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Abstract 
Lithium-ion battery state of health (SOH) represents the battery’s ability to store and deliver charge relative to its nominal 
condition . Accurate SOH estimation is vital for the safety and reliability of battery systems, preventing unexpected failures 
and hazards when cells approach end-of-life. This paper provides a comprehensive overview of prominent state estimation 
algorithms for predicting SOH in Li-ion batteries and evaluates their performance. We discuss traditional model-based 
techniques (including Kalman filtering and its variants), advanced data-driven approaches (machine learning models such 
as neural networks and support vector machines), and hybrid strategies. Key performance metrics and evaluation methods 
are described, and the strengths and limitations of each algorithm category are compared. By reviewing reported estimation 
accuracies, computational requirements, and robustness, we highlight how modern algorithms can achieve high precision 
(often within a few percent error) in SOH prediction. No specific application context is assumed, so the findings apply 
broadly to Li-ion battery management in electric vehicles, grid storage, and other domains. The paper concludes with 
insights into the trade-offs among algorithms and the importance of combining model fidelity with data-driven learning to 
enhance SOH estimation performance. 
Keywords: State of Health (SOH), Lithium-Ion Batteries, Kalman Filter, Particle Filter, Neural Networks, Support 
Vector Machines, Battery Management System (BMS), Machine Learning, Hybrid Estimation, Deep Learning, Ensemble 
Learning. 
 
1. INTRODUCTION 
Accurate estimation of a battery’s state of health is essential for effective battery management systems. SOH 
reflects the gradual capacity loss and performance degradation of Li-ion cells over their lifetime. Monitoring 
SOH in real-time enables predictive maintenance and ensures that battery packs operate safely within design 
limits . If a battery’s SOH falls below a threshold, the risk of failure or hazards (such as overheating or fire) 
increases, hence timely replacement or reconditioning can be scheduled to avoid safety incidents . 
Estimating SOH is challenging because it cannot be measured directly during operation. The SOH is typically 
defined as the ratio of the battery’s current maximum capacity to its rated capacity when new, or alternatively 
inferred from internal resistance growth or other aging indicators. Traditional methods like coulomb 
counting (ampere-hour integration) that simply track charge throughput tend to accumulate errors over long 
use and are sensitive to noise and drift. Thus, more sophisticated state estimation algorithms have been 
developed to infer SOH from available measurements (voltage, current, temperature) with higher accuracy 
and robustness.1 In recent years, a wide range of algorithms – from physics-based filters to data-driven machine 
learning models – have been proposed for SOH prediction. This paper reviews the most well-known 
approaches and evaluates their performance. We organize the discussion into model-based estimation 
techniques, data-driven methods, and hybrid combinations. Key evaluation criteria include estimation 
accuracy (typically quantified by error metrics), computational complexity (suitability for real-time on-board 
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implementation), and robustness to varying operating conditions. We focus on general algorithm principles 
rather than any specific application context, so the insights apply to diverse battery systems. 
2. Background: SOH Estimation and Challenges 
As a Li-ion cell ages, its capacity and power capability decline due to internal chemical and mechanical 
changes. Direct measurement of capacity requires fully charging and discharging the cell under controlled 
conditions, which is impractical for everyday use. Likewise, methods like electrochemical impedance 
spectroscopy (EIS) can precisely characterize degradation by measuring internal resistance, but such 
techniques require expensive equipment and cannot be performed continuously on-board a device. Instead, 
battery management systems rely on indirect estimation: by monitoring easily measured signals (voltage, 
current, temperature) and using models or data-driven algorithms to infer SOH. 
2.1 Modeling the degradation: 
 Battery SOH is influenced by factors such as cycle count, depth of discharge, charge/discharge rates, and 
temperature. These factors accelerate capacity fade and resistance rise through mechanisms like solid-
electrolyte interface (SEI) layer growth and active material loss. Because SOH cannot be observed directly 
during operation, estimation algorithms must tie observable signals to these internal degradation states. This 
is complicated by the strong nonlinearity of battery behavior and the influence of operating conditions. 
Furthermore, each cell can age differently, so estimation methods must be robust to cell-to-cell variations. 
Effective SOH estimation thus demands models or learned mappings that capture the relation between 
measured signals and the underlying health state.2 
2.2 Performance evaluation metrics:  
The accuracy of an SOH estimation algorithm is typically evaluated by comparing its predicted SOH (or 
capacity) to the true value obtained from laboratory measurements. Common error metrics include root mean 
square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) over a set of 
test data . An estimator with an RMSE below 1–2% is generally considered high-precision for SOH 
prediction. Other performance considerations include the algorithm’s convergence speed (or update rate), 
stability under noise, and computational load. In on-board applications, algorithms must run in real-time on 
embedded processors with limited resources, so methods requiring heavy computation or extensive data may 
be impractical despite high accuracy. We will discuss these trade-offs for each class of algorithms. 
3. Model-Based State Estimation Methods 
Model-based approaches rely on mathematical representations of battery behavior to estimate SOH. These 
methods embed knowledge of battery physics (often via equivalent circuit models or empirical aging models) 
and use state observers or filters to infer health-related parameters. Key model-based algorithms include 
Kalman filters and their variants, which are widely used in battery management. 
• Kalman Filter and Extended Kalman Filter (EKF): The Kalman filter is an optimal recursive estimator for 
linear systems and has been adapted extensively for battery state estimation. In practice, the battery’s dynamics 
(voltage response to current input) are modeled, and certain model parameters are associated with SOH. For 
example, the cell’s capacity or internal resistance can be treated as slow-varying state parameters. The standard 
Kalman filter provides good accuracy and reliability in state estimation . However, batteries are nonlinear 
systems, so linear Kalman filters are insufficient on their own . The Extended Kalman Filter, which linearizes 
the nonlinear model at each time step, is commonly applied to estimate both state of charge (SOC) and SOH 
simultaneously. A typical strategy is the dual EKF: one EKF estimates the SOC in real-time, while another 
EKF (or an augmented state in the filter) tracks the gradual change in capacity or resistance, thus yielding the 
SOH . This dual-filter approach has been shown to robustly co-estimate SOC and SOH, and variations such 
as fractional-order EKFs have been proposed for improved accuracy . Kalman filter methods generally perform 
well when the model is reasonably accurate; they can achieve estimation errors on the order of a few percent 
in SOH under nominal conditions. Their performance, however, depends on proper tuning of model 
parameters and covariance settings. If the battery model is highly nonlinear or the operating conditions vary 
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widely, extended or unscented Kalman filters (UKF) offer better state tracking by handling nonlinearities and 
uncertainties more effectively . For instance, combining an H-infinity (H∞) filter (a robust observer) with a 
Kalman filter has been reported to improve estimation under model uncertainty .3 
• Particle Filter: The particle filter (PF) is a Monte Carlo estimation technique that represents the state 
probability distribution with a set of random samples (particles). PFs are well-suited to nonlinear, non-
Gaussian systems and have been applied to battery SOH estimation to handle the nonlinear aging process. 
In a PF-based SOH estimator, each particle might correspond to a hypothesis of the battery’s capacity and 
internal state, and particles are recursively updated and weighted according to how well they predict the 
observed voltage. Compared to Kalman filters, particle filters can achieve higher estimation accuracy in 
complex scenarios because they do not rely on linear approximations and can track multimodal uncertainty 
. Researchers have demonstrated that particle filtering can improve SOH prediction accuracy as more data 
samples are accumulated during operation . However, this comes at the cost of significantly increased 
computation. A standard particle filter requires a large number of particles for accurate results, which can 
strain the real-time computational resources in a battery management unit. Moreover, as the system 
complexity grows (e.g. cells in a pack with variability), the particle filter’s sample size needs to grow to maintain 
accuracy, leading to poor timeliness for on-line estimation. To mitigate this, improved PF variants have been 
developed. For example, Unscented Particle Filters (UPF) combine the UKF and PF by using a UKF to 
generate proposal distributions for the particles, thus reducing the number of particles needed. Other hybrid 
PF approaches integrate optimization or machine learning to resample particles more efficiently. These 
enhancements aim to retain the PF’s accuracy while lowering computational cost. 
• Other Observer Methods: Beyond Kalman and particle filters, various observers and identification 
techniques contribute to model-based SOH estimation. Recursive least squares (RLS) can track changes in 
model parameters (like internal resistance) over time, providing an estimate of SOH. Adaptive observers 
(including H∞ observers mentioned above) offer robustness against model uncertainties and noise. Some 
methods use impedance models: for instance, measuring the incremental resistance increase at a particular 
operating point can directly indicate SOH. While not strictly an “algorithm” in the same sense, direct 
impedance measurement via periodic excitation (as in EIS) is a benchmark for model-based SOH assessment 
due to its accuracy . However, because of practicality issues discussed, on-line SOH estimation relies on 
observers that use regular operating data rather than specialized measurements. Generally, model-based 
methods benefit from physical interpretability – the estimated parameters correspond to real degradation 
phenomena (e.g. a rise in internal resistance or loss of capacity). Their performance is strong when the 
underlying model is valid and parameters can be excited and observed, but they may falter if the battery 
deviates from modeled behavior (for example, under extreme temperatures or aging regimes outside the 
calibration range). Model-based estimators often need recalibration or adaptive features to maintain accuracy 
as the battery ages.4 
4. Data-Driven Estimation Methods 
Data-driven approaches do not require an explicit battery model; instead, they learn the relationship between 
measured signals and SOH from data. With the advent of machine learning and the availability of extensive 
battery aging datasets, data-driven SOH estimation has become a highly active research area. These methods 
include machine learning regressors, neural networks, and other pattern recognition techniques. They treat 
SOH estimation as a mapping or prediction problem based on features extracted from usage data. 
• Statistical and Machine Learning Models: Early data-driven methods applied statistical regression or simple 
machine learning algorithms to correlate measured features with battery health. For example, linear or 
polynomial regression could be used on features like discharge voltage curves or charge time to estimate 
capacity. More advanced techniques include support vector machines (SVM) and relevance vector machines 
(RVM). SVM-based SOH estimation has the advantage of working well with smaller training datasets and can 
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handle nonlinear relationships by using kernel functions. Compared to neural networks, SVMs are less prone 
to overfitting in low-data regimes and have fewer hyperparameters to tune. Researchers have shown that SVM 
models, especially when optimized with methods like particle swarm optimization (PSO) for parameter 
selection, can achieve high accuracy in SOH prediction even when only limited degradation data are available 
. For instance, a PSO-optimized SVM was used to predict battery health with good results, indicating SVM’s 
ability to converge on a global solution where neural nets might get stuck in local minima . Similarly, relevance 
vector machines (a Bayesian counterpart to SVM) have been applied to quantify SOH with uncertainty 
estimation; RVMs often yield sparse models and can provide probability distributions for the prediction. 
Other data-driven techniques include decision trees and ensemble methods (random forests, gradient 
boosting) that can capture nonlinear dependencies in the data. These have seen less use than neural networks 
in literature but offer interpretability and fast training. 
• Artificial Neural Networks (ANN): Neural networks and deep learning have become prominent for SOH 
estimation due to their ability to approximate complex nonlinear mappings. Multi-layer feed-forward ANNs 
were among the first applied, taking inputs like voltage, current, temperature, and cycling information and 
outputting the estimated SOH. An ANN can learn directly from raw time-series or from engineered features 
(such as charge durations, voltage plateaus, or incremental capacity peaks). The accuracy of neural network 
models for SOH can be very high when sufficient training data are provided. For example, one study trained 
an ANN on 400-cycle aging data (voltage, current, temperature profiles) and achieved estimation errors under 
1% on test data . The network could generalize the aging trend without needing explicit electrochemical 
knowledge, indicating the power of data-driven learning. However, conventional ANNs have some drawbacks: 
they can overfit if the network is too complex relative to the data volume, and their lack of an uncertainty 
estimate means the prediction confidence is unknown. Moreover, ANN models function as black boxes, 
providing little insight into the physical causes of degradation.5 
• Deep Learning (CNNs and LSTMs): More recently, researchers have adopted deep learning architectures, 
such as convolutional neural networks (CNN) and recurrent neural networks (RNN), to improve SOH 
predictions. CNN-based models can automatically extract informative features from sequences like voltage 
charge curves. For instance, a CNN can learn shape patterns in the voltage vs. capacity curve that correlate 
with aging, outperforming manual feature extraction. Recurrent networks, particularly Long Short-Term 
Memory (LSTM) networks, are adept at capturing temporal dependencies in sequential battery data (such as 
cycling data over time). LSTM-based models have demonstrated excellent performance in SOH forecasting 
by learning how internal states evolve over cycles. In fact, comparative studies have found that LSTM networks 
often yield the highest accuracy among deep learning models for SOH, due to their ability to retain long-term 
temporal information . For example, an advanced study reported that by using a bidirectional LSTM on 
partial charge data, SOH could be estimated with as low as 0.4% error while significantly reducing 
computation and data requirements . The downside of deep models is the computational burden and large 
data requirement for training. Training a deep neural network can be time-consuming and demands a 
comprehensive dataset covering various aging scenarios to ensure the model generalizes well. Additionally, 
these models require more memory and processing power to run – though with modern microcontrollers 
and the option of off-board computation, this is becoming feasible. Another challenge is that deep learning 
models may not extrapolate well beyond the conditions seen in training data (for example, a network trained 
on one cell chemistry might not directly transfer to another). To address this, techniques like transfer learning 
have been used, where a model is pre-trained on one dataset and fine-tuned on another to adapt to different 
batteries. 
• Feature Extraction and Selection: A crucial aspect of data-driven methods is choosing what input features 
to use for learning. Raw time-series of voltage or current can be high-dimensional; thus many approaches 
condense information into health indicators. Examples of effective health indicators include: discharge 
capacity at a fixed voltage cutoff, time to charge between certain voltage limits, internal resistance measured 
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through current pulses, and derived quantities like the area under voltage curves or differential voltage peaks. 
Selecting a concise set of features can improve model performance and reduce overfitting. Techniques such 
as principal component analysis (PCA) and mutual information analysis are used to identify which measured 
variables or transformations thereof are most correlated with SOH. Data-driven algorithms are often paired 
with such feature engineering to enhance accuracy. The performance of data-driven models is typically 
evaluated on hold-out test data or cross-validation to ensure they can predict SOH for new cycles or cells not 
seen during training. When evaluated on standard datasets (like NASA battery aging data or CALCE 
datasets), many machine learning models report estimation errors within just 1–2%, rivaling the precision of 
laboratory methods. It should be noted, however, that achieving these results in practice requires that the 
operational data fed into the algorithm falls within the range of conditions the model was trained on. 
Unexpected conditions (e.g. extreme temperatures, novel load profiles) can degrade the predictive 
performance, since the model may not recognize patterns beyond its training distribution. 
5. Hybrid and Ensemble Approaches 
No single method excels in all aspects; hence researchers have explored combining multiple approaches to 
leverage their complementary strengths. Hybrid estimation algorithms fuse model-based and data-driven 
techniques, or combine multiple models, to improve robustness and accuracy. 
One form of hybrid approach uses a model-based observer to preprocess data or constrain a data-driven 
model. For example, an unscented Kalman filter – particle filter (UKF-PF) fusion might employ a UKF to 
estimate SOC in real-time and feed that into a particle filter that estimates capacity (SOH). By splitting the 
task, each filter handles the part it is best at, improving overall stability. Similarly, some works combine 
extended Kalman filters with neural networks: the EKF can provide a real-time state estimate and uncertainty, 
which a neural network then refines by learning the residual errors. This kind of model-assisted machine 
learning ensures that physical constraints are respected while still allowing data-driven flexibility.6 
Another powerful strategy is ensemble learning, wherein multiple estimation models are run in parallel and 
their outputs are combined for a final SOH prediction. Ensemble methods can average out the biases of 
individual models and provide more reliable estimates. Recent literature has presented ensemble frameworks 
that include diverse algorithms (e.g. an EKF, an SVM, and a neural network) whose outputs are weighted and 
aggregated. Multi-model ensemble learning for battery SOH, highlighting that ensemble approaches can 
improve estimation accuracy across different aging scenarios by capturing a wider range of behaviors.6 In 
practice, an ensemble might involve a committee of neural networks (sometimes called an ensemble of 
experts) or a combination of data-driven predictors with rule-based adjustments. For instance, if one model 
tends to overestimate SOH at high temperatures and another underestimates it, an ensemble can balance 
these to yield a better result. The performance of ensemble methods in studies has been promising – often 
outperforming any single model, especially in scenarios with varying usage patterns where one model alone 
might not be sufficient for all conditions. 
Adaptive and meta-learning techniques have also emerged in SOH estimation. These involve algorithms that 
can adapt to new data on-line or transfer knowledge from one battery to another. For example, meta-learning 
can train a neural network that quickly fine-tunes to a new cell using a few early cycles of data, thereby 
addressing the variability between batteries. Such techniques aim to ensure that an algorithm trained on one 
dataset remains effective when deployed in a slightly different context (different battery batch or operating 
profile). While still an active research frontier, adaptive methods are crucial for practical deployment, as they 
can continuously recalibrate the SOH estimator to remain accurate over the life of the battery without human 
intervention. 
In summary, hybrid algorithms and ensembles strive to exploit the strengths of both model-based and data-
driven worlds. Model-based components inject physical reasoning and ensure consistency, while data-driven 
components contribute flexibility and ability to capture complex patterns. The performance benefit of these 
combinations is evident in many studies – they tend to yield lower estimation error and better generalization 
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than either approach alone. The trade-off is increased algorithmic complexity and sometimes higher 
computational cost, but ongoing improvements in processing capabilities are making such sophisticated 
schemes increasingly viable for on-line battery management. The comparision of various SOH estimation 
methods for Li-ion batteries is tabulated in table 1. 
Table. 1 Comparison of various SOH Estimation Methods for Li-ion Batteries 

Method 
Category 

Techniq
ue 

Estimati
on 
Accurac
y 

Computatio
nal 
Complexity 

Robustness to 
Noise/Uncerta
inty 

 

Strengths Limitation
s 

Citati
on 

 
 
 
 
Model-Ba
sed 

Kalman 
Filter 
(KF) 

Moderat
e (5–
10%) 

Low–
Moderate 

Low Real-time; 
simple; 
widely 
implement
ed 

Assumes 
linearity; 
sensitive to 
model 
mismatch 

[11], 
[12] 

Extende
d 
Kalman 
Filter 
(EKF) 

High 
(2–
5%) 

 

Moderate Moderate Handles 
nonlinear 
dynamics; 
well-
validated 

Linearizati
on errors; 
parameter 
tuning 
required 

[10], 
[11], 
[12] 

Unscent
ed 
Kalman 
Filter 
(UKF) 

Very 
High 
(<2%) 

High High No 
Jacobian; 
accurate 
nonlinear 
estimation 

Heavy 
compute; 
sensitive to 
noise 
assumption
s 

[13] 

 
 
 
Data-Driv
en 

Neural 
Network
s (NN) 

High 
(<3%) 

High High Captures 
complex 
patterns; 
flexible 
training 

Needs large 
dataset; risk 
of 
overfitting 

[8], 
[14] 

Support 
Vector 
Machine
s (SVM) 

Moderat
e–High 
(3–6%) 

Moderate Moderate–High Robust 
generalizati
on; small-
data-
friendly 

Kernel 
selectivity; 
less 
interpretab
le 

[9], 
[15] 

 
Hybrid 

EKF + 
Neural 
Network 

Very 
High 
(<2%) 

Very High High Merges 
physics and 
data 
insights 

Integration 
complexity; 
computatio
nal 
demands 

[8], 
[16] 
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6. Performance Evaluation and Discussion 
When evaluating the performance of SOH estimation algorithms, it is important to consider several aspects: 
Accuracy: This is typically the primary metric. Most algorithms aim for an estimation error under a few 
percent. Model-based methods like EKF often achieve around 2–5% error in experimental validations , 
assuming the model is well-tuned. Data-driven methods, especially deep learning models, have reported even 
higher accuracy. For instance, a convolutional neural network combined with a Transformer model was able 
to keep SOH prediction errors within about 1%. In another case, a Bi-LSTM deep network reached 0.4% 
error by focusing on the most informative portion of the charge curve . Such high precision is encouraging, 
but one must ensure these results are reproducible across different cells and conditions. Often, results quoted 
in literature are obtained on specific datasets in controlled settings. In real-world applications, achieving sub-
1% accuracy consistently may require additional calibration or ensemble averaging to account for variations. 
Robustness: A robust SOH estimator maintains accuracy despite noise, sensor bias, and changing operating 
conditions. Model-based approaches can struggle if the battery operates outside the assumed model range 
(e.g. at very low temperatures or after extreme aging where model parameters shift). Data-driven models can 
also fail if they encounter conditions not represented in training data. To evaluate robustness, researchers 
test algorithms on cycles with fluctuating load profiles (instead of neat constant-current tests) and introduce 
perturbations. Algorithms like the PF are inherently equipped to handle noise probabilistically, while Kalman 
filters can be tuned for different noise levels. Many neural network models include data augmentation during 
training (adding noise, varying usage patterns) to improve their resilience. In performance terms, a robust 
algorithm might show only a small increase in error when moving from laboratory test profiles to realistic 
driving profiles of electric vehicles, for example. Another aspect of robustness is long-term stability – the 
estimator should not drift significantly over hundreds of cycles without external recalibration. Evaluating this 
may involve running the algorithm in a simulation or on experimental data for extended periods and checking 
that it does not accumulate error. 
Computational efficiency: The computational load of each algorithm varies widely. Simple models (like an 
RLS or a single EKF) can run on microcontrollers with negligible CPU impact, updating in real-time at 1 Hz 
or faster. In contrast, a particle filter with thousands of particles or a large deep neural network might be 
computationally intensive. Performance evaluation must thus consider whether an algorithm can meet real-
time requirements on the target hardware. In recent work, optimizations have been proposed to reduce 
computation: for example, simplifying neural network architectures or using smaller time windows of data 
without sacrificing accuracy . Some systems employ onboard digital signal processors or even machine 
learning accelerators to handle the more demanding algorithms. The timeliness of estimation is also a factor 
– certain methods can estimate SOH on-line every cycle, whereas others might require a special calibration 
cycle or a periodic rest (for instance, some impedance measurement). Algorithms that can update SOH 
continuously during normal operation are preferred for most applications. 
Generality and adaptability: A key practical consideration is whether a given algorithm needs to be re-trained 
or re-parameterized for each battery type or if it can generalize. Many data-driven models are trained on a 
specific battery chemistry and cycling regime, and their performance can degrade on a different dataset. 
Model-based methods anchored in electrochemical meaning (like those tracking resistance or capacity) often 
translate better across similar cell types, although they too may require parameter tuning. Hybrid and 
ensemble approaches can improve generality by incorporating multiple perspectives. Performance evaluation 
should include testing on multiple batteries (if data is available) to see how sensitive the method is to cell-to-
cell variation. Recently, adaptive algorithms have shown the ability to self-calibrate – for example, by using a 
small number of initial cycles of a new cell to adjust a pre-trained model. This adaptability is increasingly 
incorporated into performance benchmarks: the less human intervention needed to deploy the estimator on 
a new battery, the better its practical performance.7 
7. Summary of Pros and Cons: To synthesize the evaluation, we compare the major algorithm categories: 
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• Kalman filter-based (including EKF/UKF):  
Pros: Physically grounded, stable and proven in real BMS applications, moderate computational needs. 
Cons: Requires accurate battery models and careful tuning; linearization (in EKF) can introduce error under 
highly nonlinear behavior; may not capture complex aging dependencies without augmented states.  
Typical accuracy: a few percent error with proper model, but can drift if model mismatch grows. 
• Particle filter:  
Pros: Handles nonlinear, non-Gaussian systems well; provides a probabilistic estimate (confidence in SOH). 
Cons: High computational cost; performance depends on number of particles and resampling strategy; can 
be difficult to tune (degeneracy and sample impoverishment issues).  
Typical accuracy: very high (1–3% error) in studies with enough particles and data; computational limits 
might force trade-off in real-time use. 
• SVM and other ML regressors:  
Pros: Effective with smaller datasets; SVM offers good generalization and avoids local minima; fast inference 
once trained.  
Cons: Requires feature selection; not as flexible as neural networks for very complex relationships; training 
needs a representative dataset.  
Typical accuracy: 2–4% error in reported works , with improved results (near 1%) when combined with 
feature optimization or ensemble techniques. 
• Neural networks (ANN, deep learning):  
Pros: Can achieve very high accuracy by learning intricate patterns; no need for an explicit model of the 
battery; can incorporate many inputs (multivariate).  
Cons: Data-hungry – needs extensive aging data for training; risk of overfitting; acts as a black box (limited 
explainability); heavy computation for large networks.  
Typical accuracy: Many studies report <2% error, some even <1%  , on test data. Real-world accuracy depends 
on similarity to training conditions; might drop if encountering novel situations unless retrained. 
• Hybrid/Ensemble:  
Pros: Combine strengths to improve accuracy and robustness; ensemble reduces individual model bias; can 
provide more reliable estimates across diverse conditions. 
Cons: Increased complexity and computational overhead; more difficult to design and validate; requires 
careful integration of components.  
Typical accuracy: Among the best reported – ensembles often beat single models by a noticeable margin, 
achieving error around 1% or less in research demonstrations . The complexity trade-off must be managed 
for practical deployment. Overall, the state of the art in SOH estimation is capable of very precise predictions 
under experimental conditions. For instance, with laboratory datasets, algorithms have shown they can 
estimate remaining capacity within a few tens of milliampere-hours of the true value (i.e., within ~1% for a 
cell of a few Ah capacity). The challenge is to maintain such performance in real-world operation over the full 
lifespan of the battery, under changing environments and usage patterns. 
Performance evaluation, therefore, is not one-time: it is an ongoing process. In practical BMS software, the 
algorithm’s estimates would be periodically checked against reference points (like occasional full 
charge/discharge or known checkpoints) to recalibrate as needed. A combination of algorithmic accuracy and 
strategic validation ensures that the SOH estimation remains reliable. 
 
8. CONCLUSION 
Accurate SOH estimation in lithium-ion batteries is pivotal for the safe and efficient use of battery systems. 
Through this review, we have surveyed the most prominent algorithms for SOH prediction and discussed 
their performance characteristics. Model-based methods, grounded in battery physics and typically employing 
Kalman filters or observers, offer transparency and have proven effective with carefully developed models. 
They tend to be computationally efficient and can be quite accurate (within a few percent error) so long as 
the battery behaves according to the modeled parameters. Data-driven methods, leveraging machine learning 
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and large datasets, have pushed the envelope of accuracy even further – often achieving sub-1% estimation 
errors in research settings – by uncovering complex relationships in the data that elude simpler models. 
Techniques like neural networks (CNNs, LSTMs) and support vector machines enable direct mapping from 
measured signals to health state, at the cost of requiring extensive training data and computational resources. 
Hybrid approaches and ensembles combine these paradigms to capitalize on their strengths, yielding robust 
performance across varying conditions and extending the range of applicability. 
In evaluating performance, one must consider not only nominal accuracy but also robustness to noise and 
cell variability, computational load, and ease of adaptation to new cells or systems. The best choice of 
algorithm often depends on the context: for example, an electric vehicle’s BMS might favor a fast, robust 
filter with ensured real-time operation, whereas an offline diagnostic tool could employ heavy data-driven 
analytics for maximum accuracy. There is no one-size-fits-all solution, but rather a toolkit of algorithms that 
can be tailored and even combined to meet specific requirements. Importantly, all the discussed methods 
continue to evolve. Future trends point toward improved adaptivity – algorithms that can learn from field 
data in-service, continuously refining their estimates as more information becomes available. This could 
involve online machine learning or adaptive observers that adjust to each battery’s unique aging trajectory. 
Another active area is developing explainable AI models for SOH, which would merge the accuracy of black-
box models with the interpretability of physics-based approaches, thereby increasing trust in the estimates. 
In conclusion, the performance of state estimation algorithms for Li-ion battery SOH has reached impressive 
levels, with many methods now capable of tracking battery health with a high degree of precision. Achieving 
<1% error is feasible under certain conditions, as demonstrated by advanced filtering and deep learning 
techniques. The challenge moving forward is to ensure these algorithms maintain their performance in the 
messy, unpredictable realm of real-world usage. By judiciously selecting or combining algorithms and 
rigorously evaluating them against practical criteria, battery engineers can deploy SOH estimation strategies 
that significantly enhance battery management – enabling longer lifespans, improved safety, and better overall 
utilization of lithium-ion batteries in all applications. 
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