AMR) has evolved into a major global public health threat, seriously jeopardizing our ability to successfully prevent and treat persistent diseases. The misuse and overuse of various antibacterial agents in healthcare and agriculture, along with bacterial evolution and horizontal gene transfer, are primary drivers of AMR³⁵. Research has increasingly focused on *S. aureus* due to its significant role in a wide array of human infections, from superficial to life-threatening internal tract involvement, with a growing prevalence of *S. aureus*-associated urinary tract infections³⁶. Antibiotics, being natural products produced by microorganisms to combat other microbes³⁷, are crucial in this fight.

The resistance patterns observed in the current study for *S. aureus* isolates generally align with global trends and previously reported data. The resistance of 12 *S. aureus* isolates to Ciprofloxacin (CIP) and 8 isolates to Gentamicin (CN) is consistent with findings reported by ³⁸. The high resistance rate of 54% (27 isolates) against Cefoxitin (CX) is notably consistent with Ali et al. (2021)³⁹. Similarly, the 26% resistance rate (13 isolates) to Linezolid (LZ) is in agreement with findings by Yang et al. (2025)⁴⁰. The results concerning Azithromycin (AZM) resistance are consistent with the mechanisms of macrolide resistance in *S. aureus* reviewed by Miklańska-Majdanik (2021)⁴¹, strengthening the current scientific understanding of resistance to this antibiotic class. Overall, the observed antimicrobial resistance patterns, including high rates of *S. aureus* resistance to penicillin, tetracycline, and ciprofloxacin, are consistent with observations made by Kim

et al. (2018)⁴², suggesting a similarity in resistance profiles. The consistency of *S. aureus* resistance to Tetracycline (TE) with Lubna et al. (2023)⁴³ further supports the prevalence of tetracycline resistance in staphylococcal bacteria.

Conversely, the susceptibility profile highlighted key treatment options. The isolates exhibited the highest sensitivity towards Rifampicin (RA) at 88%, followed by Gentamicin (CN) at 84%, and Ofloxacin (OFX) at 80%. This spectrum of sensitivity underscores the differential response of *Staphylococcus* isolates to various antibiotics. The sensitivity of *S. aureus* to Ciprofloxacin observed in this study is close to the results of Hameed (2020),⁴⁴ who also reported low resistance to this antibiotic. The consistency in *S. aureus* sensitivity levels to antibiotics such as Ciprofloxacin (CIP), Chloramphenicol (C), and Levofloxacin (LEV) with findings reported by Nwankwo and Nasiru (2011)⁴⁵ reinforces the understanding that antibiotic resistance patterns in *S. aureus* can exhibit similar trends across different geographical regions and clinical contexts. Specifically, the 84% sensitivity to Gentamicin (CN) in this study compares favorably with the 73.4% sensitivity reported by Nwankwo and Nasiru (2011)⁴⁵.

Understanding the mechanisms of action for effective antibiotics provides further context. Gentamicin, an aminoglycoside, exerts its antibacterial effect by binding to the 16S rRNA within the 30S ribosomal subunit, disrupting mRNA translation and leading to non-functional protein synthesis⁴⁶. Linezolid is an important antimicrobial against Gram-positive bacteria, including MRSA, and inhibits translation by binding to the 23S rRNA peptidyl transferase region⁴⁶. Rifampicin (RA) is recognized for its potent antibacterial action, effectively targeting intracellular phagocytosed *S. aureus* and hindering its dissemination, making it valuable as an adjunctive therapy⁴⁸.

These findings provide crucial local epidemiological data on *S. aureus* resistance and sensitivity patterns, which are vital for guiding empirical antimicrobial therapy and informing infection control strategies in Babylon Governorate. In the face of the growing challenge of antibiotic resistance, the search for innovative strategies to restore their effectiveness is a pressing priority. One promising avenue lies in exploring the potential synergy between plant extracts and antimicrobial compounds. These studies aim to evaluate whether combining plant extracts, which contain a diverse array of biologically active molecules, can enhance the activity of antibiotics that have become ineffective against resistant bacterial strains. This concept has been supported by a study conducted by Cheesman et al. (2017)⁴⁹, the results of which demonstrated that the 100% concentration of the alcoholic extract enhanced the efficacy of certain antibiotics, albeit to varying degrees depending on the bacterial species and the antibiotic used⁴⁹. The resistance phenomena can be effectively addressed by combining natural chemicals with currently available antibiotics in a synergistic fashion⁵⁰. The results of this study generally demonstrated that the 100% concentration of the ethanol extract enhanced the efficacy of certain antibiotics, although to varying degrees depending on the bacterial species and the antibiotic used. The statistical analysis revealed a significant difference between the seed extract and the antibiotics ciprofloxacin (CIP), ofloxacin (OFX), and ceftriaxone (CAZ) ($p = 0.021$, $p < 0.05$), indicating a notable interaction. This statistical significance is also backed up by the strong combined effect of the extract with CIP and OFX against *S. aureus*. Discuss the implications of enhanced antibiotic efficacy in combating antibiotic resistance. Explore the potential of combination therapy using natural extracts and antibiotics. Analyze how different bacterial species respond to ethanol extract and antibiotics in terms of effectiveness. Examine the mechanisms of action behind the interaction between ethanol extracts and specific antibiotics. Highlight case studies or research findings that demonstrate the successful use of ethanol extracts in clinical settings. *S. aureus*. Specifically, the presence of the seed extract led to a substantial and statistically meaningful increase in the inhibition zone diameters for CIP (from 13 mm to 30 mm) and OFX (from 10 mm to 25 mm), demonstrating an enhanced antibacterial activity when the extract was combined with these antibiotics. While the increase in the inhibition zone diameter for CAZ in the presence of the extract (from 0 mm to 10 mm) suggests a potential synergistic trend, the effect was less pronounced compared to CIP and OFX. The statistically significant p-value therefore corroborates the visually evident enhancement of CIP and OFX activity against *S. aureus* in the presence of the seed extract. Our current study's findings are highly

consistent with those reported by ²². regarding the presence and identification of bioactive compounds in *L. leucocephala* seeds, as analyzed by GC-MS (Gas Chromatography-Mass Spectrometry). This mutual agreement underscores the rich phytochemical profile of the seeds and supports conclusions regarding their biologically active constituents.

These results support our hypothesis that the fatty compounds present in *L. leucocephala* seed extract, such as palmitic acid, may be responsible for the observed inhibitory effect on *S. aureus* growth. They also suggest that these compounds may be more effective against Gram-positive bacteria due to differences in bacterial cell membrane composition. This aligns with previous studies²². The presence of these compounds, such as phenols holds substantial scientific importance due to their known capacity to modulate bacterial growth and metabolism ⁵¹. Furthermore, these compounds are recognized as natural antimicrobial agents, exerting their effects through diverse and complex mechanisms that contribute to inhibiting or eradicating microorganisms ⁵².

CONCLUSION

In this study provides crucial epidemiological information on the prevalence of major pathogenic bacteria isolated from various clinical specimens in Babylon Governorate. The findings highlight the significant roles of *K. pneumoniae*, *E. coli*, and *S. aureus* as primary causes of the investigated infections. Notably, *S. aureus* was highly prevalent in burn and wound samples, while *E. coli* was particularly conspicuous in urine specimens. *K. pneumoniae* was found exclusively in urine samples. The results demonstrate the effectiveness of traditional identification methods, including Gram staining and specific biochemical tests, in characterizing these bacterial species. Furthermore, the study revealed the promising efficacy of *L. leucocephala* seed extract, particularly its ethanolic form, in inhibiting the growth of *S. aureus*. However, the extract showed no inhibitory effect against the Gram-negative bacteria (*E. coli* and *K. pneumoniae*). Significantly, a substantial synergistic effect was observed when the ethanolic extract was combined with certain antibiotics (such as ciprofloxacin and ofloxacin) against *S. aureus*, suggesting the potential for enhanced therapeutic outcomes. Phytochemical analysis confirmed the presence of bioactive compounds like phenolic compounds and tannins in the ethanolic extract, which likely contribute to its antimicrobial activity. These findings underscore the therapeutic potential of *L. leucocephala* seed extract as an antimicrobial agent or as an adjunct therapy to enhance antibiotic effectiveness, particularly in combating *S. aureus* infections.

REFERENCES

1. Ali Q, Zheng H, Rao MJ, et al. Advances, limitations, and prospects of biosensing technology for detecting phytopathogenic bacteria. *Chemosphere*. 2022;296:133773.
2. Li XY, Zeng ZX, Cheng ZX, et al. Common pathogenic bacteria-induced reprogramming of the host proteinogenic amino acids metabolism. *Amino Acids*. 2023;55(11):1487-1499.
3. Fayisa WO, Tuli NF. Review on *Staphylococcus aureus*. *Int J Nurs Care Res*. 2023;1:1-8.
4. Rasheed NA, Hussein NR. *Staphylococcus aureus*: an overview of discovery, characteristics, epidemiology, virulence factors and antimicrobial sensitivity. *European Journal of Molecular & Clinical Medicine*. 2021;8(3):1160-1183.
5. Parastan R, Kargar M, Solhjoo K, Kafilzadeh F. *Staphylococcus aureus* biofilms: Structures, antibiotic resistance, inhibition, and vaccines. *Gene Reports*. 2020;20:100739.
6. Bonten M, Johnson JR, van den Biggelaar AH, et al. Epidemiology of *Escherichia coli* bacteremia: a systematic literature review. *Clinical Infectious Diseases*. 2021;72(7):1211-1219.
7. Gonçalves FR. Isolation and Characterization of Phages for Enterotoxigenic *E. coli*. (Master's thesis, Universidade do Minho (Portugal)); 2023.
8. World Health Organization. 2019 Antibacterial Agents in Clinical Development: An Analysis of the Antibacterial Clinical Development Pipeline. World Health Organization; 2020.
9. Liu J, Zhang Y, Cai J, et al. Clinical and microbiological characteristics of *Klebsiella pneumoniae* co-infections in pulmonary tuberculosis: a retrospective study. *Infection and Drug Resistance*. 2023;7175-7185.
10. Wang X, Wang J, Jiang X, et al. Molecular epidemiological analysis and research on resistance and virulence of carbapenem-resistant *Klebsiella pneumoniae* in a tertiary hospital from 2016 to 2023. *BMC Microbiology*. 2025;25(1):217.
11. Riwu KHP, Effendi MH, Rantam FA, Khairullah AR, Widodo A. A review: Virulence factors of *Klebsiella pneumonia* as emerging infection on the food chain. *Veterinary World*. 2022;15(9):2172-2179. doi:10.14202/vetworld.2022.2172-2179

12. Khalid AM, Mahmud AI, Talib WH, Afifi FU. LC-MS ANALYSIS AND ANTIOXIDANT, ANTIMICROBIAL AND ANTIPIROLIFERATIVE INVESTIGATIONS OF LEUCAENA LEUCOCEPHALA FLOWERS GROWING IN JORDAN EXTRACTS. *Farmacia*. 2024;72(2):337-345.
13. Gonçalves FR. Isolation and Characterization of Phages for Enterotoxigenic *E. coli*. (Master's thesis, Universidade do Minho (Portugal)); 2023.
13. Elbanoby NE, El-Settawy AA, Mohamed AA, Salem MZ. Phytochemicals derived from *Leucaena leucocephala* (Lam.) de Wit (Fabaceae) biomass and their antimicrobial and antioxidant activities: HPLC analysis of extracts. *Biomass Conversion and Biorefinery*. 2024;14(13):14593-14609.
14. Herman A, Herman AP. Herbal products and their active constituents used alone and in combination with antibiotics against multidrug-resistant bacteria. *Planta Medica*. 2023;89(02):168-182.
15. Rosida DF, Djajati S, Nilamayu ZA. Antibacterial Activity of *Leucaena leucocephala* Extracts on Growth of *Escherichia coli*. *Advanced Science Letters*. 2017;23(12):12268-12271.
16. Carroll KC, Hobden JA, Miller S, et al., eds. *Jawetz, Melnick, & Adelberg's Medical Microbiology*. 27th ed. McGraw-Hill Education; 2019.
17. Cappuccino JG, Welsh EC. *Microbiology A Laboratory Manual*. 12th ed. Pearson Education, Inc.; 2020:74,167-177,189,203-207, 296, 321, 434.
18. Macfaddin JF. *Biochemical Tests for Identification of Medical Bacteria*. 3rd ed. Lippincott Williams and Wilkins; 2000.
19. Egorove NS. *Antibiotics Scientific Approach*. Mirpublishers; 1985.
20. Clinical and Laboratory Standard Institute (CLSI). *Performance Standard for Antimicrobial Susceptibility Testing 30th Informational Supplement*. CLSI; 2020.
21. Al-Rubai'i QNM. The Combined Effect of Antibiotics and Some Plant Extracts on the Viability of Certain Types of Bacteria. 2016.
22. Prakash O, Malik S, Rani KV, Verma VK. Phytochemical screening and bioactive potential of pod seed extracts of *Leucaena leucocephala* Linn. *Pharmacognosy Research*. 2020;12(4).
23. Kingne FK, Tsafack HD, Bouango GT, Mboukpa A, Azia A. Phenolic content and antioxidant activity of young and mature mango (*Mangifera indica*) and avocado (*Persea americana*) leave extracts. *J Food Stab*. 2018;1:14-27.
24. Abdelkader M, Ahcen B, Rachid D, Hakim H. Phytochemical study and biological activity of sage (*Salvia officinalis* L.). *International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering*. 2014;8(11):1231-1235.
25. Samydurai P, Ramakrishnan R, Nagarajan N. Polyphenols, vitamin-E estimation and in vitro antioxidant activity of *Adiantum capillus-veneris*. *Int J Innov Pharm Res*. 2013;4:258-262.
26. Rasmi AH, Ahmed EF, Darwish AMA, Gad GFM. Virulence genes distributed among *Staphylococcus aureus* causing wound infections and their correlation to antibiotic resistance. *BMC Infectious Diseases*. 2022;22(1):652.
27. Popovici R. THE HIGHLIGHTING OF M-TYPE COLONIES FOR KLEBSIELLA. *Analele Universitatii din Oradea, Fascicula Ecotoxicologie, Zootehnie si Tehnologii in Industria Alimentara*. 2024;23.
28. Ahmeed HW, Al-Khikani FHO, Khudair KK. The Antibacterial Activity of Lactophenol, Safranin, and Methyl Red Dyes Against Clinically Isolated *Escherichia Coli*. *Assam Journal of Internal Medicine*. 2024;14(1):3-7.
29. Septina E, Yetti RD, Rivai H. Overview of Traditional Use, Phytochemical, and Pharmacological Activities of Chinese Petai (*Leucaena leucocephala*). *Int J Pharm Sci Med*. 2020;5(12):1-1.
30. Chowtivannakul P, Srichaikul B, Talubmook C. Antidiabetic and antioxidant activities of seed extract from *Leucaena leucocephala* (Lam.) de Wit. *Agriculture and Natural Resources*. 2016;50(5):357-361.
31. Duarte-Trujillo AS, Jiménez-Forero JA, Pineda Insuasti J, González-Trujillo CA, García Juarez M. Extraction of bioactive substances from *Pleurotus ostreatus* (Pleurotaceae) by dynamic maceration. *Acta Biologica Colombiana*. 2019;25(1):61-74.
32. Oreopoulou A, Tsimogiannis D, Oreopoulou V. Extraction of polyphenols from aromatic and medicinal plants: an overview of the methods and the effect of extraction parameters. In: *Polyphenols in Plants*. 2019:243-259.
33. Huang T, Ho C. Antioxidative phenolic compounds from Sage (*Salvia officinalis*). *Journal of Agriculture and Food Chemistry*. 1998;46:4869-4873.
34. Selvadoss PP, et al. Enhancement of antimicrobial activity by liposomal oleic acid-loaded antibiotics for the treatment of multidrug-resistant *Pseudomonas aeruginosa*. *Artificial Cells, Nanomedicine, and Biotechnology*. 2018;46(2):268-273.
35. Dadgostar P. Antimicrobial resistance: implications and costs. *Infection and Drug Resistance*. 2019:3903-3910.
36. Vasudevan R. Emergence of UTI causing *Staphylococcus aureus* as a superbug: has the pathogen reduced the options of antimicrobial agents for treatment. *EC Microbiol*. 2015;1:88-112.
37. Walsh C, Wencewicz T. *Antibiotics: Challenges. Mechanisms, Opportunities*. 2016.
38. Mohamed S, Elmohamady MN, Abdelrahman S, Amer MM, Abdelhamid AG. Antibacterial effects of antibiotics and cell-free preparations of probiotics against *Staphylococcus aureus* and *Staphylococcus epidermidis* associated with conjunctivitis. *Saudi Pharmaceutical Journal*. 2020;28(12):1558-1565.
39. Ali Q, Zheng H, Rao MJ, et al. Advances, limitations, and prospects of biosensing technology for detecting phytopathogenic bacteria. *Chemosphere*. 2022;296:133773.

40. Yang W, Chen T, Zhou Q, Xu J. Resistance to linezolid in *Staphylococcus aureus* by mutation, modification, and acquisition of genes. *The Journal of Antibiotics*. 2025;78(1):4-13.
41. Miklasińska-Majdanik M. Mechanisms of Resistance to Macrolide Antibiotics among *Staphylococcus aureus*. *Antibiotics*. 2021;10(11):1406. doi:10.3390/antibiotics10111406
42. Kim YB, Seo KW, Jeon HY, Lim SK, Lee YJ. Characteristics of the antimicrobial resistance of *Staphylococcus aureus* isolated from chicken meat produced by different integrated broiler operations in Korea. *Poultry Science*. 2018;97(3):962-969.
43. Lubna, Hussain T, Shami A, et al. Antimicrobial usage and detection of multidrug-resistant *Staphylococcus aureus*: methicillin-and Tetracycline-resistant strains in raw Milk of lactating dairy cattle. *Antibiotics*. 2023;12(4):673.
44. Hameed FA. Bacteriological Study of Eye infection in Baghdad City. Prof.(Dr) RK Sharma; 2020:20(3):183.
45. Nwankwo EO, Nasiru MS. Antibiotic sensitivity pattern of *Staphylococcus aureus* from clinical isolates in a tertiary health institution in Kano, Northwestern Nigeria. *The Pan African Medical Journal*. 2011;8:4. doi:10.4314/pamj.v8i1.71050
46. Chaves BJ, Tadi P. Gentamicin. ISO 690; 2020.
47. Hashemian SMR, Farhadi T, Ganjparvar M. Linezolid: a review of its properties, function, and use in critical care. *Drug Des Devel Ther*. 2018;12:1759-1767. doi:10.2147/DDDT.S164515
48. Ma H, Cheng J, Peng L, et al. Adjunctive rifampin for the treatment of *Staphylococcus aureus* bacteremia with deep infections: a meta-analysis. *PLoS One*. 2020;15(3):e0230383.
49. Cheesman MJ, Ilanko A, Blonk B, Cock IE. Developing new antimicrobial therapies: are synergistic combinations of plant extracts/compounds with conventional antibiotics the solution? *Pharmacognosy Reviews*. 2017;11(22):57.
50. Mundy L, Pendry B, Rahman M. Antimicrobial resistance and synergy in herbal medicine. *Journal of Herbal Medicine*. 2016;6(2):53-58.
51. Micozzi MS. Fundamentals of Complementary and Alternative Medicine. Saunders/Elsevier; 2011.
52. Oliveira DM, et al. Natural and bio-based antimicrobials: A review. In: *Natural Antimicrobials in Food Safety and Quality*. American Chemical Society; 2018:1-28