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Abstract 
Accurate forecasting of national energy consumption is critical for enabling effective energy planning, sustainable 
development, and informed policy formulation. This study investigates and compares a diverse set of forecasting models—
including deep learning architectures (LSTM, CNN-BiLSTM, Transformer), machine learning ensemble methods 
(XGBoost, LightGBM, CatBoost), and classical time series approaches (SARIMA)—to predict annual oil, gas, and 
renewable energy consumption across three major economies: the United States, China, and India. Leveraging a 
harmonized multi-decadal dataset, extensive preprocessing techniques were employed to ensure temporal consistency, 
normalize consumption metrics, and enhance feature representation. Each model was trained using consistent time-series 
cross-validation and evaluated using a standard suite of performance metrics. The research aims to assess the strengths and 
limitations of each modeling paradigm in the context of national-level energy forecasting, and to provide a foundation for 
data-driven model selection strategies in energy systems analytics. 
Keywords: Energy Forecasting; Machine Learning; Deep Learning; Time Series Analysis; XGBoost; LSTM; SARIMA; 
Renewable Energy; National Energy Consumption; Comparative Modeling; Sustainability Analytics; Cross-Validation 
 
1. INTRODUCTION 
The global energy demand has witnessed an exponential rise due to factors such as population growth, 
industrialization, and urbanization. According to the International Energy Agency (IEA), global energy 
consumption is projected to increase by 25% between 2020 and 2040, primarily driven by rising energy 
demands from developing nations. This trend places considerable pressure on existing energy infrastructure, 
and the need for efficient energy management has never been more urgent. Traditional energy meters provide 
a basic measure of energy consumption, but they fall short of delivering insights into consumption patterns, 
identifying inefficiencies, or providing actionable solutions for optimization. 
AI-based energy meters, however, integrate advanced machine learning (ML) and deep learning (DL) 
algorithms to bridge this gap. By utilizing large datasets, AI-driven systems can predict energy consumption, 
identify unusual patterns, and provide recommendations for reducing energy waste. These systems can be 
particularly beneficial for residential, industrial, and commercial applications, improving energy efficiency 
and promoting sustainable practices. Key statistics that highlight the importance of AI-based energy 
management is shown in Table 1 and Graph 1. 
Table 1. Key Statistics and Visualization Insights 

Statistic Value/Insight Source Visualization Insights 
Global electricity 
consumption in 2020 

23,000 TWh (terawatt-
hours) 

IEA 
Bar chart shows global 
consumption in 2020. 

Projected global 
electricity consumption 
by 2050 

Over 40,000 TWh IEA 
Bar chart shows projected 
consumption in 2050. 

Annual growth rate of 
electricity consumption 
[1] 

2.1% IEA 
Line graph shows projected 
growth over time. 
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Energy efficiency 
improvements by 2040 

20-30% reduction in 
energy demand across 
sectors 

McKinsey & 
Company 

AI-driven improvements in 
energy efficiency by 2040. 

AI's role in energy 
efficiency improvements 

AI-based technologies to 
drive 20-30% reduction 
in energy demand by 
2040 

McKinsey & 
Company 

Annotations highlight AI's 
impact on reducing energy 
demand. 

Electricity waste in U.S. 
homes 

20% of electricity 
consumed is wasted 

U.S. 
Department of 
Energy 

Annotations highlight the 
20% waste in U.S. homes due 
to inefficiency. 

Key cause of electricity 
waste in U.S. homes 

Inefficient appliances, 
faulty devices, and lack of 
awareness of usage 
patterns 

U.S. 
Department of 
Energy 

AI-powered energy meters help 
address waste issues by 
providing data-driven 
recommendations. 

AI-powered energy 
meters' contribution [2] 

Provides data-driven 
recommendations and 
automates optimization 
to reduce electricity waste 

U.S. 
Department of 
Energy 

Line graph and bar chart 
annotations show how AI can 
reduce waste and optimize 
energy use. 

 

 
Graph 1. Global Electricity Consumption Trends and AI's Role in Energy Efficiency 
The growing concern over energy inefficiency and the associated environmental impact necessitates the 
development of intelligent systems that not only measure consumption but also optimize it in real-time. AI-
based energy meters are capable of analyzing patterns in real-time, detecting anomalies in consumption, and 
offering tailored solutions to reduce energy use, making them essential components in the transition towards 
more sustainable and efficient energy systems[16][17]. 
 
2. LITERATURE SURVEY 
Each of the following studies contributes uniquely to the growing body of knowledge in energy consumption 
forecasting using ML and DL, highlights unresolved challenges, and presents the outcomes of implemented 
models, and summary of reviewed studies is specified in Table 2. 
[3] Focusing on transfer learning with transformers, the authors compared PatchTST, Informer, and vanilla 
Transformer models for energy prediction across smart buildings. PatchTST emerged as the most accurate 
and flexible when applied to feature-sparse domains. Transfer learning enabled the reuse of pre-trained 
models across buildings, but performance varied based on dataset alignment [18]. 
[4] This empirical evaluation of foundation models in energy analytics used the ComStock dataset to test 
RNNs and large-scale pretrained models. The findings suggested that heterogeneity in building data impacts 
performance more than model complexity or parameter count. The study advocated for better data 
harmonization rather than deeper models alone [19]. 
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[5] Tailoring LSTM and GRU architectures for smart meter data, this study developed lightweight models 
that could be deployed on household-level devices. LSTM slightly outperformed GRU and ARIMA in RMSE 
and MAE metrics. The results were promising, especially for short-term forecasting, though challenges 
remained in ensuring adaptability to different home environments [20]. 
[6] This study employed CNN-GRU architectures with appliance clustering to improve residential short-term 
forecasting. The model was trained to recognize patterns in appliance-level behavior using convolutional 
layers, followed by GRUs for temporal sequence modeling. Its accuracy was notably higher than baseline 
LSTM models due to the incorporation of behavioral associations, though explainability remained limited 
due to the deep architecture [21]. 
[7] The authors examined the application of deep learning models to predict instantaneous energy usage in a 
manufacturing context. Among CNN-LSTM, LSTM, and TCN, the TCN model achieved the best 
performance due to its ability to manage long input sequences efficiently. Despite the promising results, the 
authors noted the model's sensitivity to hyperparameter tuning and input sequence length [22]. 
[8] Combining Stationary Wavelet Transform (SWT) with deep learning models such as CNNs, LSTMs, and 
Transformers, this study tackled multistep household energy forecasting. SWT improved signal quality by 
reducing noise, while the deep models captured sequential dependencies. The proposed cascaded hybrid 
system was effective for long-term forecasting, although error accumulation over extended horizons was a 
concern [23]. [9] Hoshino’s work introduced a visual economic analysis tool using the Screening Curve 
Method for evaluating solar PV and battery investment decisions at the household level. It allowed users to 
simulate various configurations and estimate cost-efficiency and payback periods. While the method provided 
quick insights, its simplification of load patterns was cited as a limitation for precision applications [14]. [10] 
Investigating monthly consumption forecasts across large residential datasets, the study tested fully connected 
networks (FCN), CNNs, and LSTMs. With over 9 million records used for training, LSTM outperformed 
other architectures due to its memory retention capacity. This work emphasized the scalability of deep models 
for long-term aggregated consumption prediction, while noting computational costs[15]. [11] The research 
explored weather-based probabilistic forecasting for microgrids, focusing on load, renewable generation, and 
energy prices. Models incorporated uncertainty via quantile forecasts and probabilistic density estimations. 
The system showed value in day-ahead scheduling and minimizing reliance on backup sources, though 
accuracy was highly dependent on meteorological inputs. 
[12] The authors integrated rough set theory and Deep Belief Networks (DBNs) to build a predictive model 
for public building energy consumption. Rough set theory was used for attribute reduction, improving model 
efficiency and interpretability. The DBN structure helped capture non-linear interactions between features, 
outperforming classical ANN and fuzzy logic approaches, especially in terms of generalization on unseen data. 
[13] Focused on mining behavioral patterns from household appliance-level energy data, this study developed 
Bayesian network models capable of learning appliance usage dependencies. Their work revealed correlations 
between device usage and household routines, which were then used to improve day-ahead forecasting 
accuracy. The approach worked well in behavior-rich datasets but faced challenges scaling new, unseen 
households without retraining. [14] A comprehensive analysis of over 150 studies focused on data-driven 
energy models. The review outlined various ML methods including SVM, ANN, decision trees, and k-NN 
applied to both residential and commercial buildings. The authors noted the inconsistency of evaluation 
metrics and the lack of standard datasets as key limitations in the literature. The review helped categorize 
existing approaches based on input features, learning techniques, and building types, providing a strong base 
for future model development. 
Table 2. Summary of Reviewed Studies 

Ref. 
No. 

Methodology Application Area Key Findings 

[3] PatchTST, Informer, 
Transformer + TL 

Smart Buildings PatchTST effective in TL with sparse data 
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[4] RNNs, Foundation Models Commercial 
Buildings 

Heterogeneity impacts more than model size 

[5] Customized LSTM/GRU, 
ARIMA 

Household LSTM superior for short-term load prediction 

[6] CNN-GRU with Appliance 
Clustering 

Household Behavior-based associations improved 
accuracy 

[7] CNN-LSTM, TCN Manufacturing TCN best for high-frequency data 
[8] SWT + 

CNN/LSTM/Transformer 
Household Improved long-term forecasts using hybrid 

model 
[9] Screening Curve Method Solar Households Economic tool for PV and battery investment 
[10] FCN, CNN, LSTM Residential 

(monthly) 
LSTM best with large datasets 

[11] Probabilistic ML + Weather 
Forecasting 

Microgrids Supports uncertainty-aware scheduling 

[12] Rough Set + Deep Belief 
Networks 

Public Buildings Improved generalization, reduced complexity 

[13] Bayesian Networks Household Behavioral dependencies boost prediction 
[24] ML Survey (SVM, ANN, 

Decision Trees) 
General Review of 150+ papers; identified gaps in 

standardization 
 
3. METHODOLOGY  
This section outlines the end-to-end methodology adopted for forecasting global energy consumption trends. 
It encompasses data acquisition, preprocessing, feature engineering, model development, and evaluation. 
3.1 Data Acquisition 
This study utilizes the “World Energy Consumption” dataset, sourced from an open-access repository on 
Kaggle. The dataset provides annual records of global energy consumption alongside key demographic and 
economic indicators, enabling robust long-term forecasting across multiple countries. It spans from 1900 to 
2022, with most energy-related metrics reliably populated from 1965 onward, and includes data from over 
300 countries and regional aggregates. 
The dataset integrates information from highly credible sources, including the BP Statistical Review of World 
Energy, Ember Climate, and Our World in Data (OWID). It has been harmonized for unit consistency (e.g., 
TWh), standardized country names, and temporal alignment. This ensures both accuracy and comparability 
across time and regions. 
For the purpose of this study, the dataset was filtered to retain only key attributes relevant to energy demand 
modeling, including in table 3. 
Table 3. Key Attributes considered for modeling 

Attribute Description Type 
Country ISO-aligned country or region name Categorical 
Year Year of observation Integer 
Population Total population (mid-year estimate) Numeric 
Gdp Gross Domestic Product (in current USD) Numeric 
oil_consumption Annual oil consumption (TWh) Numeric 
gas_consumption Annual gas consumption (TWh) Numeric 
renewables_consumption Aggregate of solar, wind, biofuel, and hydro (TWh) Numeric 

 
Other variables, such as coal, nuclear, and individual renewable sources, were available but excluded from 
the primary modeling pipeline. The dataset was downloaded from [25] Kaggle website and stored locally in 
CSV format for further preprocessing and model development. 
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3.2 Data Preprocessing and feature engineering 
Prior to model development, a structured and standardized preprocessing pipeline was implemented to 
prepare a clean, temporally aligned, and feature-rich dataset suitable for a diverse set of forecasting models. 
These include deep learning architectures (LSTM, CNN-BiLSTM, Transformer), gradient boosting ensemble 
models (XGBoost, LightGBM, CatBoost), and statistical methods (SARIMA). The preprocessing steps were 
designed to enhance data integrity, ensure chronological consistency, reduce noise, and generate predictive 
features that could be uniformly applied across all model types. The following stages summarize the 
transformation of the raw energy consumption dataset into a model-ready format. 
3.2.1 Feature Selection 
To reduce noise and retain only relevant macroeconomic and energy indicators, the dataset was filtered to 
include the following columns: 
• country, year, population, gdp 
• oil_consumption, gas_consumption, renewables_consumption (computed as the sum of individual 
renewables): 
renewables_consumption=solar_consumption+wind_consumption+biofuel_consumption 
This ensured that both demographic and economic drivers of energy use were retained while discarding 
unrelated or redundant attributes. 
3.2.2. Temporal Alignment and Missing Value Imputation 
Time-series integrity was preserved through chronological sorting and imputation: 
• Sorting: 
Data was sorted by country and year to maintain the sequential order of observations. 
• Forward-Fill Imputation: 
Missing values were imputed using forward-fill (ffill) within each country group, preserving time-order 
consistency without backward leakage. 
• Final Cleanup: 
Any remaining rows with missing values were dropped. 
This produced a consistent, temporally aligned dataset with no missing values. 
3.2.3 Per Capita Feature Engineering 
To normalize energy demand across countries with varying population sizes, per capita consumption metrics 
were computed: 
oil_per_capita = oil_consumption / population 
gas_per_capita = gas_consumption / population 
renewables_per_capita = renewables_consumption / population 
This step enabled better cross-country comparisons and scale-invariant modeling. 
3.2.4 Lag and Rolling Features 
To incorporate temporal context into the forecasting models, lag-based and rolling statistical features were 
generated for each country’s energy consumption data. These features capture both short-term and long-term 
dependencies essential for time series forecasting. Specifically, for each of the three energy types—oil, gas, and 
renewables—a 1-year lag (lag1) and a 12-year lag (lag12) were computed to reflect recent history and potential 
seasonal or cyclical patterns, respectively. In addition, a 3-year rolling mean (roll3) was calculated to smooth 
short-term fluctuations and highlight broader consumption trends. This enriched feature set enables models 
like LSTM, CNN-BiLSTM, and Transformer to learn from past temporal dynamics, while also providing 
valuable predictors for tree-based models such as XGBoost, LightGBM, and CatBoost, as well as for 
traditional statistical models like SARIMA. After the lag and rolling features were created, any rows 
containing NaN values—introduced due to lagging at the start of each series—were removed to maintain 
dataset consistency. 
3.2.5 Logarithmic Transformation 
To address skewness in the distribution of energy consumption variables and promote statistical stability, 
logarithmic transformations were applied to the raw consumption values. This transformation compresses 
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the scale of large values while preserving the relative differences between data points, which is particularly 
beneficial when dealing with countries exhibiting vast differences in consumption levels. 
Specifically, a natural log transformation with a shift was used, computed as log(1 + x), where x represents the 
original value. This formulation avoids undefined values for zero entries and is widely used in time series 
modeling to stabilize variance and reduce the impact of outliers. The transformation was applied to the 
following variables: 
• oil_consumption 
• gas_consumption 
• renewables_consumption 
The resulting features,  
oil_consumption_log, gas_consumption_log and renewables_consumption_log—were added as new columns 
to the dataset. These transformed variables enhance model performance by making patterns more linear and 
easier for both statistical and machine learning models to interpret. 
3.2.6 Output Export and Country Selection 
The final preprocessed dataset, enriched with per capita metrics, lag features, rolling means, and log-
transformed variables, was saved as a CSV file in the designated project folder on Google Drive. 
After export, the dataset was filtered to include only United States, China, and India, selected for their 
significant global energy consumption and reliable historical data coverage. This refined dataset was used 
uniformly across all forecasting models: LSTM, CNN-BiLSTM, Transformer, XGBoost, LightGBM, 
CatBoost, and SARIMA. 
3.3 Modeling and Training : 
This research implements a comprehensive suite of forecasting models to estimate annual energy 
consumption across three leading global economies: the United States, China, and India. The target variables 
encompass three energy types: oil, natural gas, and renewables. The models deployed span both deep learning 
and statistical domains, enabling rigorous benchmarking under a unified evaluation pipeline. 
3.3.1 Long Short-Term Memory (LSTM) 
The LSTM model [Figure 1] is designed to capture long-range temporal dependencies in annual energy 
consumption data. Each input consists of six years of historical features; the model predicts the seventh year’s 
consumption for oil, gas, or renewables.  

 
Figure 1. LSTM Model Structure for Energy Forecasting 
3.3.2 CNN–BiLSTM Hybrid 
The CNN–BiLSTM model [Figure 2] combines the strengths of convolutional and recurrent neural networks 
to capture both short-term and long-range dependencies in annual energy consumption data. A one-
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dimensional convolution layer first detects local patterns, followed by a bidirectional LSTM that learns 
temporal dynamics in both forward and backward directions. 

 
Figure 2. CNN-BiLSTM Model Structure for Energy Forecasting 
3.3.3 Transformer 
The Transformer model [Figure 3] introduces self-attention mechanisms to learn temporal dependencies 
without recurrence. It is particularly effective for capturing both short- and long-range relationships in 
structured energy consumption data. 

 
Figure 3. Transformer Model Structure for Energy Forecasting 
3.3.4 XGBoost 
XGBoost [Figure 4] is a scalable, tree-based ensemble algorithm optimized for speed and accuracy. It operates 
on tabular input, making it well-suited for structured macroeconomic and demographic energy forecasting 
data.  



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 16s,2025 
https://theaspd.com/index.php 

2174 
 

 
Figure 4. XGBoost Model Structure for Energy Forecasting 
3.3.5 LightGBM 
LightGBM [Figure 5] is a high-performance gradient boosting framework that employs a leaf-wise tree growth 
strategy. It efficiently models non-linear dependencies from structured data without requiring sequence 
modeling. 

 
Figure 5. LightGBM Model Structure for Energy Forecasting 
3.3.6 CatBoost 
CatBoost [Figure 6] is a robust gradient boosting framework designed for efficient handling of categorical and 
numerical features. In this study, it is applied on purely numerical inputs, eliminating the need for 
normalization or encoding.  

 
Figure 6. CatBoost Model Structure for Energy Forecasting 
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3.3.7 SARIMA 
Seasonal ARIMA (SARIMA) [Figure 7] models are classical statistical techniques designed for univariate time-
series forecasting. They account for both seasonal and non-seasonal components in the data. 

 
Figure 7. SARIMA Model Structure for Energy Forecasting 
3.4 Evaluation Metrics for Forecasting Performance 
This section defines and explains the quantitative metrics used to assess and compare the accuracy and 
reliability of each forecasting model.    
Mean Absolute Error (MAE), measures the average magnitude of errors between predicted and actual values, 
regardless of direction. 

             MAE = 
1

n
∑  n

i=1 |Yi – Ŷ i|                  (1) 

Root Mean Squared Error (RMSE), emphasizes larger errors due to squaring, providing insight into larger 
deviations in predictions.  

       RMSE = √
1

n
∑ (n

i=1 Yi – Ŷ i)2                (2) 

Mean Absolute Percentage Error (MAPE), provides error as a percentage, useful for understanding model 
accuracy relative to actual observed values. 

                                                      MAPE = 
100%

n
 ∑ |

Yi − Ŷi

Yi
n
i=1  |           (3) 

Coefficient of Determination (R²), measures how well predicted values align with actual values, representing 
the proportion of variance explained by the model. 

                                                     R2 = 1 - 
∑ (Yi − Ŷi)2n

i=1

∑ (Yi − Ȳi)2n
i=1

                        (4) 

 
Where,  
Yi : Actual Value                                                n : Number of Observations 
Ŷ i : Predicted Values                                          Ŷ i : Mean of actual values  
These metrics (equations 1-4) collectively provide a robust understanding of forecasting accuracy and model 
reliability.  
4. Detailed Model Evaluation and Performance Analysis  
This section provides an in-depth analysis of forecasting performance for individual models across various 
country-energy combinations. We specifically assess the predictive capabilities of CNN-BiLSTM, LSTM, 
XGBoost, CatBoost, LightGBM, SARIMA, and Transformer models. Performance is evaluated using four 
key metrics: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Coefficient of Determination 
(R²), and Mean Absolute Percentage Error (MAPE). Table 4 specifies the best model per country and energy 
type.  
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Table 4. "Best Model per Country and Energy Type" indicating the best-performing model for each country 
and energy type based on the lowest RMSE. 

Country Energy Type Best 
Model 

MAE RMSE R² MAPE (%) 

China Gas Consumption XGBoost 561.07 680.98 -1.85 37.01 
China Oil Consumption SARIMA 498.87 597.16 -0.20 15.56 
China Renewables Consumption SARIMA 491.38 561.06 -0.03 21.85 

India Gas Consumption SARIMA 81.03 93.59 -2.08 22.58 
India Oil Consumption XGBoost 358.69 426.80 -2.45 20.77 
India Renewables Consumption SARIMA 87.28 101.55 -0.51 17.85 

United States Gas Consumption XGBoost 676.94 753.47 -2.19 9.58 
United States Oil Consumption CatBoost 426.38 530.16 -0.27 4.10 
United States Renewables Consumption XGBoost 262.65 331.24 -0.85 13.86 

 
4.1 Average MAE and RMSE by Model 

 
Figure 8. Average RMSE by Model                   Figure 9. Average MAE by Model 
The bar charts for MAE [Figure 9] and RMSE [Figure 8] reveal that XGBoost achieves the lowest average error 
across all models, with MAE and RMSE values remaining under 1000 and error bars showing low variability. 
CatBoost and LightGBM also perform competitively, delivering stable predictions with narrow error margins. 
In contrast, LSTM, CNN-BiLSTM, and Transformer record significantly higher MAE and RMSE—above 
3300—alongside large error bars, suggesting high variance and reduced reliability. These findings reflect the 
poor generalization of deep learning models in this context. 
4.2 MAPE by Model and Energy Type 
MAPE [Figure 10] values across models and energy types reinforce the superiority of tree-based methods. 
XGBoost and CatBoost consistently yield the lowest MAPE, particularly for gas and oil consumption, with 
values ranging between 20–30%. LightGBM also performs reasonably, maintaining moderate error levels. 
SARIMA shows relatively low MAPE for oil and renewables, especially in China and India, indicating 
effective trend modeling. Conversely, Transformer, LSTM, and CNN-BiLSTM exhibit extremely high MAPE, 
often exceeding 90%, revealing poor alignment with actual energy consumption dynamics. 
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Figure 10. MAPE by model and energy type 
4.3 R² Distribution per Model and Country  

 
Figure 11. R2 Distribution per Model (Grouped by Country) 
Boxplots of R² grouped by country [Figure 11] highlight disparities in explanatory power. XGBoost, CatBoost, 
and LightGBM achieve R² values near or slightly below zero for China and India, suggesting partial ability to 
explain variance. In stark contrast, LSTM, CNN-BiLSTM, and Transformer produce strongly negative R² 
scores, with U.S. medians below -1500 and lower whiskers reaching -3000. These values confirm that deep 
learning models struggle to capture meaningful patterns in the data, particularly in stable or mature markets 
like the United States. 
4.4 RMSE Variability per Model 

 
Figure 12. RMSE Variability per Model  
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RMSE variability [Figure 12] analysis further emphasizes model consistency. XGBoost, CatBoost, and 
LightGBM exhibit compact RMSE distributions, with tight interquartile ranges and few outliers, signifying 
stable performance. In contrast, deep learning models show high dispersion, with RMSE values ranging 
widely and numerous outliers. This highlights their sensitivity to data shifts and instability during training. 
4.5 RMSE by Model and Energy Type 

 
Figure 13. RMSE by Model and energy type  
RMSE [Figure 13] trends across energy types show XGBoost achieving the lowest values for all three types—
oil, gas, and renewables—consistently under 1000. CatBoost and LightGBM are close contenders, particularly 
for oil and gas. SARIMA performs exceptionally well for renewables and oil in China and India, aligning with 
its low error metrics in the evaluation table. Meanwhile, LSTM, CNN-BiLSTM, and Transformer exhibit very 
high RMSE values, with oil forecasting errors often exceeding 6000. Wide confidence intervals further 
confirm their instability and overfitting tendencies. 
4.6 RMSE Heatmap by Country and Model 

 
                             Figure 14. RMSE Heatmap by Country and Model  
The RMSE heatmap [Figure 14] offers a detailed breakdown of model performance by country. XGBoost 
emerges as the overall best model, recording the lowest RMSE in gas forecasting for all three countries and 
renewables in the United States. CatBoost achieves the best result for oil consumption in the U.S., while 
SARIMA excels in renewables and oil forecasts in China and India, consistent with its ability to capture 
seasonal and trend-based fluctuations. Despite the overall dominance of tree-based methods, SARIMA proves 
to be a highly effective statistical model in emerging regions. Deep learning models again perform the worst, 
with RMSE values above 6000 in multiple U.S. scenarios, reflecting poor generalization in stable energy 
consumption patterns. 
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4.7 Forecasting Insights (2024–2033) 
The long-term forecasts (2024–2033) illustrate how the best-performing models behave across countries and 
energy types. The following table 5 summarizes the selected models per scenario based on lowest RMSE and 
best overall performance: 
Table 5. Best Performing Models for Each Country and Energy Type 

Country Gas Oil Renewables 

China XGBoost SARIMA SARIMA 

India SARIMA XGBoost SARIMA 

United States XGBoost CatBoost XGBoost 

  
This distribution highlights that XGBoost led in five out of nine cases, excelling particularly in gas and oil 
consumption forecasts. SARIMA proved superior in three cases, predominantly in renewables consumption 
for China and India, and oil for China. CatBoost emerged as the best performer for oil consumption in the 
United States, leveraging its gradient boosting structure for relatively stable predictions. 
4.8 Country-wise Forecast Behavior 
The forecast plots [Figure 15] reveal varying consumption patterns and model behaviors across countries: 
• China: The gas consumption forecast by XGBoost remains flat, indicating potential underfitting or 
saturation in gas usage trends. SARIMA, used for both oil and renewables, predicts strong upward trends. 
Oil consumption shows steady year-on-year increases, while renewables exhibit exponential growth, aligning 
with China’s energy transition goals and aggressive renewable capacity expansion. 
• India: Gas and renewables consumption, both forecasted using SARIMA, show positive, accelerating 
trends. Renewables especially demonstrate a steep increase, reflecting India’s ongoing policy push toward 
sustainable energy. Oil consumption, predicted by XGBoost, remains flat, suggesting either model 
insensitivity to minor fluctuations or stabilization in demand.  
• United States: Forecasts across gas, oil, and renewables appear largely static. XGBoost, used for gas and 
renewables, predicts a consistent flat trajectory, potentially indicating market maturity or model underfitting. 
CatBoost, selected for oil, also shows no significant changes over the decade. 
These flat forecasts may reflect the saturated nature of U.S. energy markets or signal that tree-based models 
are not sufficiently capturing subtle trend dynamics in developed economies. 

  
   (a)                                                          (b) 
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             (c)                                                          (d) 

 
                                       (e)                                                          (f) 

 
                                        (g)                                                          (h) 

 
(i) 
Figure 15. Country wise forecast for all energy types  
• SARIMA effectively captures nonlinear growth, particularly for renewables and oil in emerging economies. 
• XGBoost and CatBoost, though accurate in error metrics, tend to yield flat forecasts, especially in mature 
markets, suggesting limited trend sensitivity without further tuning. 
• The forecast behavior is consistent with real-world expectations: China and India show expansion in 
renewables, while the U.S. displays demand stabilization. 
4.9 Model Performance Summary 
The table 6, below summarizes the average performance of each forecasting model across all countries (China, 
India, United States) and energy types (oil, gas, renewables). Four evaluation metrics were used: Mean 
Absolute Error (MAE), Root Mean Squared Error (RMSE), Coefficient of Determination (R²), and Mean 
Absolute Percentage Error (MAPE). 
Table 6. Average Performance for each model by country by energy type 

Model MAE RMSE R² MAPE (%) 
XGBoost 551.09 639.16 -1.97 22.94 
CatBoost 579.72 674.34 -2.39 24.71 
LightGBM 1042.14 1109.52 -10.19 45.55 
SARIMA 895.26 1178.12 -59.52 35.46 
Transformer 3350.62 3359.33 -629.52 96.79 
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• XGBoost ranks highest overall, achieving the lowest MAE (551.09) and RMSE (639.16), and the lowest 
MAPE (22.94%), confirming its balanced performance across all regions and energy types. 
• CatBoost follows closely, with competitive MAE and MAPE scores and relatively stable predictions. 
• LightGBM performs moderately but shows a marked drop in R², indicating weaker variance explanation 
despite acceptable error values. 
• SARIMA excels in capturing temporal trends (e.g., renewables in China and India) but has higher error 
values overall. 
• Transformer demonstrates the poorest performance, with extremely high MAE, RMSE, MAPE, and a 
highly negative R², reflecting significant overfitting and variance issues. 
5. Summary  
Table 7, specifies the summary of Top performers by metric  
Table 7. Top Performers by Metric 

Metric Best Models 
Lowest RMSE & MAE XGBoost, CatBoost 
Consistent Accuracy XGBoost (across countries and energy types) 
Best R² Scores XGBoost, LightGBM (China and India only) 
Lowest MAPE (%) XGBoost, CatBoost 
High Variance / Poor Fit Transformer, LSTM, CNN-BiLSTM 

 
6. CONCLUSION 
This research conducted an in-depth comparative evaluation of multiple forecasting methodologies—
including LSTM, CNN-BiLSTM, Transformer, XGBoost, LightGBM, CatBoost, and SARIMA—for 
predicting annual oil, gas, and renewable energy consumption across three of the world’s largest energy-
consuming nations: the United States, China, and India. A harmonized, multi-decade dataset was 
preprocessed through temporal alignment, per capita normalization, lag-based feature generation, and 
logarithmic transformation to ensure consistency and enhance modeling performance. 
Model performance was assessed using Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), 
Coefficient of Determination (R²), and Mean Absolute Percentage Error (MAPE), under a 3-fold time series 
cross-validation strategy. The results demonstrate that gradient boosting ensemble models—particularly 
XGBoost and CatBoost—consistently outperformed both deep learning and statistical models, achieving the 
lowest average RMSE and MAPE across countries and energy types. For instance, XGBoost achieved an 
average RMSE of 639.16 and MAPE of 22.94%, making it the most accurate and stable model overall. 
SARIMA, while comparatively less accurate in terms of error metrics, showed strength in capturing seasonal 
and trend dynamics, particularly in emerging markets like India and China for oil and renewables. On the 
other hand, deep learning models such as Transformer, LSTM, and CNN-BiLSTM exhibited high variance, 
poor R² values (often negative), and inflated RMSE, especially in mature markets like the United States, 
indicating overfitting and poor generalization. The findings underscore that model complexity does not 
guarantee superior performance; instead, data structure, stationarity, and temporal stability play crucial roles 
in model suitability. For large-scale, structured, and relatively stable national energy datasets, ensemble tree-
based models offer a reliable, interpretable, and computationally efficient forecasting solution. This study 
provides a rigorous benchmarking framework and paves the way for more targeted model selection in national 
energy analytics, with implications for policy development, sustainability planning, and resource allocation. 
7. Future Work 
Building on the findings of this study, future research will shift focus from macro-level energy forecasting 
toward micro-level energy optimization, with an emphasis on reducing residential energy consumption 
through intelligent, model-driven systems. The following directions outline the technically advanced pathways 
for extending this research: 
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1. Development of Fine-Grained Temporal Models for Household Energy Load 
Future work will involve transitioning from annual to high-resolution (hourly or sub-hourly) energy 
forecasting using smart meter datasets. This requires adapting current architectures (e.g., LSTM, Transformer) 
to manage fine-grained temporal dependencies, seasonality, and daily appliance usage cycles, potentially 
incorporating sliding window techniques and attention-enhanced recurrent models for improved granularity. 
2. Appliance-Level Disaggregation Using Sequence-to-Sequence Deep Models 
Advanced sequence modeling techniques (e.g., Seq2Seq with attention, Temporal Convolutional Networks, 
or Non-Intrusive Load Monitoring (NILM) frameworks) will be explored to disaggregate aggregate household 
consumption into appliance-specific profiles, enabling targeted energy-saving recommendations and control 
policies. 
3. Integration of Contextual Variables and External Covariates 
Forecast accuracy and actionable output can be enhanced by incorporating exogenous variables such as 
weather data, occupancy patterns, building insulation characteristics, time-of-use tariffs, and user behavior 
profiles. Techniques like multi-input neural networks, dynamic feature embeddings, and feature attention 
layers will be evaluated for multi-source data fusion. 
4. Probabilistic and Uncertainty-Aware Forecasting 
To account for variability in user behavior and environmental factors, future models will incorporate Bayesian 
deep learning, quantile regression, or variational inference methods to provide interval-based or probabilistic 
forecasts, crucial for risk-aware energy planning and real-time control decisions. 
5. Reinforcement Learning for Adaptive Energy Management 
Energy reduction goals can be operationalized via model-free or model-based reinforcement learning (RL), 
where an RL agent learns optimal control strategies (e.g., HVAC scheduling, battery storage, load shifting) 
using energy forecasts as environmental states. This allows for closed-loop integration of forecasting and 
decision-making in residential energy systems. 
6. Deployment of Federated Learning for Privacy-Preserving Personalization 
Future systems will adopt federated learning (FL) frameworks to enable personalized household-level models 
without centralized data collection. FL will allow energy service providers to build robust models across 
distributed households while ensuring data privacy and regulatory compliance. 
7. Hybrid Ensemble Systems with Meta-Learning Optimization 
The forecasting pipeline will be enhanced using hybrid ensembles that combine statistical (e.g., SARIMA), 
ML (e.g., XGBoost), and DL (e.g., Transformer) models. A meta-learning layer or stacking regressor will be 
trained to dynamically weigh model outputs based on historical performance, energy type, and data volatility. 
8. Explainable AI (XAI) for Interpretability in Energy Forecasting 
To improve user trust and regulatory transparency, explainability techniques such as SHAP values, integrated 
gradients, and Layer-wise Relevance Propagation (LRP) will be incorporated to deconstruct model predictions 
into human-readable drivers of energy usage. 
9. Simulation-Integrated Testing with Digital Twins 
Forecasting models will be embedded into residential digital twin environments to simulate intervention 
strategies (e.g., thermostat tuning, appliance usage shifts) and assess energy-saving outcomes in silico prior to 
real-world deployment. 
These advanced technical directions aim to transform energy forecasting from a passive prediction task into 
an active, interpretable, and intelligent control system—empowering households to minimize consumption, 
reduce waste, and contribute meaningfully to national sustainability goals. 
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