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 Abstract— Alzheimer’s disease (AD) progression prediction is critical for timely intervention and effective patient 
management. This study introduces a novel hybrid deep learning framework that integrates Convolutional Neural 
Networks (CNN) and Long Short-Term Memory (LSTM) networks to analyze longitudinal data collected from smart 
Internet of Things (IoT) sensors. The proposed model leverages CNN’s capability to extract spatial features from sensor 
data and LSTM’s strength in capturing temporal dependencies, enabling comprehensive learning from the dynamic 
behavioral patterns indicative of AD progression. Smart IoT sensors continuously monitor patient activities and 
physiological indicators, providing rich, real-time datasets essential for early and accurate detection of disease stages. 
Experimental evaluation on real-world datasets demonstrates that the hybrid CNN-LSTM architecture achieves 
superior performance in predicting Alzheimer’s progression compared to traditional models, with improved accuracy 
and robustness. Furthermore, the integration of IoT sensor data enhances the model’s sensitivity to subtle changes in 
patient condition over time. This innovative framework exemplifies the potential of combining advanced deep learning 
techniques with smart healthcare technologies to revolutionize the early diagnosis and monitoring of Alzheimer’s 
disease, ultimately supporting personalized treatment strategies and improving patient outcomes. 
KEYWORDS: ALZHEIMER'S DISEASE, CONVOLUTIONAL NEURAL NETWORKS, DEEP LEARNING, HYBRID MODEL, 
IOT SENSORS, LONG SHORT-TERM MEMORY, MACHINE LEARNING, PREDICTION ACCURACY, REAL-TIME 

MONITORING, SEQUENTIAL DATA, SMART HEALTHCARE, TIME-SERIES ANALYSIS. 
 
I. INTRODUCTION 
A. Alzheimer's Disease and Its Impact 
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects memory, cognitive 
functions, and behavior. It is the most common cause of dementia, impacting millions worldwide. As the 
global population ages, the prevalence of AD continues to rise, making it an urgent public health issue. 
Early detection and monitoring of AD are critical to managing the disease and improving quality of life. 
However, current diagnostic tools are often invasive or expensive, emphasizing the need for innovative 
solutions, such as smart IoT sensors and advanced computational techniques, to enhance early diagnosis 
and track disease progression. 
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B. Challenges in Alzheimer’s Diagnosis and Progression Monitoring 
Diagnosing and monitoring Alzheimer's disease presents several challenges, primarily due to the complex 
and subtle nature of its progression. Early stages of AD may not exhibit obvious symptoms, making it 
difficult to detect. Traditional methods such as neuroimaging and neuropsychological tests can be time-
consuming, costly, and not always readily available. Moreover, AD progression varies across individuals, 
requiring continuous and personalized monitoring. The lack of real-time monitoring solutions further 
complicates timely intervention, highlighting the need for innovative, accessible, and efficient methods, 
such as those provided by smart IoT sensors and predictive machine learning models. 
C. The Role of IoT Sensors in Healthcare 
Internet of Things (IoT) sensors have emerged as powerful tools in healthcare, offering real-time 
monitoring and data collection with minimal human intervention. In the context of Alzheimer's disease, 
IoT sensors can track various physiological and behavioral parameters, such as heart rate, sleep patterns, 
activity levels, and cognitive performance. These sensors can be integrated into everyday devices like 
wearables, smart homes, and medical equipment, providing continuous, non-invasive data that aids in 
the detection and monitoring of AD. Their ability to capture real-time data enhances the precision of 
diagnostics and allows for ongoing observation of disease progression. 
D. Machine Learning in Alzheimer's Disease Prediction 
Machine learning (ML) algorithms have shown great promise in predicting the onset and progression of 
Alzheimer's disease. These techniques can analyze large, complex datasets from various sources, such as 
medical records, imaging data, and sensor readings, to identify patterns and correlations that might be 
missed by traditional methods. In recent years, deep learning models, particularly convolutional neural 
networks (CNNs) and long short-term memory (LSTM) networks, have demonstrated impressive results 
in AD prediction. By leveraging these models, it is possible to develop more accurate and automated 
systems for early detection and monitoring of Alzheimer's progression. 
E. Convolutional Neural Networks (CNN) in Alzheimer’s Disease 
Convolutional neural networks (CNNs) are a class of deep learning models that have proven particularly 
effective in analyzing structured data, such as images and sensor data. In the context of Alzheimer’s 
disease, CNNs are often used to process neuroimaging data, such as MRI or PET scans, to detect changes 
in brain structure associated with the disease. CNNs can also analyze sensor data for behavioral and 
physiological changes that are indicative of Alzheimer's progression. Their ability to automatically learn 
relevant features from complex data without manual intervention makes CNNs a promising tool for AD 
prediction and monitoring. 
F. Long Short-Term Memory (LSTM) Networks for Sequential Data 
Long short-term memory (LSTM) networks, a type of recurrent neural network (RNN), excel at processing 
sequential data by maintaining memory over time. This ability makes LSTMs ideal for analyzing time-
series data, such as sensor readings that track changes in a patient's condition over an extended period. 
In the case of Alzheimer's disease, LSTMs can help predict disease progression by identifying temporal 
patterns in the data, such as changes in daily activities or cognitive function. This capability enables more 
accurate forecasting of disease trajectories, which is crucial for timely interventions and personalized care 
strategies. 
G. Hybrid CNN-LSTM Models for Improved Prediction Accuracy 

While both CNNs and LSTMs are powerful individually, combining them into a hybrid model can 
enhance prediction accuracy by leveraging the strengths of both approaches. CNNs are adept at extracting 
spatial features from structured data, while LSTMs can capture temporal dependencies in sequential data. 
In the context of Alzheimer's disease, a hybrid CNN-LSTM model can process both cross-sectional and 
longitudinal sensor data, improving the overall performance of AD prediction systems. This hybrid 
approach is particularly advantageous for modeling complex, multidimensional data streams, such as 
those provided by IoT sensors, which contain both spatial and temporal components. 
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H. Advantages of Smart IoT Sensors in Alzheimer’s Monitoring 
Smart IoT sensors offer numerous advantages in Alzheimer’s disease monitoring, particularly in terms of 
continuous, non-invasive data collection. These sensors can be seamlessly integrated into a patient’s daily 
life, providing real-time feedback on various health metrics without requiring frequent doctor visits. With 
the ability to monitor parameters such as physical activity, sleep quality, and heart rate, IoT sensors can 
offer insights into the patient’s cognitive and physical well-being. This continuous monitoring helps track 
subtle changes over time, improving the accuracy of disease progression predictions and enabling timely 
interventions that can slow down the disease. 

I. The Need for Early Diagnosis and Personalized Care 

Early diagnosis and personalized care are crucial in managing Alzheimer’s disease effectively. Early 
detection allows for interventions that can delay disease progression and improve the quality of life for 
patients. Personalized care strategies, informed by real-time data from IoT sensors, ensure that treatment 
plans are tailored to the individual’s unique needs and condition. This is particularly important in 
Alzheimer's, where the disease affects individuals differently, and a one-size-fits-all approach to treatment 
is often ineffective. By using advanced machine learning models and smart IoT sensors, it is possible to 
develop systems that support personalized, data-driven care throughout the disease’s course. 

J. Objectives and Contributions of the Research 

This research introduces a novel hybrid CNN-LSTM framework aimed at improving the prediction of 
Alzheimer’s disease progression using data from smart IoT sensors. The objective is to combine the 
strengths of CNNs and LSTMs to enhance the accuracy and reliability of disease progression predictions. 
By integrating real-time sensor data, the framework can track subtle changes in a patient’s physical and 
cognitive condition, providing early warning signs of progression. The paper highlights the potential of 
this hybrid approach to revolutionize Alzheimer’s disease monitoring, offering a non-invasive, 
continuous, and personalized method for managing the disease. 
Key Contributions 

1. Proposes a novel hybrid CNN-LSTM framework for predicting Alzheimer’s progression using 
smart IoT sensors. 

2. Integrates real-time sensor data to improve the accuracy and reliability of Alzheimer’s disease 
predictions. 

3. Combines spatial feature extraction (CNN) and temporal pattern recognition (LSTM) for 
enhanced model performance. 

4. Demonstrates the potential of IoT sensors in continuous, non-invasive monitoring of Alzheimer’s 
patients. 

5. Provides a personalized approach to Alzheimer’s care through data-driven, early detection of 
disease progression. 

II. LITERATURE REVIEW 

The growing need for accurate and early detection of Alzheimer's disease (AD) has driven several studies 
to explore advanced machine learning techniques and IoT-enabled systems for predicting disease 
progression. A number of studies have highlighted the potential of deep learning models, particularly 
Convolutional Neural Networks (CNNs), in analyzing complex neuroimaging data such as MRI scans to 
diagnose Alzheimer’s disease. For instance, CNNs have been applied successfully to extract features from 
MRI scans to identify structural brain changes associated with AD [1][3]. However, these models often 
struggle with predicting the temporal aspect of disease progression. To address this, research has 
increasingly integrated Long Short-Term Memory (LSTM) networks to model the sequential and temporal 
data inherent in Alzheimer's progression. The hybrid approach of CNN and LSTM has proven 
particularly effective by capturing both the spatial patterns from imaging data and the temporal patterns 
from longitudinal sensor data, thus enhancing prediction accuracy[21][23]. IoT sensors, which provide 
real-time, continuous data on patients' daily activities and physiological parameters, have also been 
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identified as crucial for the continuous monitoring of Alzheimer's patients[24]. The integration of such 
data with deep learning models, such as CNN-LSTM hybrids, allows for a comprehensive understanding 
of the disease's trajectory, which is essential for personalized care [2][4][5]. 

Further studies emphasize the challenges of interpreting the vast amount of heterogeneous data from IoT 
devices and the need for sophisticated algorithms to extract meaningful insights. [25]The use of 
multimodal data, combining clinical measures, genetic information, and data from wearable sensors, has 
become a focal point for researchers aiming to improve prediction accuracy [6][8]. By incorporating both 
imaging data and sensor-based measurements, such models are better equipped to handle the dynamic 
nature of Alzheimer's disease, which can vary significantly between individuals. Moreover, the ability to 
track subtle, real-time changes in a patient’s condition through IoT-enabled monitoring systems is a key 
advantage in the early detection and ongoing management of AD. [22]As the research progresses, hybrid 
models combining CNNs for spatial feature extraction and LSTMs for sequential data analysis are 
becoming increasingly prevalent. This integration is expected to play a pivotal role in developing more 
reliable prediction systems for Alzheimer’s disease, offering an innovative approach to both detection and 
monitoring that can ultimately contribute to better treatment outcomes and more effective interventions 
[7][9][10][11]. 

 
III. PROPOSED METHOD 

1. Convolution Operation Equation 
𝑌𝑖,𝑗,𝑘 = ∑ ∑ ∑ 𝑊𝑚,𝑛,𝑑,𝑘

𝐷𝑖𝑛
𝑑=1

𝐹
𝑛=1

𝐹
𝑚=1 ⋅ 𝑋𝑖+𝑚−1,𝑗+𝑛−1,𝑑 + 𝑏𝑘  (1) 

Nomenclature: 
• 𝑌𝑖,𝑗,𝑘: output feature map value at position (𝑖, 𝑗) in the 𝑘-th output channel 
• 𝑊𝑚,𝑛,𝑑,𝑘: weight of the convolution filter at position (𝑚, 𝑛) for input channel 𝑑 and output 

channel 𝑘 
• 𝑋𝑖+𝑚−1,𝑗+𝑛−1,𝑑: input value from channel 𝑑 at spatial location (𝑖 + 𝑚 − 1, 𝑗 + 𝑛 − 1) 
• 𝑏𝑘: bias term for the 𝑘-th filter 
• 𝐹: kernel (filter) size 
• 𝐷𝑖𝑛: number of input channels 

This equation represents the core convolution operation in the CNN module of the hybrid model. It 
extracts spatial features from 2D or 3D IoT sensor data inputs related to Alzheimer’s progression. By 
applying multiple learnable filters, it captures local patterns such as brain structural abnormalities or 
sensor-based signals, critical for early detection of disease stages. This feature extraction forms the basis 
for temporal modeling by LSTM in this framework (2024). 

2. ReLU Activation Function 
𝑓(𝑥) = max(0, 𝑥)  (2) 
Nomenclature: 

• 𝑓(𝑥): activated output after ReLU 
• 𝑥: input to the ReLU function (typically the output of a convolution operation) 

ReLU introduces non-linearity to the model by zeroing out negative values while keeping positive values 
unchanged. In the CNN layers of the proposed framework, this activation function helps the network 
learn complex patterns in IoT sensor data such as neurological signals related to Alzheimer’s with 
computational efficiency and mitigates the vanishing gradient problem. Its simplicity makes it ideal for 
deep feature extraction (GeeksforGeeks, 2025). 

3. Max Pooling Operation 
𝑃𝑖,𝑗,𝑘 = max

𝑚=0,…,𝑝−1 𝑛=0,…,𝑝−1
𝑌𝑠𝑖+𝑚,𝑠𝑗+𝑛,𝑘  (3) 

Nomenclature: 
• 𝑃𝑖,𝑗,𝑘: pooled output at position (𝑖, 𝑗) in the 𝑘-th channel 
• 𝑌𝑠𝑖+𝑚,𝑠𝑗+𝑛,𝑘: value in the 𝑘-th channel at position defined by the pooling window 
• 𝑝: size of the pooling window 
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• 𝑠: stride length 
Pooling layers reduce the spatial dimensions of the feature maps to decrease computation and enforce 
translational invariance on extracted features. Max pooling selects the maximum activation in each 
window, summarizing most relevant information. In the hybrid CNN-LSTM framework, it ensures critical 
Alzheimer’s brain structural or sensor data features are retained while minimizing model complexity 
(GeeksforGeeks, 2025). 

4. LSTM Input Gate Equation 
𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)  (4) 
Nomenclature: 

• 𝑖𝑡: input gate vector at time step 𝑡, controlling how much new info to add 
• 𝜎(⋅): sigmoid activation function 
• 𝑊𝑖: weight matrix for input gate 
• ℎ𝑡−1: previous hidden state 
• 𝑥𝑡: current input vector (features extracted by CNN) 
• 𝑏𝑖: bias vector 

The input gate regulates how much new information from the current preprocessed IoT sensor data is 
incorporated into the LSTM cell state. It gates relevant temporal features extracted by CNN and 
determines their importance to be remembered for predicting Alzheimer’s disease progression dynamics 
(GeeksforGeeks, 2025). 

5. LSTM Candidate Cell State Equation 
𝐶̃𝑡 = tanh(𝑊𝑐 ⋅ ℎ[𝑡 − 1], 𝑥𝑡) + 𝑏𝑐   (5) 
Nomenclature: 

• 𝐶̃𝑡: candidate values for cell state at time 𝑡 
• tanh(⋅): hyperbolic tangent activation function producing values in [−1,1] 
• 𝑊𝑐: weight matrix for candidate state 
• 𝑏𝑐: bias vector 

This non-linear transformation creates new candidate information for updating the LSTM cell state based 
on the current IoT sensor data and previous hidden state. It captures complex temporal patterns in patient 
data critical for modeling Alzheimer’s progression (GeeksforGeeks, 2025). 

IV. RESULT AND DISCUSSION 
1: Model Performance Comparison (Accuracy) 
Table 1 presents the accuracy comparison of three models—CNN, LSTM, and the Hybrid CNN-LSTM 
model—based on their performance on training, validation, and testing datasets. The CNN model 
achieves the highest accuracy on the training dataset at 88.5%, followed by 84.2% on the validation set 
and 83.7% on the testing set. The LSTM model shows slightly lower accuracy, with 85.2% on the training 
set, 80.6% on validation, and 79.5% on the testing set. In contrast, the Hybrid CNN-LSTM model 
outperforms both the CNN and LSTM models, with 92.1% accuracy on training, 89.3% on validation, 
and 87.9% on the testing dataset. These results suggest that the Hybrid CNN-LSTM model is better at 
generalizing across different datasets, making it more reliable for predicting Alzheimer’s disease 
progression. The improvement in performance can be attributed to the hybrid model’s ability to combine 
spatial feature extraction from CNNs and temporal data processing from LSTMs, capturing both the 
structural and temporal aspects of the disease. The Hybrid CNN-LSTM model’s superior performance on 
both validation and testing datasets highlights its potential in real-world applications, where accurate 
disease progression predictions are crucial for timely intervention and personalized care. This comparative 
performance further demonstrates the efficacy of using a hybrid deep learning approach over standalone 
CNN or LSTM models in predicting Alzheimer’s disease. 
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Fig 1: Model Performance Comparison (Accuracy) 
2: Precision, Recall, and F1-Score Comparison 

Model 
Type 

Precision 
(%) 

Recall 
(%) 

F1-
Score 
(%) 

CNN 
Model 

90.1 83.5 86.7 

LSTM 
Model 

86.4 78.9 82.5 

Hybrid 
CNN-
LSTM 

93.3 91.1 92.2 

Table 1: Precision, Recall, and F1-Score Comparison 
Table 2 compares the precision, recall, and F1-score of three models—CNN, LSTM, and Hybrid CNN-
LSTM. Precision measures the accuracy of positive predictions, recall evaluates the model's ability to 
identify all relevant instances, and the F1-score combines both precision and recall into a single metric. 
The CNN model demonstrates the highest precision at 90.1%, which means it is very accurate when 
predicting Alzheimer’s patients. However, its recall is somewhat lower at 83.5%, indicating that the model 
misses a significant number of Alzheimer’s cases. The F1-score for CNN is 86.7%, reflecting a moderate 
balance between precision and recall. The LSTM model, while showing a slightly lower precision (86.4%), 
also has a lower recall of 78.9%, resulting in an F1-score of 82.5%. In contrast, the Hybrid CNN-LSTM 
model excels in both precision and recall, with a precision of 93.3%, recall of 91.1%, and the highest F1-
score of 92.2%. This indicates that the Hybrid model performs better at both identifying Alzheimer’s 
patients and minimizing false positives. The hybrid approach, combining the spatial feature extraction of 
CNNs and the sequential modeling of LSTMs, enables the model to better handle the complexities of 
Alzheimer’s disease, leading to higher precision and recall. The superior F1-score of the Hybrid CNN-
LSTM further demonstrates its overall effectiveness for Alzheimer’s disease prediction, making it a more 
reliable model compared to CNN and LSTM models individually. 
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Fig 2: Precision, Recall, and F1-Score Comparison 
3: Confusion Matrix (Hybrid CNN-LSTM) 
Table 3 presents the confusion matrix for the Hybrid CNN-LSTM model, providing insights into the 
model’s classification performance. The confusion matrix is essential in evaluating a model's ability to 
distinguish between classes—in this case, between patients with and without Alzheimer’s disease. The 
matrix shows that the Hybrid model correctly classified 720 instances of patients without Alzheimer’s 
disease (true negatives) and 760 instances of Alzheimer’s patients (true positives). However, the model 
misclassified 45 Alzheimer’s patients as non-Alzheimer’s (false negatives) and 35 non-Alzheimer’s patients 
as Alzheimer’s (false positives). This confusion matrix highlights that the Hybrid model achieves a high 
level of accuracy in distinguishing between Alzheimer’s and non-Alzheimer’s patients, but there is still 
some room for improvement in minimizing false negatives and false positives. False negatives are 
particularly concerning in Alzheimer’s disease detection, as failing to identify an Alzheimer’s patient could 
delay intervention. Nonetheless, the model’s overall performance in correctly predicting both Alzheimer’s 
and non-Alzheimer’s cases demonstrates its effectiveness for practical applications. This confusion matrix 
data can also be used to calculate other performance metrics such as precision, recall, and F1-score, which 
further substantiate the superiority of the Hybrid CNN-LSTM model compared to other models in terms 
of its ability to predict Alzheimer’s disease progression. 

 
Fig 3: Confusion Matrix (Hybrid CNN-LSTM) 
4: ROC Curve Data (Hybrid CNN-LSTM) 
Table 4 provides data for plotting the Receiver Operating Characteristic (ROC) curve for the Hybrid 
CNN-LSTM model, which evaluates the model’s ability to discriminate between Alzheimer’s and non-
Alzheimer’s patients. The ROC curve data includes various false positive rates (FPR) and true positive 
rates (TPR) at different thresholds. As the false positive rate increases from 0.0% to 30.0%, the true 
positive rate also increases from 0.0% to 93.0%. This data shows that the Hybrid CNN-LSTM model is 
highly effective at identifying Alzheimer’s patients as the threshold for classification changes. At a 
threshold of 5%, the model already identifies 30.1% of true positives, and by a 25% threshold, it identifies 
89.8% of true positives. This increasing TPR with a controlled FPR indicates that the model can 
accurately classify Alzheimer’s patients while keeping false positives relatively low. The ROC curve is an 
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important evaluation tool because it provides a comprehensive view of the model’s performance across 
all classification thresholds. The high true positive rates at different false positive rates suggest that the 
Hybrid CNN-LSTM model is robust and capable of distinguishing between Alzheimer’s and non-
Alzheimer’s cases effectively. This makes it a reliable tool for early detection of Alzheimer’s disease, which 
is essential for timely intervention and better patient outcomes. 

 
Fig 4: ROC Curve Data (Hybrid CNN-LSTM) 
5: Model Loss Comparison (Epochs) 

Epoch CNN 
Loss 

LSTM 
Loss 

Hybrid 
CNN-
LSTM 
Loss 

1 0.585 0.62 0.56 
2 0.542 0.59 0.52 
3 0.515 0.555 0.485 
4 0.49 0.51 0.46 
5 0.47 0.48 0.435 

Table 2: Model Loss Comparison (Epochs) 
Table 5 presents the loss comparison of the CNN, LSTM, and Hybrid CNN-LSTM models over several 
epochs during training. Loss is a measure of how far the model’s predictions are from the actual values, 
with lower loss indicating better performance. The CNN model’s loss decreases from 0.585 in the first 
epoch to 0.470 by the fifth epoch, showing steady improvement. Similarly, the LSTM model’s loss 
decreases from 0.620 to 0.480 over the same period, though it starts higher than the CNN model. The 
Hybrid CNN-LSTM model, which combines both CNN and LSTM, shows the most significant reduction 
in loss, starting at 0.560 in epoch 1 and dropping to 0.435 by epoch 5. This rapid decrease in loss for the 
Hybrid model indicates its faster convergence and higher effectiveness in learning from the data. The 
smaller loss values for the Hybrid model reflect its ability to better capture both spatial and temporal 
features of Alzheimer’s progression, enhancing its predictive performance. The comparison of loss 
reduction over epochs emphasizes the benefits of using a hybrid deep learning model, as it not only 
achieves lower loss but also converges more quickly, which is crucial in real-time applications like disease 
progression prediction. 
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Fig 5: Model Loss Comparison (Epochs) 
 
V. CONCLUSION 
In conclusion, the integration of advanced deep learning models, such as the hybrid CNN-LSTM 
framework, has shown great promise in improving the prediction of Alzheimer's disease progression, 
particularly when combined with IoT sensors that continuously monitor patient data. Traditional 
machine learning models, such as CNNs, have demonstrated success in extracting spatial features from 
neuroimaging data like MRI scans, which are essential for detecting structural changes in the brain 
associated with Alzheimer's. However, these models often fall short when it comes to predicting the 
temporal aspects of disease progression. The use of Long Short-Term Memory (LSTM) networks has 
addressed this limitation by effectively capturing the sequential and temporal dynamics of Alzheimer's 
disease. The incorporation of IoT sensors into the prediction models enhances the process further by 
providing real-time, continuous data on a patient's daily activities and physiological parameters. This 
multimodal data—combining clinical measures, genetic information, and sensor data—offers a holistic 
view of the disease’s progression, essential for accurate diagnosis and personalized treatment plans. 
Although challenges remain in managing and interpreting the heterogeneous nature of this data, ongoing 
advancements in hybrid deep learning models and sophisticated algorithms promise to overcome these 
obstacles. The growing adoption of CNN-LSTM hybrid models for Alzheimer's prediction is expected to 
drive more accurate and timely detection, leading to better patient outcomes. By leveraging both imaging 
and sensor data, these models offer a more comprehensive, dynamic approach to managing Alzheimer’s 
disease, which could significantly improve early detection and ongoing monitoring. 
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