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Abstract 
With the rapid growth of e-commerce platforms over the years, finding the right products might prove challenging for users. 
With massive catalogs that are often overwhelming, it might, at times, be harder to navigate, personalize, or even discover the 
products required by a user on e-commerce platforms. Therefore, in this study, we explore practical AI-based approaches to 
group similar products together based on their prices, ratings, categories, brands, and user behavior to promote efficacy and 
combat the aforementioned inefficiencies. First, standard clustering models, K-Means and DBSCAN, are run on e-commerce 
data to segment products based on the basic features. Since clusters do not reflect how users interact with products, two main 
upgrades are introduced. First, behavior-like features such as estimated click-through rates and popularity scores are introduced. 
Second, models such as MiniBatchKMeans and HDBSCAN are implemented for cases where large datasets are to be used, 
and scalability is a major concern. Since clustering models lack ground truth labels for evaluation, we use the Silhouette Scores 
and Davies-Bouldin Index to compare the performance of the clustering architectures. With the inclusion of behavioral features 
in the dataset, it is observed that the performance of the models improves as behavioral features help create tighter, more 
meaningful groups, and the scalable methods cut down processing time, which makes real-time updates more feasible. This 
work demonstrates how blending user behavior with flexible clustering techniques can make product organization smarter, 
ease navigation, and make personalization more effective. 
Keywords: Clustering; E-Commerce; DBSCAN, KMeans, Personalization, and Scalability 
 
1. INTRODUCTION 
1.1 Background and Motivation 
Globally, the e-commerce landscape has, over the past few years, experienced exponential growth and has 
transformed how consumers discover, evaluate, and purchase goods at their convenience. This expansion has, 
however, had its fair share of shortcomings in terms of the staggering increase in the size and complexity of 
online product catalogues. Most of the leading e-commerce platforms tend to host millions of distinct products, 
which span countless categories and subcategories, leading to information overload, even though this abundance 
of products offers unparalleled choice for consumers. Users often find themselves overwhelmed while struggling 
to find specific products that align with their needs, wants and preferences. This surge might manifest as 
frustrating search experiences, abandoned shopping carts, and lost sales, thus the need for efficient and 
intelligent organization of these products. Artificial Intelligence and Machine Learning architectures have largely 
been employed to automate the organization and personalization of products in such large-scale e-commerce 
systems. Clustering has proven especially impactful in grouping similar products based on various attributes; 
however, popular traditional clustering models like KMeans and DBSCAN often struggle with scalability, 
sensitivity to outliers, and lack of adaptability in streaming environments despite proving useful in structured 
datasets (Jakir et al., 2023) [10]. Clustering architectures focused solely on product metadata tend to overlook 
behavioural signals that are critical in understanding user preferences and the relevance of different products. 
Integrating user-behaviour metrics such as click-through rates, impressions, and the frequency of purchase, into 
clustering models can potentially improve the quality of the clusters. As outlined by Hassan et al.(2024), machine 
learning algorithms are particularly useful in personalized customer modelling and predictive models that 
incorporate behavioural data lead to better customer retention and improved engagement in online platforms 
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[5]. Islam, M.R., et al.(2025) also put across that mining synthetic user interaction data is vital in improving e-
commerce personalization and recommendation systems, which can also prove useful in detecting potentially 
fraudulent activity in these platforms [8]. Traditional methods of structuring e-commerce platforms tend to 
struggle with keeping pace with exponential growth in the number of products, and clustering techniques as 
outlined by Kapp-Joswig and Keller (2022) offer a much more scalable alternative to static categorization [11]. 
Similarly, Wasilenski and Kolaczek (2024) argue that static taxonomies that tend to be inherently incapable of 
adapting to the evolving nature of e-commerce user interfaces, and adaptive clustering systems that update 
clusters based on user behaviour and contextual relevance, can to a great degree enhance the browsing experience 
and improve product discovery [21]. Static systems, on the other hand, might at times result in fragmented user 
experiences, where similar products are scattered across unrelated categories due to inconsistencies in manual 
labeling or a lack of semantic understanding. 
1.2 Importance Of This Research 
Effective product clustering is critical in e-commerce platforms as it transcends ordinary organizational efficiency 
and serves as a foundational pillar for the significant enhancement of core user experiences and platform 
capabilities in this competitive landscape. Better clustering methods solve some of the everyday frustrations users 
face on e-commerce platforms, like struggling to find what they’re looking for or missing out on products that 
would’ve been a great fit. When products are grouped in a way that reflects not just surface-level traits like brand 
or category, but also deeper patterns from user behavior, like what people tend to view or buy together, those 
clusters can reveal more relevant alternatives and helpful suggestions that rigid category trees tend to miss. It’s 
the kind of thing that makes browsing feel more natural and discovery more satisfying. Users aren’t just finding 
what they searched for; they’re stumbling on things they didn’t know they needed, and that makes the whole 
experience feel more personal and less frustrating. Research by Yao et al. (2021) confirms that clustering based 
on behavior and contextual relevance substantially improves product visibility, making the shopping experience 
feel more personalized, dynamic, and less transactional [23]. Strong product clustering not only helps users but 
also improves the quality of the recommendations behind the scenes. By understanding how items relate in 
context and not just in isolation, recommendation models can deliver results that feel a lot more in tune 
with what a consumer might want (Sun et al., 2019) [20]. However, building those clusters at scale isn’t as 
simple as getting the algorithm to spit out accurate groupings in a test environment. Real -world platforms 
deal with massive, constantly changing inventories, millions of products coming and going, shifting trends, 
and users whose preferences evolve week to week. That means the clustering method can’t just be smart; it 
has to be fast, efficient, and flexible enough to keep up. Clustering architectures such as MiniBatch KMeans 
and HDBSCAN, which we cover in this study, help strike that balance as they can actively process large 
volumes of data quickly without requiring endless computer resources, thus being efficient. Just as important, 
they can be adapted or updated on the fly, which is key when you’re dealing with live systems that never sit 
still. According to McInnes et al. (2017), HDBSCAN achieves scalable performance and stability without 
requiring manual tuning of cluster counts, making it well-suited for production deployment in live systems [12]. 
For real-world e-commerce systems, scalability and adaptability are major factors to consider as platforms 
must have the capabilities to process millions of products and update clusters in near real -time with an 
increasing number of users and constant behavioural shifts, and it's observed that static or batch-only systems 
often tend to miss these dynamic demands. The problem with a lot of traditional clustering setups is that they 
rely on batch processing or static groupings, which quickly become outdated. If your system can’t update itself 
in real time, it’s going to struggle to stay relevant. Islam et al.(2025) emphasize the need to build intelligent, 
future-proof e-commerce systems that handle high data velocity whilst supporting incremental updates and real-
time responsiveness. Their findings conclude that intelligent clustering, powered by behavioural signals and 
scalable algorithms, plays a vital role in structuring product catalogs more effectively, thereby enabling platforms 
to rapidly adapt to evolving consumer behaviour and market dynamics [8]. 
1.3 Research Objectives and Contributions 
The primary objective of this study is to investigate and compare multiple machine learning clustering 
architectures using e-commerce data with the goal of improving user experience and the organization of products 
on e-commerce platforms. Evaluation of clustering algorithms like KMeans and DBSCAN and their scalable 
counterparts, MiniBatch KMeans and HDBSCAN, was conducted whilst focusing on the quality of clusters, 
their adaptability, and their computational costs. Behavioural signals such as click-through rate (CTR) and 
product popularity are included in the clustering process since, in most cases, these features are overlooked even 
though they add a critical layer of user engagement data that enhances the relevance and interpretability resulting 
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clusters using the various architectures. Another major contribution of this study is the development of a reusable, 
modular clustering engine built using pipeline-based architectures and object-oriented design, whilst considering 
the aspects of scalability and product-readiness. The engine supports batch training, incremental updates, and 
real-time predictions, allowing for seamless integration into existing e-commerce infrastructures and ensuring 
the clustering system can evolve in parallel with expanding product catalogs and user data streams where needed. 
This study bridges the gap between academic models and deployable systems, offering a scalable solution tailored 
to the dynamic nature of modern e-commerce 
 
2. LITERATURE REVIEW 
2.1 Traditional Product Clustering in E-Commerce 
Clustering has, for the longest time, been employed as a technique for organizing and grouping similar products 
in e-commerce platforms. Among the most widely used algorithms in this domain are KMeans, DBSCAN, and 
hierarchical clustering, with method offers distinct strengths but also presents limitations, particularly when 
applied to large and heterogeneous product catalogs. The KMeans algorithm remains the most preferred choice 
of all other algorithms due to its simplicity, computational efficiency, and ability to handle large datasets, as it 
constitutes the partitioning of data into a predefined number of clusters based on centroid optimization. It is 
simple and fast, and also has the capabilities to handle large datasets with minimal to no shortcomings. KMeans 
works by dividing data into a set number of clusters and grouping similar items using centroids. That said, it’s 
not without its drawbacks. You have to decide on the number of clusters ahead of time, and where the algorithm 
starts, those initial centroids, can affect the results quite a bit. It also tends to struggle when the clusters aren’t 
evenly sized or shaped, which is a common issue in real-world e-commerce data where product categories can 
vary a lot in how they’re spread out. In contrast, the DBSCAN (Density-Based Spatial Clustering of Applications 
with Noise) architecture does not require prior specification of the number of clusters and is particularly effective 
at identifying arbitrarily shaped clusters and handling noise or outliers, making it well suited for messy high-
dimensional product datasets. The DBSCAN model, however, falls short in performance which deteriorates on 
large datasets due to its O(n²) time complexity in the worst case, which limits its scalability. Moreover, DBSCAN 
struggles to identify clusters of varying densities which, is a common occurrence in e-commerce data, thus the 
need for more scalable and flexible alternatives. Most hierarchical clustering methods offer a tree-like structure 
that is intuitively appealing and useful for visualizing relationships among products, yet they suffer from high 
computational cost and lack flexibility once the tree is built, meaning new data cannot easily be added without 
recalculating the entire structure (McInnes et al., 2017)  [12]. This makes hierarchical clustering impractical for 
real-time applications in specific environments such as online retail. Jakir et al. (2023)outlined in their study the 
importance of choosing clustering algorithms that strike a balance between performance and scalability when 
working with transactional data, drawing attention to the need for robust models in high-volume environments 
such as e-commerce. Their study noted that while traditional methods like KMeans and DBSCAN are 
foundational, they often require modification or replacement when applied to operational systems, and this 
serves as a major drawback in clustering tasks [10]. Similarly, Islam et al. (2025) analyzed clustering applications 
in synthetic e-commerce datasets and found that while conventional methods provided a baseline for product 
structuring, their inability to scale or adapt to behavioral data limited their practical use in live e-commerce 
systems [8]. 
2.2 Behavior-Driven Clustering Approaches 
Clustering methods that factor in how users interact with a site, things like clicks, purchases, and ratings, tend 
to do a much better job at personalizing recommendations. Instead of just relying on basic product info, they 
use real-time user behavior to group items in a way that more closely matches what people are really looking for. 
The result is recommendations that feel more relevant and in tune with each user’s intent. One effective method 
that considers user behaviour is clustering based on the clickstream data. For instance, Nozari et al. (2024) 
developed an unsupervised system, reliant on user behaviour to recommend items whilst utilizing clustering on 
browsing and click patterns. Their approach works by grouping users by activity type and then products with 
high reputation scores within the clusters are recommended which results in boosted recommendation accuracy 
and engagement [13]. Sun et al. (2019) introduced BERT4Rec, which is a transformer-based model that captures 
sequential patterns in user behavior and such behavioural patterns include clicks and views, for session-based 
recommendation. Their results showed that modeling user interactions as sequences allowed the system to better 
understand different user states, which leads to significant improvements in click-through rates (CTR) across 
multiple datasets by clustering behavior patterns into meaningful engagement profiles with great effect [20] 
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Yao et al. (2021), on the other hand, reinforced the relevance of click data by showing how click-through 
information can be used to derive more nuanced product relevance models for efficacy. Although their work 
focuses mainly on search relevance, it highlights the strong correlation between product clustering that includes 
click patterns and improved recommendation outcomes [23]. From a more nuanced e-commerce perspective, 
behavioural analytics frameworks insist on aggregating signals such as CTR and dwell time from a session level 
with the aim of inferring user interest and tailoring product groupings accordingly. Xie et al. (2023) showed that 
incorporating dwell-time into click-based models through means such as treating longer interactions as stronger 
engagement signals helps recommendation systems infer user intent more accurately [22]. Through clustering or 
modeling sessions based on this weighted click behavior, their approach led to significant gains in engagement 
and click-through rates. 
2.3 Gaps and Challenges 
Despite significant advancements in product clustering, several key gaps limit the practical applications of these 
clustering techniques in large-scale e-commerce environments. The most noted challenges include the lack of 
scalability in standard clustering algorithms like KMeans and DBSCAN, limited integration of behavioral signals 
such as clicks or ratings into clustering workflows, and poor adaptability to real-time catalog changes. Algorithms 
such as KMeans, despite being computationally efficient on moderately sized datasets, their clustering 
performance deteriorates as the number of products grows into the millions for e-commerce platforms. DBSCAN, 
despite its effectiveness in detecting clusters of arbitrary shapes and handling noise, is often faced by high 
computational complexity, especially in high-dimensional product data and this scalability limitation restricts 
DBSCAN’s direct application in real-time retail environments. Jakir et al. (2023) emphasize how vital it is for 
scalable machine learning in operational domains like financial fraud detection, which demands rapid analysis 
of large and continuously evolving datasets similar to e-commerce. Their findings suggest that traditional models 
must be either optimized or replaced to handle real-world scale effectively [10]. There is also a lack of clustering 
methods that effectively combine metadata such as price, brand, and dimensions with consumer behavior 
features such as click-through rate, user interest, and popularity. Most clustering architectures tend to rely solely 
on static product attributes, which often fail to capture how users interact with product catalogs. Islam et al. 
(2025) argue that e-commerce clustering systems must evolve to incorporate synthetic or real user interaction 
data with the aim of reflecting true market behavior and demand [8]. Their detailed analysis of behavior-
augmented synthetic datasets supports the postulate that traditional models that rely on metadata are not enough 
for personalization.  Most current clustering setups still rely on batch processing and do not adapt on the fly, 
requiring full retraining from scratch when product catalogs change. This approach is impractical in real-time e-
commerce platforms where prices shift, new items come in, and users interact with products all the time. Ray et 
al. (2025), in their study on the impact of AI on digital finance ecosystems, stress how important it is for AI 
systems to update themselves automatically in fast-changing environments. Their findings make the same case 
for e-commerce, which is, if your system can’t keep up with change, it quickly stops being useful [16]. 
Hasan et al.(2024) point out that models focused on customer retention and personalization really need to adapt 
based on user behavior, which is still an issue that many clustering approaches still struggle with. They suggest 
that even the most accurate models can become obsolete quickly if they aren’t built to learn from ongoing user 
activity data [5]. Taken together, these shortcomings highlight a bigger issue, which constitutes most current 
clustering systems just being unable to keep up with the fast, ever-changing nature of real-world e-commerce. If 
we want to move beyond academic prototypes and build systems that work in production, we need models that 
can scale, adapt, and respond to user behavior in real time. 
 
3. METHODOLOGY 
3.1 Data Sources and Description 
This study utilizes a synthetic e-commerce product dataset developed to mirror the scale and structure of real-
world retail catalogs. The data set comprises 1,000 distinct product records, each of which reflects a typical 
product that can be detected in a regular online market. Each entry in the product has various details, a 
combination of useful information based on specific traits, which are fixed ones, such as category or brand, and 
ones which are dynamic and linked to user behavior. The data features are numerical, such as the price and the 
average rating, and categorical, such as the product category and the brand. In addition, the data provides the 
dimensions field in written form, where each product's dimensions are reported. 
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In an attempt to signify more closely how people essentially use products, the dataset features several artificial 
behavioral metrics. These are impressions, which indicate the rate at which a product is shown to the users; 
clicks, which reflect the rate at which users engage a product; and purchases, which are calculated as a percentage 
of the clicks to indicate conversion. Based on that, we derive the click-through rate (CTR) by dividing the number 
of clicks by the impressions, which is a good method of showing users' interest. We can also make a popularity 
ranking based on the product count multiplied by average ratings, which estimates how popular and demanded 
a given product can be. With these behavioral signals added to the core product data, the dataset offers a more 
realistic setup for testing and comparing different clustering models, especially those that take user behavior into 
account, something that’s especially relevant in the e-commerce space. 
3.2 Data Preprocessing 
In preparation for clustering, the dataset is processed using a structured pipeline built upon the scikit-learn 
Pipeline and ColumnTransformer architectures. This proved particularly helpful in the simultaneous handling 
of heterogeneous data types, including numerical, categorical, and parsed text-based features. Numerical features 
in the dataset, such as price, ratings, CTR, and popularity, are selected using a custom column selector and their 
values transformed to a common scale with zero mean and unit variance using the StandardScaler purposefully 
to ensure each feature equally contributes to the clustering algorithms. Categorical features comprising brand 
and category, are handled by a another pipeline component where the features are first extracted using a 
categorical selector and then encoded using a one-hot encoder to ensure each unique categorical value is 
converted to a binary vector, preserving the distinction between various brands and product categories and 
safeguarding model stability during inference. Another pipeline component was used on the textual data in the 
dimensions column. Since the dimensions are denoted as “length x width x height,” these numerical values are 
parsed using a custom transformer that extracts each of the three components, length, width, and height, into 
separate features, which are then scaled using a StandardScaler to match the numeric preprocessing structure. 
All three preprocessing steps, handling numerical features, categorical data, and custom dimension parsing, were 
pulled together using a single ColumnTransformer. This setup lets us process everything in parallel, keeping 
things organized and consistent. It also made it easier to train and reuse the clustering models later without 
having to rework the pipeline each time. 
3.3 Exploratory Data Analysis 
An exploratory data analysis (EDA) was conducted to gain a comprehensive understanding of the distribution, 
correlation, and clustering potential of the available dataset features before mode development. In the analysis 
of brand versus ratings, for all brands, the ratings generally fall within a range of approximately 2.0 to 5.0, with 
most ratings concentrated between 3.0 and 5.0. Brand A achieved the highest ratings, peaking near 5.5, 
indicating superior customer perception. Brand E demonstrates the weakest performance with the lowest ratings, 
around 2.0 and 3.0. Brand C exhibited a tight ratings distribution centered at around 3.8, reflecting remarkable 
consistency in customer experience when compared to other brands with broader dispersions. In the analysis of 
category versus ratings, Clothing has a peak rating of 5.5, whereas home goods have a rating of between 4.0 and 
4.5, which reflects effective quality control and alignment of products with what the consumers expect. On the 
flip side, the Books category didn’t do so well as they consistently pulled in the lowest ratings, ranging somewhere 
between 2.0 and 3.0. That kind of low rating might point to problems with things such as poor delivery (physical 
or digital), mismatched content expectations, or even damaged copies showing up at people’s doors. The Toys 
category landed somewhere in the middle with ratings hovering around 3.5 to 4.0, while Electronics had a similar 
range but showed a bit more fluctuation, hinting that user experiences weren’t exactly consistent. What stands 
out, though, is the noticeable gap between the top performer (Clothing) and the lowest-rated category (Books). 
That kind of spread makes a strong case for tailoring quality strategies to each category, and for making sure 
clustering models account for category metadata, since different products drive satisfaction in different ways. 
 

  
Fig. 1. Brand and Category vs Ratings. 
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In the analysis of brand versus price, it is observed that BrandA clearly plays in the high-end space, with most of 
its prices landing in the 200–300 range, which is a strong signal of its luxury positioning. On the flip side, 
BrandC sticks firmly to the budget corner, with prices hovering close to zero and barely budging, which suggests 
it’s consistently offering low-cost options. The middle tier is a bit more nuanced with BrandB keeping things 
fairly tight with prices ranging between 50 and 150 units, which points to a deliberate value-focused strategy. 
Meanwhile, BrandD and BrandE are all over the map, with prices swinging from negative to positive, which may 
be a sign of a mixed product lineup or just some inconsistent pricing. The negative prices in this case might be 
flukes, possibly discounts, promos, or error entries that need a closer look. In the category versus price analysis, 
it is observed that Clothing stands out as the most expensive category, generally falling between 200 and 300 
units, indicating a probable reflection of premium branding or higher-end positioning. Home goods sit 
comfortably in the middle range, around 50 to 150 units, which makes sense for items like furniture or decor; 
there’s some variation, but nothing too wild. Electronics and Books are both clustered closer to zero, though 
Electronics prices bounce around a bit more, maybe because the category mixes cheaper gadgets with mid-range 
tech. The Toys category has prices ranging from -100 to 200 units indicating errors in the data which need to be 
corrected. 
 

 
Fig.2. Brand and Category versus Price. 
When we looked at the ratings distribution, the histogram told an interesting story; it’s heavily right-skewed, 
with most products landing between 3.5 and 5 stars. There's a noticeable spike around 4.5, with roughly 140 
products hitting that mark, which points to generally positive sentiment across the board. Less than 20% of the 
products dip below 3.5, and barely any sit in the 2.5 to 3.0 range. That kind of pattern isn’t unusual in e-
commerce, happy customers are more likely to leave reviews, but the near-total lack of low ratings could also hint 
at something else, like filtered reviews or gaps in how the data was gathered. For the price ratings analysis, the 
price histogram exhibits a bimodal pattern, with roughly about most products clustering between 50 and 150 
units. There's a particularly noticeable peak between 100 and 120, making that range the most common price 
point in the dataset. Overall, the distribution shows a fairly symmetrical, bell-shaped curve, suggesting prices are 
centered around the mean with a gradual taper on both sides. Only a small number of items are priced at the 
extremes, either very low, near zero, or very high, above 200. The negative value(s) might be a data entry error or 
anomaly that needs to be handled. 

 
Fig. 3. Price and Ratings Distributions. 
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3.4 Model Development 
The model development process begins with the implementation of the KMeans and DBSCAN baseline 
clustering algorithms. KMeans was selected particularly for its straightforward implementation and its strength 
in segmenting well-separated, roughly spherical clusters. It is also a go-to method when the data is relatively clean 
and the number of clusters can be reasonably estimated. In contrast, DBSCAN was brought in for its flexibility 
since it doesn’t require the number of clusters to be defined ahead of time, and it excels tremendously at finding 
clusters of arbitrary shapes, whilst handling noise and outliers more effectively. Both models were trained on a 
carefully preprocessed feature set that combined standardized numerical attributes, one-hot encoded categorical 
variables, and parsed physical dimensions to ensure consistency and comparability across all the dataset features. 
For the KMeans architectures, the optimal number of clusters (k=2) was determined using the silhouette 
coefficient curve (Fig. 4), which helped identify the point at which the separation between clusters was most 
distinct. 

 
Fig. 4. silhouette coefficient curve for optimal k(clusters) 
DBSCAN, on the other hand, required fine-tuning of the epsilon parameter (eps=9.0), which defines the 
neighborhood radius for clustering. This was done using the k-distance plot to pinpoint density thresholds that 
would yield meaningful clusters without excessive noise or fragmentation (Fig. 5).  To address the limitations 
of scalability and adaptability inherent in these baseline models, the study then introduced MiniBatchKMeans 
and HDBSCAN as enhanced alternatives. MiniBatchKMeans was incorporated due to its ability to process large 
datasets incrementally by operating on small, randomized data batches. This made it a great fit for situations 
where the product catalog keeps growing and evolving. Meanwhile, we brought in HDBSCAN, a more advanced 
algorithm compared to DBSCAN, because it’s built to pick up on clusters that vary in density and can even flag 
outliers, all without needing you to guess how many clusters there should be.  
Compared to DBSCAN, HDBSCAN handles high-dimensional data with more finesse, making it a solid choice 
for the messier, more unpredictable nature of real-world clustering tasks. To get a solid sense of how each model 
was actually performing, not just in theory, but in practice, we leaned on a few tried-and-true metrics. The 
Silhouette Score helped us see how tight each cluster was and how it stood apart from the others. It ranges from 
-1 to 1, with higher scores meaning the clusters make more intuitive sense. We also used the Davies-Bouldin 
Index, which takes the opposite approach: the lower the score, the better the separation and compactness. 
Beyond the numbers, we looked at how the data was spread across the clusters. Were there a few clusters 
dominating? Were there any clear outliers? Were the groupings balanced or thrown off by noisy features? By 
blending these more interpretable metrics with models built to handle scale, we were able to dig into clustering 
in a way that feels not just academic, but useful in the real world, especially when working with messy, high-
volume product data from large e-commerce platforms. 

 
Fig. 5. k-distance plot for optimal eps (epsilon) 
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4. Evaluation and Results 
The performance of the four clustering models, KMeans, DBSCAN, MiniBatchKMeans, and HDBSCAN, was 
systematically evaluated using a combination of internal validation metrics and visual inspection of the cluster 
structures. We ran each model on the dataset twice, once with the behavioral features (like click-through rate 
and popularity) and once without, to see how much of a difference those signals made in helping the clusters 
make sense and stand apart.  
4.1 K-Means Clustering Results 
For the basic K-Means setup, we used the silhouette score to figure out how many clusters made the most sense, 
and it turns out that two was the sweet spot for getting a clear separation. The silhouette score hits its highest 
point at k = 2 (0.58), which tells us the data is most cleanly split into two well-defined clusters. After that, as we 
increase k, the score gradually drops, reaching 0.52 by the time we get to k = 10. That decline hints at something 
important: the more clusters we try to force, the messier the separation becomes. It’s a sign that the dataset likely 
wants to fall into two natural groups, and anything beyond that just chops things up in a way that doesn’t add 
much clarity. The Davies-Bouldin Index (DBI) also hits its lowest point at k = 2 (0.51), suggesting that this is 
where the clusters are tightest and most distinct. As we increase k, the DBI gradually plateaus, reaching 0.58 by 
the time we get to k = 10. This upward trend lines up with what the silhouette scores are telling us: while two 
clusters give us the cleanest separation, adding more just seems to muddy the waters, leading to groups that either 
overlap or fall apart. 
 

 
Fig. 6. Silhoutte and Davies-Bouldin scores for KMeans 
The PCA and t-SNE Visualization shows two distinct clusters. For the PCA reduction, it is observed that the 
clusters are linearly separable in the original feature space with, PCA Dimension 1 capturing Cluster 1's variation 
and PCA Dimension 2 primarily capturing Cluster 0's variation. Minimal overlap of these clusters suggests 
distinct cluster characteristics. For the t-SNE visualization, the concentric structure (core vs. ring) suggests non-
linear relationships dominate the data structure, with Cluster 0 representing a homogeneous "core" group and 
Cluster 1 containing more diverse "peripheral" items, indicating clear separation of the clusters but with spatial 
hierarchy. PCA shows that products differ in fundamental attribute,s whereas t-SNE reveals a presence of 
engagement patterns within the data, both indicating cluster robustness. 

 
Fig. 7. PCA and t-SNE visualization of the clusters 
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The results of the numerical Cluster Analysis indicate that both Cluster 0 and Cluster 1 have a very high mean 
price, close to 100. This suggests that the products in both clusters are, on average, similarly priced and fall into 
a relatively high-price bracket (assuming the price scale from previous histograms).The mean price and ratings 
therefore, do not appear to be distinguishing factors between these two clusters, though they are starkly different 
in terms of the number of products they contain. Cluster 0 has more products in it, while Cluster 1 is noticeably 
smaller. That alone hints that there’s more going on beneath the surface, probably some less obvious features or 
nuances in the data that aren’t captured just by looking at average prices or ratings. And since the KMeans model 
landed on two clusters as the optimal choice (thanks to silhouette and Davies-Bouldin scores), it’s likely those 
subtle patterns are what’s really shaping how the data is grouped. 

 
Fig. 8 Numerical cluster analysis 
The analysis of ccategory ddistribution per cluster shows that Cluster 0 has way more products overall, something 
we’d already picked up on in earlier analyses. What’s interesting is that the categories in this cluster seem fairly 
well represented across the board, though we’d need to crunch the numbers to confirm the exact breakdown. 
Just eyeballing it, "Books" (you can spot them in purple at the bottom) seem to take up a good chunk, with other 
categories stacked on top. In contrast, Cluster 1 has far fewer products. It does include items from multiple 
categories too, but everything shows up in smaller proportions compared to Cluster 0. For the brands, Similar 
to category distribution, Cluster 0 contains a higher number of products for most of the top 10 brands. Brands 
like "BrandA" appear to be well represented. Cluster 1, being a smaller cluster, contains products from various 
brands, but in lesser quantities compared to Cluster 0. 

 
Fig. 9. Categorical cluster analysis. 
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4.2 DBSCAN Clustering Outcomes 
The DBSCAN Cluster Visualization in Reduced Dimensions plot gives us a visual sense of how DBSCAN 
handled the data after reducing it with PCA and t-SNE. In the PCA projection, it’s noticable that Cluster 0 (blue) 
spreads out quite a bit, it’s the largest of the bunch. Clusters 1 (orange) and 2 (green), on the other hand, are 
much smaller and more compact. There’s also a noticeable number of points labeled as "Noise" (gray), which 
means DBSCAN didn’t see them as belonging to any dense group, which is typical of how DBSCAN works 
whereby it’s designed to call out outliers rather than forcing every point into a cluster. The high volume of noise 
here hints that many data points just didn’t fit well into any defined group under the current settings. Now, if 
you look at the t-SNE plot, things get a little more tangled since the clusters, especially Clusters 0 and 1, start to 
form these winding, possibly overlapping shapes, which shows the kind of complex, non-linear patterns t-SNE 
tends to reveal. Cluster 2 still stands apart as a tight, isolated pocket. The gray noise points scattered across the 
plot really highlight how tough it is for this algorithm to form tight, well-defined clusters, mostly because of how 
the data is naturally shaped. DBSCAN tends to struggle when clusters have different densities, and that probably 
explains not just the spread-out noise, but also the odd, twisted shapes of the clusters you see, especially in the t-
SNE projection, where the algorithm’s doing its best to keep nearby points close together. 
 

 
Fig. 10. DBSCAN clusters visualization with PCA and t-SNE. 
The plot "Mean Price, Ratings, and Size per DBSCAN Cluster (Excluding Noise)" gives a quick snapshot of what 
each DBSCAN cluster looks like without the outliers the algorithm tossed into the "noise" bucket. The 
visualization presents blue bars for average price, orange for average ratings, and green for how many products 
fall into each cluster (0, 1, and 2). What stands out right away is that the average price (the blue bars) is hovering 
around 100 units for all three clusters. So, price doesn’t really help tell these groups apart. Same thing with the 
average ratings, those orange bars are stuck near zero across the board, which tells us that user ratings aren’t 
offering much distinction either. Where things do get interesting, though, is in cluster size, the green bars. 
Cluster 0 is relatively small, with around 300 products. Cluster 1 jumps quite a bit, holding about 700. And 
Cluster 2? It’s the biggest of the bunch, with over 750 products. That spread in size suggests DBSCAN was able 
to pick up on varying densities in the data, something it’s not always great at handling, especially when clusters 
aren’t equally dense, but exceptionally in this case, it managed to find some clear groupings. So, while price and 
ratings didn’t help separate these clusters, the differences in how tightly packed the data is (reflected in how 
many products land in each cluster) turned out to be a meaningful signal. 

 
Fig. 11. Mean Price, Ratings, and Size per DBSCAN Cluster (Excluding Noise) 
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The “Category and Brand Distributions per Cluster (Excluding Noise)” chart gives us a clearer picture of how 
DBSCAN grouped the products, excluding the noise. When you look at the category distribution, it’s obvious 
that Cluster 0 carries the weight, covering the bulk of products across all categories. Clusters 1 and 2, on the 
other hand, are barely there, each holding just a handful of products, which makes it tough to pull any 
meaningful insights from them. It’s a similar story in the brand distribution chart (focusing on the top 10 brands). 
Again, Cluster 0 is doing most of the heavy lifting, while Clusters 1 and 2 are so small they’re almost statistical 
afterthoughts. This kind of distribution suggests that, once noise was filtered out, DBSCAN essentially found 
one large, dominant cluster and a couple of tiny, dense pockets, leaving a good chunk of the data out entirely. 
That’s not surprising, though, since it lines up with the known challenges of DBSCAN, especially when it comes 
to handling datasets with mixed densities or irregular shapes. A lot of data ends up getting tossed aside as noise 
because it just doesn’t fit neatly into the algorithm’s idea of a "dense cluster." 

 
Fig. 12. DBSCAN category and brand distribution per cluster. 
4.3 Impact Of Behavioural Features 
The integration of behavioural features such as CTR(click-through rate) and popularity led DBSCAN to a 
noticeable boost, where it pushed the silhouette score from 0.467 up to 0.532, which is about a 14% jump. 
That’s not just a numerical win, as it makes sense when you think about how DBSCAN works. Since it groups 
things based on density, layering in user behavior helps uncover patterns that reflect how people interact with 
products. For instance, items that tend to get clicked on or bought together naturally bunch up, making it easier 
for the algorithm to spot real clusters and filter out the noise. On the other hand, K-Means doesn’t show much 
improvement as it bumps up just slightly from 0.593 to 0.610 after adding new features. That’s not too surprising, 
though. K-Means tends to favor clean, spherical clusters centered around averages, which works fine for 
straightforward stuff like price or category. But when it comes to behavioral signals, those messier, more nuanced 
patterns, it kind of falls flat, meaning they don’t fit neatly into the rigid boundaries K-Means tries to draw, so 
the algorithm just doesn’t quite know what to do with them. 

 
Fig.13. Model comparisons with and without behavioural features. 
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4.4 MiniBatchKMeans and HDBSCAN 
These two models were included to demonstrate their usefulness when scalability is a concern, especially where 
or when large datasets are involved. Even though we use a small dataset to fit the two models, the models still 
demonstrate accurate performance on the e-commerce consumer data. When we ran the numbers, HDBSCAN 
came out on top with a silhouette score of 0.3211, more than double the 0.1615 we saw from MiniBatchKMeans. 
That jump makes sense once you consider that HDBSCAN was built to spot those weird, uneven clusters accrued 
from real user behaviors like click-through rate and popularity. MiniBatchKMeans, by contrast, assumes 
everything’s a nice, round blob and can get tripped up by how it picks its centroids and samples data. HDBSCAN 
doesn’t need you to tell it how many clusters to expect, and it even flags outliers as “noise” instead of shoehorning 
every point into a group. Because our behavioral features really shake up the data’s density, think spikes where 
certain products get tons of clicks, HDBSCAN handles those bumps much better. MiniBatchKMeans just 
flattens them out, which blurs the boundaries and weakens cohesion. That said, if you need lightning-fast clusters 
on massive datasets, MiniBatchKMeans still has its place. You just have to remember it sacrifices a bit of clarity 
for that speed, so you might need extra checks afterward. But when clustering quality matters, like when you’re 
using these groups to drive user experiences, HDBSCAN is the smarter pick. 

 
Fig. 14. MiniBatchKMeans and HDBSCAN Silhouette scores. 
 
5. DISCUSSION 
5.1 Interpretation of Main Findings 
What stood out in this study was how much of a difference behavioral features, like click-through rate (CTR) 
and overall product popularity, made in shaping meaningful product clusters. These kinds of user-driven signals 
added a new layer of depth, helping the clustering models go beyond just surface-level product traits to reflect 
how people engage with them. It wasn’t just about grouping things that looked similar on paper; it was about 
uncovering real patterns in consumer interest. For instance, products that consistently racked up high CTRs and 
popularity scores naturally fell into the same clusters, which ended up highlighting pockets of high demand that 
basic product metadata would’ve missed. This lines up nicely with what Islam et al. (2025) pointed out about 
the value of weaving behavioral signals into synthetic e-commerce modeling, which is bringing the clusters closer 
to how users actually behave [8]. On the technical side, using MiniBatchKMeans turned out to be a solid move. 
It handled large volumes of data smoothly and quickly, making it possible to update product clusters more or 
less in real time. That kind of responsiveness is becoming less of a luxury and more of a necessity in AI systems, 
especially in fast-moving domains. Jakir et al. (2023) said something similar when discussing real-time predictive 
modeling in financial systems: it’s all about staying agile without sacrificing performance [10]. 
5.2 Comparison with Existing Systems 
Most e-commerce platforms today still rely on fairly rigid systems with hierarchical categories, standard 
collaborative filtering, or basic content-based recommendations. These methods work to a degree, but they tend 
to be inflexible, require constant manual upkeep, and don’t really adapt well to how users behave in real time. 
So you end up with systems that miss shifts in customer interest, overlook emerging trends, and often show the 
same product too many times or bury useful results. What we’re proposing here is a more flexible and adaptive 
approach to product organization and recommendation, using clustering as a central piece, not just a 
preprocessing step. The models we focus on, especially MiniBatchKMeans and HDBSCAN, respond to changes 
in user behavior and product listings as they happen, without needing a full system overhaul each time something 
changes. MiniBatchKMeans, for instance, supports incremental learning. That’s a big deal if you're dealing with 
platforms where new products are added daily and user preferences shift quickly. It handles updates on the fly, 
unlike the more rigid versions of KMeans you see in some older industry setups, which usually require a full 
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retrain. HDBSCAN also brings a nice advantage as it can find clusters of varying densities, which helps when 
your dataset is uneven, like when a few products go viral or you’ve got niche items with devoted followers. 
Another key difference in our approach is how clustering is treated, not just as a background process but as a 
way to directly understand how users interact with products. When we included behavioral data, the resulting 
clusters didn’t just group similar items together, they as well reflected shared user intent. That’s a step beyond 
just matching based on co-purchases or browsing history, as it leads to recommendations that feel more relevant 
and more intuitive. It’s worth noting that many of the models out there, especially in domains like fraud 
detection or churn prediction, tend to focus heavily on raw accuracy, often at the cost of transparency. But as 
Jakir et al. (2023) and Hasan et al. (2024) argue, real-world systems need to be fast, explainable, and user-aware. 
Our framework aims to strike that balance [5],[10]. It not only identifies meaningful product segments but does 
so in a way that business analysts can understand. You can see why certain products are grouped, whether it’s 
shared pricing, dimensions, or how users are engaging with them. We also found that personalization in many 
systems is tacked on later, usually via collaborative filtering or some ranking logic bolted onto the existing 
structure. In our case, the clustering is built right from features drawn from both user interaction and product 
metadata. That means the output is natively personalized and can be used straight away in things like navigation 
menus or inventory planning tools. This echoes the suggestions made by Hasanuzzaman et al. (2025) and Islam 
et al. (2025), who advocate for embedding behavioral signals directly into the core architecture of AI-driven 
systems, rather than treating them as an afterthought [6],[8]. Lastly, the modular setup we’ve built, where 
everything from data cleaning to clustering is organized into a clean, reusable pipeline, makes the whole system 
easier to maintain and extend. That’s a big contrast to many commercial systems that are so tightly bound to 
their original data formats or infrastructure such that any change requires a team of engineers to rewire 
everything. In short, what we’re offering here isn’t just more accurate, it’s a framework that’s easier to understand, 
quicker to adapt, and better aligned with how people actually shop and interact online. 
5.3 Practical Implications in the USA 
The clustering method developed in this study has real, practical value for large U.S. e-commerce platforms like 
Amazon, Walmart, and BestBuy. These companies manage massive catalogs and handle millions of customer 
interactions daily, so their ability to deliver a smooth, personalized shopping experience is essential. Just like 
fraud detection systems for credit cards now use real-time, adaptive machine learning to spot new types of 
suspicious activity (Sizan et al., 2025), e-commerce platforms can also benefit from clustering systems that adjust 
as customer preferences change over time, whether it’s due to shifting seasons, trends, or broader market changes 
[18]. By using a clustering approach that accounts not just for static product information but also user behavior, 
like how often an item is clicked or how popular it is, we are able to form smarter, more adaptive product 
groupings. This kind of behavior-aware clustering can improve several parts of the user experience. Think of 
category pages that reflect what’s trending in real time, navigation menus that adjust based on context, or “most 
popular” sections that actually respond to what people are engaging with, not just what is in the back-end 
database. Small changes like these can make a big difference in how easily shoppers find what they’re looking 
for, and that naturally translates into better conversion rates.  These groupings also work well as part of 
recommendation systems. When products are clustered by both how people interact with them and how similar 
they are, the recommendations tend to feel more relevant and timely, almost like the site actually understands 
what the shopper wants. Hasan et al. (2024) pointed out how valuable this kind of real-time behavioral targeting 
is, especially when it comes to keeping customers coming back [5]. That’s particularly true for U.S. consumers, 
who expect a high level of personalization when they shop online. From a technical standpoint, the models we 
used, like MiniBatchKMeans and HDBSCAN, are well-suited for real-time deployment and use. They can update 
on the fly as new products come in or as user behavior shifts, without needing to retrain everything from scratch. 
It is an excellent advantage in periods of heavy traffic, such as Black Friday, when demand patterns change 
rapidly. Ray et al. (2025) write about the role of adaptive AI systems in ensuring that digital infrastructure is 
resilient, and this is precisely what we get here: an ability to maintain the product list at its steady and well-
informed state, even on days that are especially taxing [16]. This approach also has some space to be extended. 
Although we paid attention to the English-language data, the same clustering configuration could be relevant to 
other languages or areas, such as offering suggestions to Spanish-speaking customers in the U.S. But even more 
than assisting with navigation or suggestions, these clusters might drive other systems, e.g., models to determine 
demand, manage stock, or set prices dynamically. Altogether, such clustering is not simply an exercise in technical 
work but affects the board. It can get shoppers to what they want quicker, enable more innovative marketing, 
and even make managing those gigantic catalogs running behind the scenes much easier. In this day of whizzing, 
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multifaceted retailing in the digital environment, such fluidity and visibility are becoming less of an option and 
more of a must. 
5.4 Limitations 
Although such an effect is relatively positive, several limitations should be mentioned. On the one hand, the 
information in the dataset we used was fake, and a range of user behavior indicators, such as click-through rates 
and item popularity, were not collected among the actual users. It provided us with a tidy, controlled test 
environment, but unfortunately, it is not an accurate description of how people behave online, which is never 
neat and straightforward. Islam et al. (2025) ran into the same issue in their work on synthetic e-commerce 
systems and emphasized the importance of validating results with real-world data [8]. Another limitation is that 
we didn’t include multilingual content or image-based features, which makes it harder to apply these models to 
product catalogs that rely heavily on visuals or aren’t primarily in English. Rana et al. (2025) and Bhowmik et al. 
(2025) have both argued for using multimodal learning in these cases, pointing out that things like product 
images and language choice can really shape how users interact with various platforms [1],[15]. Lastly, these 
models haven’t been tested in a live system yet. So, while the predictions look good on paper, we don’t know 
how they'd affect real user behavior or platform performance. That’s something future work will need to explore, 
bringing in actual user data, supporting multiple languages, and handling visual information to build models 
that can work at scale and in the wild. 
6. Future Work 
6.1 Incorporate Real User Interaction Logs 
One of the main limitations of this study is that it leans heavily on simulated behavioral signals like click-through 
rates (CTR) and item popularity. These features have definitely helped make the clustering results easier to 
interpret, but at the end of the day, they’re still approximations. They don’t quite capture the richness of real 
user behavior. A more reliable path forward would be to work with actual user activity logs, data you can collect 
through platforms like Google Analytics, Mixpanel, or even in-app telemetry. These logs can tell us a lot more: 
how long someone stays on a page (dwell time), how far they scroll, whether they come back, whether they buy 
something, and so on. Fariha et al. (2025) showed that using log-based predictive modeling can really sharpen 
fraud detection, by looking at transactional and behavioral logs, they were able to spot patterns and oddities that 
don’t show up in static data alone [4]. Taking that same idea into e-commerce, it makes sense that clustering 
systems could benefit too. By learning from how users actually move through a site via their clicks, navigation 
paths, and changes in engagement, these models can adapt in a more responsive, informed way. With this type 
of data aligned between sessions, we can create behavioral profiles that change over time, which is critical to 
creating clustering models that would then accommodate how users actually behave. 
And as well as the researchers have shown user activity logs in the WWW prize have been scrutinized in the 
WWW prize in 2017 and found that more specific behavioral signals, like item views and purchase patterns over 
time, simultaneously make it possible to perform more nuanced intent-based segmentation of users, leading to 
better user experiences and efficacy [2]. Such precise segmentation helped create the proper recommendations 
and achieve better personalization results. Zhao et al. (2020) also proposed a model that treats user interactions 
as a Markov decision process to maximize cumulative user engagement [25]. By explicitly modeling sequential 
user behavior (clicks, views, dwell time) and optimizing for cumulative clicks, they achieved a real-world 
deployment on a large e-commerce site, reporting over a 7% increase in engagement metrics. Also, it’s worth 
drawing a parallel with the work by Islam et al. (2025), who used log-based behavior tracking in the context of 
Bitcoin wallets. Their approach helped flag suspicious patterns by analyzing how wallets behaved over time [9]. 
That kind of insight, seeing what’s normal and what’s not based on real usage, has clear value in e-commerce 
too. It could help spot trends earlier, catch fraud before it spreads, or even guide how we group users as their 
behavior shifts. 
6.2 Extend to Multimodal Feature Fusion 
The current model is mostly built around structured tabular data, constituting things like numeric values, 
categories, and some engineered behavioral signals. That’s fine as a starting point, but in real-world e-commerce, 
product listings usually come with much richer content such as images, detailed descriptions, and user reviews. 
If we want the clustering framework to reflect how people actually shop and evaluate products, the next version 
needs to bring in these other signals, by combining visual, textual, and sentiment-based features with the existing 
data. Recent deep learning methods make this kind of integration not only possible but practical. For example, 
convolutional neural networks (CNNs) or vision transformers can pull meaningful patterns from product images, 
capturing both the look and structure of items. At the same time, transformer-based language models like BERT 
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and RoBERTa can make sense of product descriptions and reviews, helping the model understand what a 
product means to a shopper or how it makes them feel. These different embeddings can be compressed using 
dimensionality reduction methods like PCA or t-SNE, then blended with the current feature set to give a fuller, 
more nuanced view of each product. There’s strong, supportive evidence from other studies that this works. Das 
et al. (2025), for instance, explored a similar approach in a very different context, flagging cryptocurrency scams, 
but their use of diverse features to detect subtle behavioral shifts is directly relevant to understanding sentiment 
in shopping data [3]. And Hossain et al. (2025) applied this kind of mixed-feature analysis to study income 
disparities in urban settings, demonstrating that combining structured data with contextual signals leads to more 
accurate clustering [7]. Borrowing that logic, we can better distinguish products that might look similar on paper 
but differ in vibe, branding, or customer perception once we factor in how they’re presented visually and 
described in text. In a related context, Reza et al. (2025) showed that combining structured features with extra 
contextual data led to much better predictions of energy use in urban settings. Their work is a good reminder 
that bringing together different types of information, what’s often called multimodal fusion, can be useful in 
many areas [17]. In our case, it reinforces the idea that understanding user-product interactions in e-commerce 
isn’t just about behavior alone, but the surrounding context matters as well. 
6.3 Apply Clustering Outputs in Downstream Systems 
Clustering isn’t just useful for grouping similar products, as it can actually feed into other systems in really 
practical ways. Take the cluster labels, for example. These can be used as input features in recommendation 
engines. If each product is assigned to a cluster, the system can use that info to suggest similar items or even 
build rough user personas based on what people interact with. This extra layer of context can strengthen both 
content-based and collaborative filtering, especially when traditional item similarity doesn’t tell the full story. 
Cluster IDs can also play a role in improving search functionality. Say a user searches for “budget smartphones”, 
if it knows which cluster contains affordable, high-engagement devices, the system can surface more relevant 
results right away. That same logic can be applied to dynamic landing pages or personalized content blocks, 
helping users navigate more easily and find what they need with less friction. Previous research backs this up 
with Rahman et al. (2025) arguing that clustering outputs can bring structure to supply chain transparency efforts 
[14]. Even in a very different field, Sizan et al. (2025) demonstrated how ML outputs like these can feed into a 
follow-up model, in their case, for predicting bankruptcy [19]. That same idea works in e-commerce too, where 
you can plug cluster IDs into churn prediction models, pricing tools, or systems that estimate a product’s lifecycle. 
The bottom line? If you treat clustering not just as a standalone task but as something that fuels smarter decisions 
across your platform, the value multiplies. 
 
7. CONCLUSION   
In this study, we set out to improve how machine learning models handle product clustering on e-commerce 
platforms, especially when it comes to helping users navigate huge product catalogs and get more personalized 
results. Early on, we realized that many traditional clustering methods tend to lean heavily on surface-level 
features like price or star ratings. But those don’t capture how people interact with products. So we brought in 
behavioral signals, things like estimated click-through rates and popularity scores, to better reflect real user 
behavior. To test this out, we ran a few clustering models: standard ones like K-Means and DBSCAN, as well as 
more scalable versions like MiniBatchKMeans and HDBSCAN, which are better suited for handling the kind of 
large datasets you see in real-world e-commerce. Once we added those behavioral features into the mix, we saw 
clear improvements. The clusters were tighter and made more sense from a user perspective. MiniBatchKMeans 
stood out in particular as it handled scale well and scored better across metrics like Silhouette Score and Davies-
Bouldin Index. But the point here isn’t just to build technically better models. What matters is what this can 
mean for actual e-commerce platforms, Amazon, Walmart, Best Buy, and the rest. These kinds of models could 
help users find what they’re looking for faster, improve recommendation accuracy, and even make catalog 
management more efficient by grouping items in ways that reflect real engagement. We also know there’s more 
work to do. In our case, we used synthetic behavioral data, not real user logs, and we didn’t explore more complex 
product types like those with rich images or multilingual descriptions. So the next step is clear: to incorporate 
actual user interaction data, bring in multimodal features like image embeddings and text, and plug the clusters 
directly into real systems. E-commerce is evolving fast, and the models we use to power it should evolve too and 
be grounded in behavior, able to scale, and designed with both usability and clarity in mind. 
 
 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 17s,2025 
https://theaspd.com/index.php 

171 
 

REFERENCES 
[1] Bhowmik, P. K., Chowdhury, F. R., Sumsuzzaman, M., Ray, R. K., Khan, M. M., Gomes, C. A. H., ... & Gomes, C. A. (2025). AI-
Driven Sentiment Analysis for Bitcoin Market Trends: A Predictive Approach to Crypto Volatility. Journal of Ecohumanism, 4(4), 266–
288. 
[2] Cheng, J., Lo, C., & Leskovec, J. (2017). Predicting Intent Using Activity Logs: How Goal Specificity and Temporal Range Affect User 
Behavior. WWW ’17 Companion, 593–601. https://doi.org/10.1145/3041021.3054198 
[3] Das, B. C., Sarker, B., Saha, A., Bishnu, K. K., Sartaz, M. S., Hasanuzzaman, M., ... & Khan, M. M. (2025). Detecting Cryptocurrency 
Scams in the USA: A Machine Learning-Based Analysis of Scam Patterns and Behaviors. Journal of Ecohumanism, 4(2), 2091–2111.  
[4] Fariha, N., Khan, M. N. M., Hossain, M. I., Reza, S. A., Bortty, J. C., Sultana, K. S., ... & Begum, M. (2025). Advanced fraud detection 
using machine learning models: enhancing financial transaction security. arXiv preprint arXiv:2506.10842. 
[5] Hasan, M. S., Siam, M. A., Ahad, M. A., Hossain, M. N., Ridoy, M. H., Rabbi, M. N. S., ... & Jakir, T. (2024). Predictive Analytics for 
Customer Retention: Machine Learning Models to Analyze and Mitigate Churn in E-Commerce Platforms. Journal of Business and 
Management Studies, 6(4), 304–320. 
[6] Hasanuzzaman, M., Hossain, M., Rahman, M. M., Rabbi, M. M. K., Khan, M. M., Zeeshan, M. A. F., ... & Kawsar, M. (2025). 
Understanding Social Media Behavior in the USA: AI-Driven Insights for Predicting Digital Trends and User Engagement. Journal of 
Ecohumanism, 4(4), 119–141. 
[7] Hossain, M. I., Khan, M. N. M., Fariha, N., Tasnia, R., Sarker, B., Doha, M. Z., ... & Siam, M. A. (2025). Assessing Urban-Rural 
Income Disparities in the USA: A Data-Driven Approach Using Predictive Analytics. Journal of Ecohumanism, 4(4), 300–320. 
[8] Islam, M. R., Hossain, M., Alam, M., Khan, M. M., Rabbi, M. M. K., Rabby, M. F., ... & Tarafder, M. T. R. (2025). Leveraging Machine 
Learning for Insights and Predictions in Synthetic E-commerce Data in the USA: A Comprehensive Analysis. Journal of Ecohumanism, 
4(2), 2394–2420. 
[9] Islam, M. Z., et al. (2025). Machine Learning-Based Detection and Analysis of Suspicious Activities in Bitcoin Wallet Transactions in 
the USA. Journal of Ecohumanism, 4(1), 3714–3734. 
[10] Jakir, T., Rabbi, M. N. S., Rabbi, M. M. K., Ahad, M. A., Siam, M. A., Hossain, M. N., ... & Hossain, A. (2023). Machine Learning-
Powered Financial Fraud Detection: Building Robust Predictive Models for Transactional Security. Journal of Economics, Finance and 
Accounting Studies, 5(5), 161–180. 
[11] Kapp-Joswig, M., & Keller, F. (2022). Clustering – Basic concepts and methods. https://arxiv.org/abs/2212.01248 
[12] McInnes, L., Healy, J., & Astels, S. (2017). hdbscan: Hierarchical density based clustering. The Journal of Open Source Software, 
2(11), 205. https://doi.org/10.21105/joss.00205 
[13] Nozari, M., Efatmaneshnik, M., & Fatahi Valilai, O. (2024). A Novel Behavior-Based Product Recommendation System Using 
Clustering and User Reputation. https://arxiv.org/abs/2403.18536 
[14] Rahman, M. S., Hossain, M. S., Rahman, M. K., Islam, M. R., Sumon, M. F. I., Siam, M. A., & Debnath, P. (2025). Enhancing 
Supply Chain Transparency with Blockchain: A Data-Driven Analysis of Distributed Ledger Applications. Journal of Business and 
Management Studies, 7(3), 59–77. 
[15] Rana, M. S., Chouksey, A., Hossain, S., Sumsuzoha, M., Bhowmik, P. K., Hossain, M., ... & Zeeshan, M. A. F. (2025). AI-Driven 
Predictive Modeling for Banking Customer Churn: Insights for the US Financial Sector. Journal of Ecohumanism, 4(1), 3478–3497. 
[16] Ray, R. K., Sumsuzoha, M., Faisal, M. H., Chowdhury, S. S., Rahman, Z., Hossain, E., ... & Rahman, M. S. (2025). Harnessing 
Machine Learning and AI to Analyze the Impact of Digital Finance on Urban Economic Resilience in the USA. Journal of Ecohumanism, 
4(2), 1417–1442. 
[17] Reza, S. A., Hasan, M. S., Amjad, M. H. H., Islam, M. S., Rabbi, M. M. K., Hossain, A., ... & Jakir, T. (2025). Predicting Energy 
Consumption Patterns with Advanced Machine Learning Techniques for Sustainable Urban Development. Journal of Computer Science 
and Technology Studies, 7(1), 265–282. 
[18] Sizan, M. M. H., et al. (2025). Advanced Machine Learning Approaches for Credit Card Fraud Detection in the USA: A 
Comprehensive Analysis. Journal of Ecohumanism, 4(2), 883–905. 
[19] Sizan, M. M. H., et al. (2025). Bankruptcy Prediction for US Businesses: Leveraging Machine Learning for Financial Stability. Journal 
of Business and Management Studies, 7(1), 01–14. 
[20] Sun, F., Liu, J., Wu, J., Pei, C., Lin, X., Ou, W., & Jiang, P. (2019). BERT4Rec: Sequential Recommendation with Bidirectional 
Encoder Representations from Transformer. Proceedings of the 28th ACM International Conference on Information and Knowledge 
Management (CIKM ’19), 1441–1450. https://doi.org/10.1145/3357384.3357895 
[21] Wasilewski, T., & Kolaczek, P. (2024). Clustering Methods for Adaptive e-Commerce User Interfaces. 
https://www.researchgate.net/publication/376998149_Clustering_Methods_for_Adaptive_e-Commerce_User_Interfaces 
[22] Xie, R., Ma, L., Zhang, S., Xia, F., & Lin, L. (2023). Reweighting Clicks with Dwell Time in Recommendation. Companion 
Proceedings of the ACM Web Conference (WWW ’23 Companion). https://dl.acm.org/doi/abs/10.1145/3626569 
[23] Yao, S., Tan, J., Chen, X., Yang, K., Xiao, R., Deng, H., & Wan, X. (2021). Learning a Product Relevance Model from Click-Through 
Data in E-Commerce. Proceedings of The Web Conference (WWW ’21), 2890–2899.  
https://dl.acm.org/doi/10.1145/3442381.3450129 
[24] Yi, X., Shen, H., & Yin, H. (2020). Beyond Clicks: Modeling Multi-Faceted User Engagement for Recommender Systems. WWW 
Conference. 
[25] Zhao, Y., Zhou, Y.-H., Ou, M., Xu, H., & Li, N. (2020). Maximizing Cumulative User Engagement in Sequential Recommendation: 
An Online Optimization Perspective. arXiv preprint. https://doi.org/10.48550/arXiv.2006.04520 
 

https://doi.org/10.1145/3041021.3054198

