
International Journal of Environmental Sciences
ISSN: 2229-7359
Vol. 11 No. 16s,2025
https://theaspd.com/index.php

2159

Comprehensive Research On Secure Code Reviews:
Methodologies And Practical Demonstrations

Avinash Malepati1
1Application Security Engineer, Amazon, Austin, TX, USA, avi.malepati@gmail.com

Abstract
The secure code review uncovers and removes security gaps long before the deployment of the software. In this paper,
a critical analysis of the Top-Down and Bottom-Up approaches to secure code review techniques is carried out. The
fine examples, that are presented together with actual snippets of Java code, serve the illustration of how to find and
trace vulnerabilities. This research work underscores the need for incorporating security considerations into the software
development life cycle at the earliest introduction stage. It therefore recommends ways through which threats can be
best minimized. It also notes that snippet testing is a good verification tool for finding potential weaknesses hence
making security a stronger process. This approach ensures that apps are more secure and prepared to address potential
threats.This significantly imparts a sense of importance as it makes informed relevant stakeholders about the security
practices to be conducted in achieving the desired outcome [14]. There was an array of techniques, methods, technology
and tools in Software Engineering over the past two decades but still, the security-related issues in software are “because
people do not know how to utilize these established principles” issues remain [34]. To minimise the risk of a security
bug, it is helpful to understand secure software principles. This is further facilitated by application of best practice
and adhering to secure development guidelines [33]. It is important to introduce security controls at each phase of the
SDLC. This requires them to cooperate with different SDLC models in order to guarantee that Software is secure
[43].
Keywords: Secure code review, Top-Down, Bottom-Up approach.

1. INTRODUCTION
The greatest difference between a secure code review and normal code reviews is that the former looks at
security vulnerabilities rather than general quality of the code. Secure code reviews can only happen via
formalized techniques as not every detailed method for tracing vulnerabilities and structural approaches
will be useful. Two major approaches were adopted in previous studies, Top-Down and Bottom-Up. It
uses comprehensive Java examples to help elicitin people if security is included from the start in each
phase of development the total number of vulnerabilities can be dramatically minimized.
It is estimated that 70% of the reported security breaches occur due to unsafe design and coding practices
[6]. Decisions on security provisions are based on the sensitivity of data and applications, which would be
appropriate for them. The development teams determine this through a proactive integration of security
activities into SDLC because it ensures that all systems are designed with proper levels of protection [48].
If security considerations do not feature in every stage of the SDLC, the final product cannot be secure
[29]. To keep secure software development practices, it should be imperative to include security
consideration at each stage alongside having mitigation in place to reduce released software vulnerabilities
by secure coding and comprehensive security testing.

2. BACKGROUND AND LITERATURE REVIEW
Microservices and MVC patterns are common in modern software architectures because they make it
easier to add new features and improve performance. These architectures are modular and spread out, so
it is very important to have secure code reviews for them. There is a lot of information out there about
secure coding standards and practices. The OWASP guidelines and IEEE security publications are just
two examples. This study fills that gap by giving many real-world examples of how coding is used. Deep
learning-based methods are becoming more popular because they are better at finding code flaws. They
do have some problems, though, such as needing large labeled datasets and having to retrain the model
often [47].
Because web frameworks' applications and inheritance mechanisms are so complicated, developers may
sometimes find ways to get around the automated security checks. This can lead to hard-to-detect

mailto:avi.malepati@gmail.com

International Journal of Environmental Sciences
ISSN: 2229-7359
Vol. 11 No. 16s,2025
https://theaspd.com/index.php

2160

vulnerabilities like Cross-Site Scripting and Cross-Site Request Forgery [19]. Adversarial examples are bad
input data that can make machine learning models stop working. This could be very dangerous for systems
that need to be safe, like medical devices and self-driving cars [28].
Learning-based methods built into cybersecurity systems are very important for finding these kinds of
threats and making security measures stronger (Bountouni et al., 2023). This is because advanced and
unknown attacks are happening more often. Integrating machine learning into cybersecurity needs a well-
thought-out plan that looks at the whole system to make sure it is strong and can't be exploited [16]. Also,
to avoid expensive methods that only copy traditional signature-based systems, machine learning must be
used carefully in cybersecurity [9]. It's important to remember that how well machine learning works in
cybersecurity depends a lot on how relevant the related security features are and what the data is like
[39].Cybersecurity needs more advanced threat detection systems as attacks become more complex. This
is why artificial intelligence is becoming an important tool in this field [45]. Smart systems and machine
learning could make cybersecurity better, but to use them successfully, you need to have a deep
understanding of data science and cybersecurity concepts [12]. Machine learning techniques have been
shown to be useful for improving cybersecurity threat detection and response by allowing the analysis of
huge datasets to find patterns that suggest malicious activity [27]; [32]. Machine learning algorithms have
been used successfully to find spam since the 1950s, showing that they have been useful in cybersecurity
for a long time [38].

3. METHODOLOGIES FOR SECURE CODE REVIEW
Top-Down and Bottom-Up are two approaches for secure code review we see in this study.
3.1 Top-Down Approach
The Top-Down approach finds entry points or data sources in the application and follows how this data
moves through the system to find possible weaknesses. This method is great for finding problems with
authorization, logic errors, and input validation, especially in apps where users interact with each other
in complicated ways. Because all user input is seen as unreliable and possibly harmful, the processing,
storage, and output of this data need to be looked at very carefully. The top-down approach's strength is
that it can give a full picture of how safe the application is, which makes it easier to find systemic problems
[20].By starting with the high-level architecture and looking at specific code segments, security reviewers
can make sure that security concerns are taken into account in the application's design. This method also
helps make threat models, which guide testing and mitigation activities, by finding possible attack vectors.
The Top-Down method starts with a broad view of the system and then narrows the focus to specific parts
by refining the analysis. This method is good for getting a sense of how the architecture works as a whole
and finding possible design mistakes [13]
The Top-Down method for secure code review looks at the system's overall design and architecture to
find possible security holes. By looking at the whole architecture, including how different modules talk
to each other and where data flows, you can find high-level vulnerabilities like channels for sending data
that aren't secure or authentication mechanisms that don't work. The process includes making sure that
system specifications, design documents, and architectural diagrams follow the best practices and
standards for security. The next step is to look at certain subsystems or modules that are thought to be
very important or very risky. Modules that handle sensitive data processing, user authentication, and
authorization are given the most attention.
3.1.1 Approach Details
The first of many important steps in the top-down approach is to find input sources like user input, API
calls, and event triggers. It is important to keep an eye on how this input moves through controllers,
services, and utility functions in order to understand the data flow. Look for any possible weaknesses in
important areas like file operations, deserialization, and dynamic execution. To stop exploitation, you
need to find any missing validations, sanitizations, or unsafe ways of handling data. It is important to
think about what might happen if data is changed or used for bad purposes in order to understand the
effects of possible vulnerabilities.

International Journal of Environmental Sciences
ISSN: 2229-7359
Vol. 11 No. 16s,2025
https://theaspd.com/index.php

2161

3.1.2 Demonstration – Step-by-Step Walkthrough:
Step 1: Open the Project in IDE

● Load the SecureCodeReviewDemo project into your Java IDE (e.g., IntelliJ IDEA or Eclipse).
● Navigate to src/topdown/controllers/MessageController.java.

Step 2: Identify Input Source
@PostMappingpublic String receiveMessage(@RequestParam String filename) { return
messageService.processFile(filename);}

● Observe that the filename parameter is directly taken from a POST request.
● This is our source.

Step 3: Trace Data Flow
● Open MessageService.java:

public String processFile(String filename) { return FileUtil.readFile(filename);}
● Here the user-controlled input is forwarded to FileUtil.readFile().

Step 4: Evaluate Sink
● Open FileUtil.java:

public static String readFile(String filename) { try { byte[] content =
Files.readAllBytes(Paths.get("/data/" + filename)); return new String(content); } catch (Exception e)
{ return "Error reading file: " + e.getMessage(); }}

● This concatenation operation is a potential path traversal vulnerability.
● There is no validation or sanitation on the input filename before it's used to access the file system.

Step 5: Confirm the Finding
● Try inputs like ../../etc/passwd to validate path traversal risk.

3.2 Bottom-Up Approach
The Bottom-Up method starts with known sinks, or sensitive or dangerous functions, and works its way
back to see if they can be triggered by input that isn't reliable or comes from outside sources. This method
is good for finding serious security holes that may be deeply buried in the application's logic, like SSRF,
command injection, or insecure deserialization. The Bottom-Up approach, on the other hand, starts with
a full analysis of the code and then adds the results together to get a better idea of how they affect the
whole system. This method is great for finding specific flaws and mistakes in the implementation. This
method for secure code review starts with small pieces of code, functions, or modules and works its way
up to show how they all work together in the bigger system.
Reviewers can go through every line of code in a methodical way by starting with small, easy-to-handle
pieces and looking for common security holes like buffer overflows, SQL injection, cross-site scripting,
and other injection flaws. This in-depth study looks for specific coding mistakes that could be used against
you, and it tests code snippets on their own to find weaknesses. This method is helpful for finding
weaknesses that might not be clear when looking at the system from a distance. The Bottom-Up approach
combines the results of its analysis of low-level code components to help people understand the bigger
picture.The bottom-up approach involves a thorough look at the codebase, starting with individual
functions and modules. This method tries to find weaknesses by looking at how data moves and changes
at the code level. It works best for finding bugs and weaknesses in the code that you might not be able to
see from a high-level view. The first step is to find and list all possible sinks, such as functions that deal
with sensitive data, run system commands, and do file operations.
3.2.1 Approach Details:
The Bottom-Up approach has a number of important steps. These are often the first things that attackers
go after, so it starts by finding important functions that do security-sensitive tasks like validating data,
authenticating users, or giving them access. Next, look in the application's codebase to see where and how
these functions are used. This will help you figure out where they might be exposed and what their context
is. It's important to find out if user-controlled data directly or indirectly affects the inputs to these
functions, because if it's not done right, it could lead to vulnerabilities. Finally, check your assumptions
about how secure these functions are and see if there are any missing security controls, such as allow-
listing, filtering, input sanitization, or proper error handling. These are all important for reducing possible
risks.

International Journal of Environmental Sciences
ISSN: 2229-7359
Vol. 11 No. 16s,2025
https://theaspd.com/index.php

2162

3.2.2 Demonstration – Step-by-Step Walkthrough:
Step 1: Open the Project in IDE

● Search for HttpURLConnection() method as in java this method is often used to make requests
to the given URL. This is the indication for Server Side Request Forgery.

● Navigate to src/bottomup/vulnerable/SSRFVulnerability.java.
Step 2: Identify Vulnerable Sink
public static InputStream fetchContent(String url) throws Exception {URL targetUrl = new URL(url);
HttpURLConnection connection = (HttpURLConnection) targetUrl.openConnection(); return
connection.getInputStream();}

● The method uses an unvalidated URL to perform a network request—this is a potential SSRF.
Step 3: Trace the Input

● Open TraceInput.java:
public static void main(String[] args) { String userProvidedUrl = args[0]; InputStream response =
SSRFVulnerability.fetchContent(userProvidedUrl);}

● The URL is directly controlled by the user (command line argument), and is passed into the
vulnerable method.

Step 4: Confirm the Vulnerability
● Run the program locally:

javac SSRFVulnerability.java TraceInput.javajava TraceInput http://localhost:8080/internal
● Use nc, Python HTTP server, or other internal tools to see if the request reaches internal systems.

Step 5: Validate Impact
● If the server allows requests to internal services (e.g., metadata endpoints in cloud), this can be

exploited for data exfiltration.
4. Challenges and Limitations
Secure code reviews often face significant obstacles that affect their efficiency and accuracy:
High Code Volume and Component Interdependencies: Modern software development applications
often consist of hundreds of thousands of lines of code across numerous components and modules,
making it nearly impossible to manually review every line. The complexity is further increased by deeply
intertwined logic across components, which adds difficulty to tracing data flow and understanding
application behavior, especially when trying to identify subtle security flaws. External Service Reliance:
Because many applications rely on third-party APIs, microservices, or cloud components, it is difficult to
assess how data flows from external inputs into the internal system. Security engineers may lack visibility
into potentially unsafe interactions and boundary conditions that introduce vulnerabilities without full
access to or documentation of these external dependencies. Lack of Test Coverage or Execution Traces:
Secure code review becomes less effective when unit tests, integration tests, or dynamic execution traces
are limited or absent. Reviewers have to make assumptions about how the code will behave under real-
world conditions without runtime insights or example inputs, increasing the chance of both false positives
and false negatives in security assessments. Evolving Threat Landscape: Security vulnerabilities and attack
vectors are constantly evolving. Staying ahead of new threats requires continuous education and
adaptation of review techniques to detect novel attack patterns or emerging classes of vulnerabilities.
Limited Resources: Secure code review can be time-consuming and resource-intensive, particularly when
performed thoroughly. Many organizations face budgetary constraints or a shortage of security expertise,
leading to rushed reviews or insufficient attention to detail. Skill and Knowledge: The quality of a code
review heavily depends on the reviewer's knowledge, experience, and specific skills [22]. Reviewers must
understand the language's nuances, common security pitfalls, and the application’s specific security
requirements. Organizations frequently neglect basic security measures, becoming easy targets for less
sophisticated attackers [24]. A common pitfall is the over-reliance on static threat intelligence, such as
traditional virus scanners, which struggle to adapt to new and sophisticated threats [24]. Additionally,
many organizations do not prioritize employee training in security best practices, leading to inadvertent
security breaches [2]. Another issue is that many companies fail to conduct regular security audits and
penetration testing, which are essential for identifying vulnerabilities before they can be exploited.

International Journal of Environmental Sciences
ISSN: 2229-7359
Vol. 11 No. 16s,2025
https://theaspd.com/index.php

2163

Existing IT and security frameworks face challenges such as complexity, resource intensiveness, and a lack
of clear implementation guidelines, making organizations hesitant to adopt them [31]. Additionally, some
frameworks only address technical issues, ignoring the significance of employee awareness, organizational
culture, and secure development practices [23]. Furthermore, new security issues brought about by
developing technologies like cloud computing, IoT, and AI are not sufficiently addressed by many
conventional frameworks.
Also, people who work in the cyber ecosystem need to work together to stay ahead of new cyberthreats
[1]. Companies must use new technologies like cloud computing, machine learning, statistical analysis,
and the Internet of Things [4] to stay ahead of the competition. However, the creation and
implementation of enough security measures has not kept up with the quick adoption of these
technologies in IIoT devices and cyber-physical systems [35]. New cyberthreats keep coming up, which
shows how important it is to change how these problems are dealt with [49].
Also, current practices and supporting technologies make it harder for organizations to fully use their
employees' knowledge and trust relationships to protect their information and communication systems
[11]. To deal with specific problems and lower the chance of successful attacks, security frameworks need
to be customized to fit the needs of each industry [5]. A strong cybersecurity awareness program is
important for reducing the risks that come from human error [21]; [6] by creating a culture of security
within companies. Because cybersecurity educational frameworks often don't cover all the skills that are
needed [26], it's important to be able to use and integrate these skills together. To deal with the changing
world of cyber threats, organizations need to do more than just use standard data protection methods.
They also need to encourage collaboration among experts in the scientific community [36].
Organizations should take a broad view of cybersecurity that includes both technological and human
factors [41] in order to make the world a safer place. To improve the security of organizations in light of
the growing complexity of cyber threats, resilience and capabilities must be combined [37]
5. Future Directions
Many of the problems that exist now in the rapidly growing field of secure code review are expected to be
solved in the future. In the future, integrated development environments may have real-time static analysis
tools that show how data flows from source to sink. This would cut down on manual work and let
reviewers keep an eye on how potentially harmful inputs spread (Böhme et al., 2024). AI and ML models
trained on large codebases can also find code patterns that are linked to known vulnerabilities. This helps
developers write secure code before a manual review.
Also, reviewers and automated tools could use lightweight sandbox environments in development
pipelines to see how code would behave with different inputs and in different attack scenarios. This would
make it easier to check the results and the steps taken to fix the problem. Formal methods and automated
theorem proving could make mathematical proofs that important security properties hold true across the
codebase. This would make the attack surface smaller and make a full review unnecessary. In the future,
code review tools will include code provenance tracking, integrity checks, and supply chain security
scanning to automatically find known vulnerabilities in dependencies and make sure that third-party
components are safe [8]. Because software development practices, security threats, and technological
capabilities are always changing [3], we need new code review methods that fit right into development
workflows. Using these new methods together could make software systems a lot safer. Recent studies
show that iteratively improving AI-generated code can actually make security holes worse, which shows
how important it is to have human experts involved in the development process [42]. So, it's important
to have strong validation procedures in place to keep new security holes from being added when code is
being improved [42]. Because smart contracts can't be changed, developers must also think about how
they might work in the future [30]. Also, to use AI-driven tools safely in secure software engineering, you
need to know what their problems and risks are. To find and fix new ways to attack, you also need to
keep an eye on AI systems that are being used all the time. As a result of AI, some parts of software
development are changing. For example, code generation, testing, maintenance, and security are all
changing [25]. AI-powered refactoring methods are likely to greatly improve the quality of software, boost
developer productivity, and cut down on design flaws [44]. AI helps speed up the development lifecycle
and lets developers focus on more strategic and creative parts of their work by automating tasks that are

International Journal of Environmental Sciences
ISSN: 2229-7359
Vol. 11 No. 16s,2025
https://theaspd.com/index.php

2164

boring and prone to mistakes[7]. Deep learning is being used to automatically find and fix security holes,
which makes software systems stronger and more resilient. Using AI in software quality assurance has
helped businesses a lot. It has helped with things like finding and predicting bugs, learning how to
sequence things, and copying code [15].
AI's ability to automatically create dynamic test cases and smartly find bugs could change the way quality
assurance works [10]. The growing need for software [40] is the main reason why AI is automating the
processes of software development. This means that software development cycles and new ideas need to
happen quickly, which is why AI-driven tools and methods are being used. It's clear that AI is changing
the field of programming in a big way. For example, AI is automating important tasks like coding,
debugging, and testing [17]But there are also big problems that need to be solved when AI is added to
software development. One of the most important things is to make sure that AI is explainable, which
means that its decisions and actions are clear and easy to understand [18]. As AI systems get more
complicated and independent, it's important to understand how they think and make decisions in order
to keep trust and accountability.

6. CONCLUSION
Secure code reviews are very important in today's software development because they find security holes
before they can be used in production environments. This paper talked about two main ways to do secure
code reviews: Top-Down and Bottom-Up. Each has its own strengths when it comes to finding security
holes. The Top-Down approach helps security engineers figure out how external inputs move through the
application. This helps them find problems with input validation, authentication, and data handling. On
the other hand, the Bottom-Up approach looks at known vulnerable sinks and works its way back to find
exploitable pathways. This makes it very good at finding complex vulnerabilities like SSRF, insecure
deserialization, and second-order injections. We showed how these methods can be used in real-world
projects by combining them with real-world Java code examples. The step-by-step guide showed important
ways to find, trace, and confirm security problems by simulating secure code reviews in an IDE
environment. These examples are meant to help security engineers, developers, and code reviewers not
only understand the theory but also know what to do with it. This study also stressed the importance of
code snippet testing, which is a powerful way to check if findings can be exploited and to confirm whether
or not effective mitigations are in place. This makes the review process more thorough by moving it from
theoretical to real-world security validation. Secure code reviews need to change as applications become
more complex and connected. There are still problems with big codebases, service dependencies, and a
lack of dynamic insight, but the future of secure code reviews lies in automation, AI integration, and
making them a part of the development pipeline. Companies that put money into structured, ongoing,
and useful code review methods will greatly improve their security, lower their risks, and create a culture
of security-first development.

REFERENCES
1. Admass, W. S., Munaye, Y. Y., & Diro, A. (2023). Cyber security: State of the art, challenges and future directions. Cyber
Security and Applications, 2, 100031. https://doi.org/10.1016/j.csa.2023.100031
2. Akinade, A. O., Adepoju, P. A., Ige, A. B., & Afolabi, A. I. (2024). Cloud Security Challenges and Solutions: A Review of
Current Best Practices [Review of Cloud Security Challenges and Solutions: A Review of Current Best Practices]. International
Journal of Multidisciplinary Research and Growth Evaluation, 6(1), 26. https://doi.org/10.54660/.ijmrge.2025.6.1.26-35
3. Almeida, Y., Albuquerque, D., Filho, E. D., Muniz, F., Santos, K. de F., Perkusich, M., Almeida, H., & Perkusich, Â. (2024).
AICodeReview: Advancing code quality with AI-enhanced reviews. SoftwareX, 26, 101677.
https://doi.org/10.1016/j.softx.2024.101677
4. AlQadheeb, A., Bhattacharyya, S., & Perl, S. (2022). Enhancing cybersecurity by generating user-specific security policy
through the formal modeling of user behavior. Array, 14, 100146. https://doi.org/10.1016/j.array.2022.100146
5. Armas, R., & Taherdoost, H. (2025). Building a Cybersecurity Culture in Higher Education: Proposing a Cybersecurity
Awareness Paradigm. Information, 16(5), 336. https://doi.org/10.3390/info16050336
6. Banerjee, C., & Pandey, S. K. (2009). Software Security Rules, SDLC Perspective. arXiv (Cornell University).
https://doi.org/10.48550/arxiv.0911.0494
7. Bodemer, O. (2023). Revolutionizing Software Development: Harnessing the Power of Artificial Intelligence for Next-
Generation Coding Solutions. https://doi.org/10.36227/techrxiv.24592335

International Journal of Environmental Sciences
ISSN: 2229-7359
Vol. 11 No. 16s,2025
https://theaspd.com/index.php

2165

8. Böhme, M., Bodden, E., Bultan, T., Cadar, C., Liu, Y., & Scanniello, G. (2024). Software Security Analysis in 2030 and
Beyond: A Research Roadmap. ACM Transactions on Software Engineering and Methodology.
https://doi.org/10.1145/3708533
9. Bountouni, N., Koussouris, S., Vasileiou, A. A., & Kazazis, S. A. (2023). A Holistic Framework for Safeguarding of SMEs: A
Case Study. 1. https://doi.org/10.1109/drcn57075.2023.10108247
10. Bussa, S. (2023). Artificial Intelligence in Quality Assurance for Software Systems. Stallion Journal for Multidisciplinary
Associated Research Studies, 2(2), 15. https://doi.org/10.55544/sjmars.2.2.2
11. Dandurand, L., & Serrano, O. S. (2013). Towards improved cyber security information sharing. International Conference
on Cyber Conflict, 1. https://dblp.uni-trier.de/db/conf/cycon/cycon2013.html#DandurandS13
12. Devine, S. M., & Bastian, N. D. (2019). Intelligent Systems Design for Malware Classification Under Adversarial Conditions.
arXiv (Cornell University). https://doi.org/10.48550/arxiv.1907.03149
13. Dodson, D., Souppaya, M., & Scarfone, K. (2020). Mitigating the Risk of Software Vulnerabilities by Adopting a Secure
Software Development Framework (SSDF). https://doi.org/10.6028/nist.cswp.04232020
14. Eian, I. C., Yong, L. K., Li, M. Y. X., Hasmaddi, N. A. B. N., & Fatima-tuz-Zahra. (2020). Integration of Security Modules in
Software Development Lifecycle Phases. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2012.05540
15. Esposito, M., Sarbazvatan, S., Tse, T., & Atencio, G. S. (2024). The use of artificial intelligence for automatic analysis and
reporting of software defects. Frontiers in Artificial Intelligence, 7. https://doi.org/10.3389/frai.2024.1443956
16. Evtimov, I., Cui, W., Kamar, E., Kıcıman, E., Kohno, T., & Li, J. (2020). Security and Machine Learning in the Real World.
arXiv (Cornell University). https://doi.org/10.48550/arxiv.2007.07205
17. Gaitantzi, A., & Kazanidis, I. (2025). The Role of Artificial Intelligence in Computer Science Education: A Systematic Review
with a Focus on Database Instruction [Review of The Role of Artificial Intelligence in Computer Science Education: A Systematic
Review with a Focus on Database Instruction]. Applied Sciences, 15(7), 3960. Multidisciplinary Digital Publishing Institute.
https://doi.org/10.3390/app15073960
18. Garg, K. (2023). “Impact of Artificial Intelligence on software development: Challenges and Opportunities.” International
Journal of Software & Hardware Research in Engineering, 11(8). https://doi.org/10.26821/ijshre.11.8.2023.110801
19. Giannopoulos, L., Degkleri, E., Tsanakas, P., & Mitropoulos, D. (2019). Pythia. 1.
https://doi.org/10.1145/3301417.3312497
20. Goni, I., Bello, S., & Maigari, U. T. (2020). Machine Learning Algorithms Applied to System Security: A Systematic Review
[Review of Machine Learning Algorithms Applied to System Security: A Systematic Review]. Asian Journal of Applied Science
and Technology, 4(3), 76. https://doi.org/10.38177/ajast.2020.4311
21. Guenther, M. (2004). Security/Privacy Compliance: Culture Change. EDPACS, 31(12), 19.
https://doi.org/10.1201/1079/44332.31.12.20040601/81836.3
22. Hijazi, H., Durães, J., Couceiro, R., Castelhano, J., Barbosa, R., Medeiros, J., Castelo‐Branco, M., Carvalho, P., & Madeira,
H. (2022). Quality Evaluation of Modern Code Reviews Through Intelligent Biometric Program Comprehension. IEEE
Transactions on Software Engineering, 49(2), 626. https://doi.org/10.1109/tse.2022.3158543
23. Hof, H. (2015). Towards Enhanced Usability of IT Security Mechanisms - How to Design Usable IT Security Mechanisms
Using the Example of Email Encryption. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1506.06987
24. Julisch, K. (2013). Understanding and overcoming cyber security anti-patterns. Computer Networks, 57(10), 2206.
https://doi.org/10.1016/j.comnet.2012.11.023
25. Juma, S. F., & Munala, M. W. (2020). International Journal of Current Science Research and Review. International Journal
of Current Science Research and Review. https://doi.org/10.47191/ijcsrr
26. Karagiannis, S., Magkos, E., Karavaras, E., Karnavas, A., Nikiforos, M. N., & Ntantogian, C. (2024). Towards NICE-by-
Design Cybersecurity Learning Environments: A Cyber Range for SOC Teams. Journal of Network and Systems Management,
32(2). https://doi.org/10.1007/s10922-024-09816-w
27. Katiyar, N., Tripathi, Mr. S., Kumar, Mr. P., Verma, M., Sahu, A. K., & Saxena, S. (2024). AI and Cyber-Security: Enhancing
threat detection and response with machine learning. https://doi.org/10.53555/kuey.v30i4.2377
28. Kawamoto, Y., Miyake, K., Konishi, K., & Oiwa, Y. (2023). Threats, Vulnerabilities, and Controls of Machine Learning
Based Systems: A Survey and Taxonomy. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2301.07474
29. Khan, R. A., Khan, S. U., Alzahrani, M., & Ilyas, M. (2022). Security Assurance Model of Software Development for Global
Software Development Vendors. IEEE Access, 10, 58458. https://doi.org/10.1109/access.2022.3178301
30. Liu, Z., Qian, P., Wang, X., Zhu, L., He, Q., & Ji, S. (2021). Smart Contract Vulnerability Detection: From Pure Neural
Network to Interpretable Graph Feature and Expert Pattern Fusion. https://doi.org/10.24963/ijcai.2021/379
31. Melaku, H. M. (2023). A Dynamic and Adaptive Cybersecurity Governance Framework. Journal of Cybersecurity and
Privacy, 3(3), 327. https://doi.org/10.3390/jcp3030017
32. Mohammed, K. (2023). Harnessing the Speed and Accuracy of Machine Learning to Advance Cybersecurity. arXiv (Cornell
University). https://doi.org/10.48550/arxiv.2302.12415
33. Peine, H. (2005). Rules of thumb for secure software engineering. https://doi.org/10.1145/1062455.1062626
34. Ramachandran, M. (2015). Software Security Requirements Engineering: State of the Art. In Communications in computer
and information science (p. 313). Springer Science+Business Media. https://doi.org/10.1007/978-3-319-23276-8_28
35. Reyes-Acosta, R. E., Mendoza-González, R., Díaz, E. O., Martín, M. V., Rosas, F. J. L., Romo, J. C. M., & Mendoza-González,
A. (2025). Cybersecurity Conceptual Framework Applied to Edge Computing and Internet of Things Environments. Electronics,
14(11), 2109. https://doi.org/10.3390/electronics14112109

International Journal of Environmental Sciences
ISSN: 2229-7359
Vol. 11 No. 16s,2025
https://theaspd.com/index.php

2166

36. Sáenz, F. I. M., Quintero, J. M. M., & Reyna-Castillo, M. (2024). Beyond Data Protection: Exploring the Convergence
between Cybersecurity and Sustainable Development in Business. Sustainability, 16(14), 5884.
https://doi.org/10.3390/su16145884
37. Safitra, M. F., Lubis, M., & Fakhrurroja, H. (2023). Counterattacking Cyber Threats: A Framework for the Future of
Cybersecurity. Sustainability, 15(18), 13369. https://doi.org/10.3390/su151813369
38. B.Ramasubba Reddy, Saritha Anchuri, Kuraganti Santhi, Prathusha Perugu, Sivakumar Depuru, M. Sunil Kumar,
"Enhancing Cloudburst Prediction System Using Bi-LSTM in Realtime: Machine Learning",Communications on Applied
Nonlinear Analysis, Vol. 32 No. 1s,2025.
39. Dr. Srinivasa Babu Kasturi, Sreedhar Burada, Dr. Sowmyashree M.S, Sharath.S, Dr. M.Sunil Kumar,Dr. D. Ganesh, "An
Improved Mathematical Model by Applying Machine Learning Algorithms for Identifying Various Medicinal Plants and Raw
Materials", Communications on Applied Nonlinear Analysis ISSN: 1074-133X ,Vol 31 No. 6s 2024.
40. B. Sangamithra, Asha K.H, M. Sunil Kumar,""An Improved Information Retrieval System using Hybrid RNN LSTM for
Multiple Search Engines", Communications on Applied Nonlinear Analysis ISSN: 1074-133X ,Vol 31 No. 5s 2024.
41. Sreedhar Burada,B.E. Manjunathswamy, M. Sunil Kumar, "Early detection of melanoma skin cancer: A hybrid approach
using fuzzy C-means clustering and differential evolution-based convolutional neural network",Measurement: Sensors, Volume
33, June 2024, 101168.
42. M. Sunil KumarJ KumarnathSachin S PundMansing Rathod,""A Secure IoT Smart Network Model for the Contributory
Broadcast Encryption for the Text Policy Management Scheme", international Journal of Intelligent Systems and Applications
in Engineering IJISAE, 2023, 11(3s), 42–48 2023.
43. Hari Prasad Gandikota ,Abirami. S,Sunil Kumar M, "PLoS ONE 18(11): e0292785.
https://doi.org/10.1371/journal.pone.0292785.
44. Hari Prasad Gandikota* | S. Abirami M. Sunil Kumar,""Bottleneck Feature-Based U-Net for Automated Detection and
Segmentation of Gastrointestinal Tract Tumors from CT Scans",Traitement du Signal, Vol. 40, No. 6, December, 2023, pp.
2789-2797.
45. Burada, S., Manjunathswamy, B.E. & Kumar, M.S. Deep ensemble model for skin cancer classification with improved feature
set. Multimed Tools Appl 84, 7599–7626 (2025). https://doi.org/10.1007/s11042-024-19039-5.
46. E.Ramesh Babu, Dr.M.Sunil Kumar,"The Role of Optimization Techniques in Advancing Big Data Analytics : A Survey",
Communications on Applied Nonlinear Analysis ISSN: 1074-133X Vol 32 No. 1s 2025.
47. Meriga Kiran Kumar, Rajeev Kudari, C. Sushama, M. Sunil Kumar, P. Neelima, D. Ganesh, "Efficient Algorithms for Vehicle
Plate Detection in Dynamic Environments", Communications on Applied Nonlinear Analysis ISSN: 1074-133X Vol. 32 No. 1s
2025.
48. Παπανικολάου, Α., Alevizopoulos, A., Ilioudis, C., Demertzis, K., & Rantos, K. (2023). A Cyber Threat Intelligence
Management Platform for Industrial Environments. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4320924

