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ABSTRACT 
In this study, the knowledge base of a genuine wastewater treatment plant was acquired using a Neuro Vector Machine 
modelling approach, which was subsequently applied as a process model. The study shows that ANNs integrated with Support 
Vector Machine (SVM) are capable of accurately capturing the characteristics of plant functioning. The trained ANN plant 
model is included into a computer model. Utilizing plant scale data collected from a nearby wastewater treatment plant, the 
designed program is put into use and evaluated. For plant operators and decision-makers, it serves as a useful performance 
assessment tool. When employing COD as an input in the crude supply stream, the proposed model accurately predicted the 
effluent stream's biological oxygen demand (BOD), chemical oxygen demand (COD), and total suspended solids (TSS). One 
may argue that combining three crude supply inputs—BOD, COD, and TSS—rather than just one produced better model 
predictions than using just one crude supply input. The proposed approach for the Vitthalwadi STP data is done and presented 
via a graphical user interface and attained an Accuracy of about 95.6%. 
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1. INTRODUCTION 
With an increasing population over the past few decades, increasing industrial and agricultural wastewater, and 
climate change, there are challenges to adequately process the wastewater. Sewage treatment is a process of 
removing chemical and biological contaminants such as wastewater and household. It mainly involves three 
processes namely physical, chemical, and biological. These treatments help us to remove contaminants from 
wastewater. In 2010, only 20% of the wastewater produced globally is treated with sewage treatment plants, 
which has been increased now up to a range of about 75%. Globally, 2 million tons of domestic sewage, industrial 
waste, and agricultural waste are released into waterways every day. This leads to a global death of about 1.8% 
people due to water-borne diseases every year. Therefore, there is a need to treat sewage in treatment plants to 
improve the quality of wastewater and cause no harm and pollution to the environment. Sewage treatment is 
also being referred to as solid and liquid wastewater treatment. Municipal wastewater mainly consists of water 
with small concentrations of dissolved organic and inorganic solids and suspended matter. The solid substances 
present in the wastewater are soap, lignin, protein, synthetic detergents etc. Even it contains some decomposition 
products produced from various synthetic and natural organic chemical industries. Wastewater also included 
inorganic substances produced from domestic and industrial sources. Also contains potentially toxic elements 
such as zinc, chromium, cadmium, copper, lead, mercury, etc. These toxic concentrations can affect humans and 
limit their agricultural use. To a lesser extent, pathogenic viruses, protozoa, bacteria, and worms may present in 
wastewater.  
To maintain stable performance in a sewage treatment plant, it is desirable to know in advance the effective 
water characteristics of the sewage treatment plant. Characteristics such as COD, BOD, pH, conductivity, total 
nitrogen (TN), total phosphate (TP), total suspended solids (TSS), suspended solids (SS) flow rate, biological 
loading are important parameters to be identified. The process of the sewage treatment plant has an important 
relationship between these parameters. The prediction of effluent characteristics is very important for the 
optimization of the sewage treatment plant process. The previous study of many researchers suggests that the 
challenge in modelling sewage treatment plant performance is the complex dynamic nonlinear behavior of 
sewage treatment systems due to the interdependencies seen in the operational parameters of the sewage 
treatment plant process. Traditional modelling methods like mathematical models, least squares regression and 
partial differential equations may be able to show general trends but often struggle predicting the outcome of 
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specific events, making these models of less value for capital planning the modelling of sewage treatment plants 
is an area of interest for sewage treatment industry for its prediction and forecasting abilities. It is a cost-effective 
method to identify potential future capacity issues and could prove a powerful tool for long-term capital planning. 
The experience of researchers shows that controlling the activated sludge process is still difficult for many plants 
modelling method which has gained significant popularity since the 1990s is the artificial neural networks (ANN) 
approach. ANNs can find highly complex nonlinear relationships. This, in combination with the results not 
physically being measured, is a major barrier for the water treatment industry to adopt implementation of models 
within sewage treatment plant control. Since the 1990s the Artificial Neural Network (ANN) modelling approach 
has gained popularity for prediction and forecasting due to its ability to capture complex nonlinear relationships. 
The application of ANNs in the field of water treatment has been somewhat limited to date but the technique 
could prove to be a powerful tool in creating accurate models for predicting the performance of water treatment 
plants. In this research, the characteristics of influent and effluent stream of Vitthalwadi STP of Pune Municipal 
Corporation is found for 143 days specifically from months May 2023 to October  2024. These months are 
selected because, the maximum inflow of crude waste for this plant occurs during this interval. This is concluded 
from the previous 10 years data. The data of this particular interval is taken, that is properties namely COD, 
BOD, TSS and pH values of influent and effluent water. By this the efficiency of the plant is came to know. 
Later to optimize the treatment process, a model is created using ANN technique and it is then integrated with 
Support Vector Machine (SVM) to improve the accuracy. The error value is found and is greatly used to predict 
the efficiency of the plant in giving respective properties of treated and non-treated waste water. The efficiency 
of the plant, model techniques introduced, optimizing methods etc are clearly discussed in this article. 
 
2. METHODOLOGY AND MODEL DEVELOPMENT 
The Vitthalwadi STP is one of the most important STP when compared to other stp’s in the Pune Municipal 
Corporation. The total capacity of this treatment plant is 32 MLD. Like other treatment plants it is designed 
and built to withstand heavy suspended and dissolved solids in wastewater. The average dry weather flow is 16 
MLD and the peak flow is 29 MLD. Fig 1 shows the location of VSTP zone and plant, and Fig 2 displays the 
semantic treatment process of the plant. That grid and floating the breeze of crude sewage or removed by grit 
collector and grit elevators. Mechanical drive scrappers or used to scrap settled solids into the PST hoopers. The 
hydro valves that open in the consolidation sludge tank remove these settled solids. To lower the volume of 
mixed liquor, aerobic bacteria are activated by aeration and mixing with activated sludge. With the aid of 
mechanically powered aerators, the primary treated effluent is combined with the activated sludge recovered 
from the secondary settlement tank and uniformly dispersed in channels for aeration. The secondary settlement 
tanks are used to help mixed liquor that has settled out of the aeration tank. The secondary processed effluent 
is pre-chlorinated in the post-treatment and raised by screw pumps for even distribution to sand filters. The 
resulting stream flows into the wet well and is known as final effluent (FE). The Vitthalwadi STP's data sources 
were thoroughly examined. The decision was made to link the inputs of the crude solid (CS) stream to the 
outputs of the secondary treatment effluent (STE) stream. This is so that more complete data could be made 
accessible for the STE stream, whose outputs were essentially identical to those of the FE stream.  

 
Fig. 1. Location of Vitthalwadi STP zone 
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Fig. 2. Schematic Diagram of Vitthalwadi STP 

As a result, data on the BOD, COD, and TSS in the CS stream and STE stream were gathered over the course 
of 143 days. This time frame met the criteria since it accounts for maximum fluctuations in the variables under 
study. Nearly every day, measurements were made in the plant. For BOD in the crude supply, COD in the supply, 
TSS in the supply, BOD in the STE stream, COD in the stream, and TSS in the STE stream, respectively, the 
conventions BOD-CS, COD-CS, TSS-CS, BOD-STE, COD-STE, and TSS-STE are valid. Because they can be 
used as indicators of how well a wastewater treatment plant is performing, the BOD, COD, and TSS were chosen. 
The efficiency of the collected data is analyzed properly and based on the data collected, Fig 3 is plotted for clear 
observation. Which shows the clear efficiency of Vitthalwadi STP in treating the water water. 

 
Fig. 3. Efficiency chart of Vitthalwadi STP 
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2.1. Data preparation, preprocessing, and statistical analysis 
On the unprocessed experimental data, data refinement was done by eliminating any outliers, or unexpected 
points. These outliers exist for a variety of causes, including transcription or transposition problems brought on 
by poor data input. Human or experimental mistake are two more causes. To identify trends in the data set, 
various statistical modifications can be carried out. These are known as smoothing techniques, and they aim to 
lessen or get rid of the data's short-term volatility. Because it can capture changes in the time series' direction 
better than an unadjusted series, a smoothed series is preferred to an unsmoothed one. Data smoothing also 
minimizes the unfavorable impact of potential noise in the process data. For some time series, the traditional 
moving average method was produced by averaging many historical data points and dividing the available data 
points into longer time units using the formula below: 

𝒚̅𝒕 =
𝒚𝒕+𝒚𝒕−𝟏+⋯+𝒚𝒕−𝒏−𝟏

𝒏
      (1) 

where n is the number of time periods in the average, t is the current time period, and y is the variable being 
measured. Most of the time, researchers utilize moving averages of three, four, or five points (n = 3, 4, or 5). It 
should be underlined that the series is more smoothly behaved the greater the n. The four-degree moving average 
was applied in this study to smooth out the raw data. As a result, the ANN model was applied to predictions 
using smoothed data series. Data scaling is the last step in the data preparation process. This is how neural 
networks prepare their data on a regular basis. Here, achieving a nearly uniform statistical distribution of the 
values for each net input and output is the key goal. The values should also be adjusted to meet the input neurons' 
range. The data sets are often standardized to have zero mean and one standard deviation or scaled such that 
they always fall within a predetermined range. The data set's mean and standard deviation are normalized to 
achieve this. 
 
2.2. Machine learning algorithms  
Machine Learning (ML) algorithms for wastewater treatment such as Support Vector Machine and Artificial 
Neural Networks is applied to optimize wastewater treatment processes by predicting critical treatment 
parameters and improving operational efficiency. 
 
2.2.1. Support vector machine  
Support vector machine is a supervised machine learning algorithm effective for classification and regression 
tasks. It is highly useful in the context of wastewater treatment due to its robustness in handling high-dimensional 
data and its ability to identify the optimal hyperplane that maximizes the margin between different classes or 
continuous outputs. 
In this study, SVM is applied to predict treatment outcomes such as pH, Total Suspended Solids (TSS), Chemical 
Oxygen Demand (COD), and Biological Oxygen Demand (BOD), based on various treatment parameters like 
inlet flow rates, treatment duration, and aeration levels. The Implementation details are as follows, 
• Feature Selection: Important features such as inflow pH, temperature, flow rate, and aeration are selected as 
inputs to the SVM model, as these significantly impact wastewater treatment outcomes. 
• Parameter Tuning: The penalty parameter (C) and kernel function (linear, polynomial, or radial basis 
function) are tuned to optimize performance, striking a balance between low error and model complexity. 
• Cross-Validation: Cross-validation is employed to validate the generalizability of the model, ensuring its ability 
to predict treatment outcomes under various conditions. 
The SVM algorithm seeks to find an optimal hyperplane that maximizes the margin between different classes (or 
regression values) in the data. Using the same optimization principles, SVM is formulated as: 

𝑓(x) = w𝑇𝜙(𝑥) + 𝑏                 (2) 
where x is the two-dimensional residual vector to be classified, w is the optimal p-dimensional column vector to 
be solved, 𝑏 is the optimal threshold, and 𝜙(𝑥) represents a p-dimensional mapping of the sample 𝑥 from input 
space to feature space. 
The classifier classifies the data 𝑥 by: 

𝑦 = sign⁡(w𝑇𝜙(x) + 𝑏)                          (3) 
Here, w and 𝑏 are solutions to the optimization problem: 
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𝑚𝑖𝑛
𝐰,𝑏,𝜉

 
1

2
∥ 𝐰 ∥2+ 𝐶 ∑  𝑛

𝑖=1 𝜉𝑖            (4) 

Subject to  𝑦𝑖(𝐰
𝑇𝜙(𝐱𝑖) + 𝑏) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑛      (5) 

where C is a positive scalar called the penalty coefficient, 𝑦𝑖 is the label for sample 𝑥I , and 𝜉𝑖 is the slack variable 
for sample 𝑥𝑖. 
Transforming this optimization problem to the dual space, the problem is formulated as follows 

𝑚𝑎𝑥
𝛼

 ∑  𝑛
𝑖=1 𝛼𝑖 −

1

2
∑  𝑛
𝑖=1 ∑  𝑛

𝑗=1 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝐱𝑖 , 𝐱𝑗)             (6) 

Subject to      ∑  𝑛
𝑖=1 𝛼𝑖𝑦𝑖 = 0,0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1,2,… , 𝑛             (7) 

where 𝛼 is the Lagrangian multiplier vector, 𝐾(𝐱𝑖, 𝐱𝑗) = 𝜙(𝐱𝑖)
𝑇𝜙(𝐱𝑗) is the kernel function, and H is a square 

matrix with elements 𝐻𝑖𝑗 = 𝑦𝑖𝑦𝑗𝐾(𝐱𝑖 , 𝐱𝑗). 
In the dual space, the decision function is: 

𝑓(𝐱) = ∑  𝑛
𝑖=1 𝛼𝑖𝑦𝑖𝐾(𝐱𝑖 , 𝐱) + 𝑏                (8) 

where 𝛼𝑖 are the elements of the optimal vector solution for the dual problem. The instances with non-zero 
Lagrangian multipliers are support vectors, which constitute the decision function for SVM along with their 
labels and the threshold 𝑏. 
In wastewater treatment, this classifier can separate different treatment efficiency levels or predict continuous 
values of parameters like COD or BOD. 
 
2.2.2. Neural Network Modeling: background and methodology 
In order to help cognitive scientists comprehend the complexity of the nerve system, neural networks were first 
developed in the 1940s. They underwent steady development and were used in many branches of science. The 
ANNs are essentially mathematical constructs that draw inspiration from the way that the human brain learns. 
To address a variety of issues in the areas of system identification, forecasting, pattern recognition, classification, 
process control, and many others, they are built and used as alternative mathematical tools. (Huang and 
Mujumdar, 1993; Baker and Richards, 2002). The development of ANN's underlying learning and optimization 
algorithms as well as the consolidation of its theoretical foundation were both influenced by the interest in ANN 
as a tool for mathematical modeling. The modeling and simulation of chemical processes is one of these 
interesting research fields. The use of mechanistic models, which rely on basic material and energy balances as 
well as actual correlations, is fraught with mathematical challenges and frequently results in imprecise results. In 
these circumstances, neuron-based modeling is a reliable replacement. This is as a result of the positive aspects 
associated with their use. 
The feedforward networks (FFNNs), feedback networks (FBNNs), recurrent networks (RNNs), and self-organized 
networks are some topological categories for ANNs. They can also be divided into further categories based on 
application, connection type, and teaching techniques. The FFNN seen in Fig. 4 is the network type that is most 
frequently applied in the modeling and prediction fields. One input layer, one output layer, and at least one 
hidden layer makes up the network in this design. The process by which the FFNN derives its output from its 
input, layer by layer, throughout the network is referred to as "feedforward." In this instance, cycles are not 
formed by the connections made by network neurons. No matter how complicated the network is, the neuron 
is a basic component that serves as its foundation. It uses predetermined activation functions to calculate an 
output by performing a weighted sum of its inputs. To incorporate nonlinearity into the network, activation 
functions for the hidden units are required. The most popular options for activation functions are the sigmoidal 
functions, including logistic and tanh, and the gaussian function. The number of neurons and their 
interconnection patterns determine the nervous system architecture. A set of input–output pairs are supplied 
into the network, which is then trained to replicate the outputs. The weights of the neurons are changed during 
training in order to reduce the quadratic error between observed data and computed outputs. 
ANNs are particularly effective for modelling complex, non-linear relationships, making them suitable for 
predicting key parameters in wastewater treatment. ANNs can learn patterns from historical treatment data and 
be used to optimize operational parameters to enhance treatment efficiency. The ANN model for wastewater 
treatment consists of an input layer, hidden layers, and an output layer. The input layer includes key treatment 
parameters like inflow characteristics (pH, COD, TSS), treatment duration, and aeration levels.  
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Fig. 4. Multi-layer ANN structure schematic. 

 
The hidden layers process these inputs and learn complex relationships through weight adjustment during 
training. The output layer provides predictions for crucial outcomes such as treated water pH, COD, BOD, and 
TSS. The phases include Training, Validation, and Testing which are provided in detail as follows, 
• Training Phase: The model is trained using historical data from the wastewater treatment plant, where weights 
are adjusted using backpropagation to minimize prediction errors. 
• Validation Phase: A separate validation dataset is used to tune the model and prevent overfitting, ensuring it 
generalizes well to unseen data. 
• Testing Phase: The trained model is evaluated on a test dataset to determine its predictive accuracy for various 
treatment scenarios. 
The ANN follows standard feed-forward mechanisms, with inputs passing through the network: 

𝒂(𝒍) = 𝒇(𝑾(𝒍)𝒂(𝒍−𝟏) + 𝒃(𝒍))      (9) 
where 𝑎(𝑙) is the activation of the l-th layer, 𝑊(𝑙) are the weights, 𝑏(𝑙) are the biases, and 𝑓 is the activation function. 
In the backpropagation phase, the error is propagated back through the network to update the weights: 

ΔW(𝑙) = ⁡ηδ𝑙𝑎(𝑙−1)
𝑇       (10) 

       
where 𝜂 is the learning rate and 𝛿(𝑙) is the error term for the l-th layer. 
As previously said, input-target training data are typically pretreated in order to enhance the numerical situation 
for the optimization issue and for improved training process behavior. As a result, the data are typically split into 
three subsets: training, validation, and testing. By minimizing a suitable error function, the training subset data 
are used to implement network learning and fit the network weights. The training method typically employed 
for this purpose is backpropagation. In a feedforward network, it describes a technique for calculating the 
gradient of the case-wise error function with regard to the weights. After that, the networks' performance is 
compared by separately analyzing the error function using the validation subset data. The generalization of the 
network is next evaluated using the testing subset data (i.e., how well the network predicts targets for inputs 
outside the training set); this process is sometimes referred to as holdout validation). 
Underfitting or overfitting can occur in improperly trained neural networks. The first one covers the situation 
where a network is not sufficiently sophisticated to properly detect the signal in a challenging data set. On the 
other hand, the latter circumstance arises when a network becomes overly complicated and may accommodate 
both the signal and the noise. Even with noise-free data, this situation must be avoided as it could result in 
predictions that are well outside the bounds of the training set. Numerous methods have been described to 
prevent underfitting and overfitting, including model selection, jittering, early stopping, weight decay, Bayesian 
learning, and network combining. 
A key component of the overall design of NNs is choosing the network structure. To minimize computer 
processing, provide good performance, and prevent overfitting, the structure must be tuned. Numerous variables 
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affect how many concealed units are best, among other things. The complexity of the sought-after function to be 
modeled, the size of the training set, the amount of noise in the targets, the type of activation functions employed, 
and the training procedure all interact to affect the sizes of the hidden layers. Without training multiple networks 
and calculating the generalization error of each, the optimal number of hidden units cannot be determined. 
High training error and high generalization error due to underfitting may arise if there are few hidden units. 
However, using a large number of hidden units might reduce training error at the expense of network 
generalization, which worsens overfitting. By applying ANN, this study aims to predict and optimize wastewater 
treatment parameters, improving efficiency and ensuring compliance with regulatory standards. 
 
3. Results and discussion 
 
3.1. Statistical analysis 
The correlation matrix (CM) is used to investigate the extent to which a linear model may capture the 
relationship between the variables in a multivariable statistical investigation. A table of every conceivable 
correlation coefficient between a group of variables is called the CM. Each component of this matrix represents 
a correlation coefficient, which assesses how linearly related two variables are to one another (column variable 
versus row variable). The most often used indicator of correlation or association is the correlation coefficient, 
sometimes known as the Pearson product moment correlation coefficient. The Z-scores for the two variables, ZX 
and ZY, added together and divided by the total number of scores is how the correlation coefficient is defined. 

𝑹 =
∑𝒁𝒙𝒁𝒚

𝑵
        (11) 

The Pearson product moment correlation coefficient can be calculated using the following method if the Z-scores 
equation is inserted into it: 

𝑹 =
∑(𝑿−𝝁𝒙)(𝒀−𝝁𝒚)

𝑵𝝈𝒙𝝈𝒚

       (12) 

where N is the number of accessible subjects, µx and µY are the means of the X and Y scores, respectively;  𝝈𝒙and 
𝝈𝒚 are the variances of the X and Y scores. The goal of computing the CM is to use linear relationships to predict 
one variable from another. It does not provide any hint of any nonlinear relationships. However, this matrix 
provides a preliminary indication of the variables in the data set that are likely to be correlated. 
 
3.2. Modeling results 
The design process for neural networks that was previously discussed is used to model the STP. For this 
investigation, the MATLAB software's neural networks toolbox is used. For the plant modeling, two ANN input 
topologies are taken into account. In the first method, the effluent variables are predicted using each of the 
influent variables (TSS, COD, or BOD). The second method involves predicting the corresponding output 
variables in the effluent stream using multiple input variables. For the first technique, the input–output data are 
organized into two vectors (one input and one output), and for the second approach, four vectors (three inputs 
and one output). By figuring out the minimum and maximum of each vector variable and scaling the data with 
regard to these restrictions, the data vectors are pre-processed to fall inside the range. The MATLAB function 
premnmx is used to do this. The effectiveness of network training will be improved by doing this. Each vector 
in the data set was split into three groups: training, validation, and testing, in that order (4:2:1). After conducting 
a number of early experiments to compare the training speed and reaction times of various network topologies, 
each network structure is chosen. In order to keep the network construction as straightforward as possible, all 
single input networks have three levels (an input layer, a hidden layer, and an output layer), while multi-input 
networks use four layers (two hidden layers). Results for one hidden layer in the case of many inputs were subpar. 
The number of outputs determines how many neurons can be found in the output layer. On the other hand, 
the first two layers' number of neurons are chosen after testing how well the networks function in various 
configurations. It is noted that the smallest number of neurons in the hidden layer to get a final answer was 40. 
But in the event of multiple inputs, the two hidden layers each have 20 and 10 neurons. 80 neurons were needed 
in the buried layer for the prediction of TSS using the BOD as an input. The chosen structures guarantee 
adequate training speed and quick simulation times for a particular network performance. The sorts of neurons 
that make up the network layers, or their constituents, were assumed to be tan-sigmoidal and linear. This is a 
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typical option for neural networks that approximate functions. 
The optimization algorithm used for all network training runs was the Levenberg–Marquardt. The MATLAB 
routine trainlm with memory reduction was used for the optimization. Based on previous experience, it was found 
that this algorithm attains fast learning speed and high performance relative to other optimization algorithms. 
The mean square errors (MSE) between the actual plant output and the network predictions serve as the basis 
for the performance function that is used for training. The training process was triggered based on the chosen 
network structure to reach a performance target of 1103 for a maximum of 1000 training epochs. 0.01 was 
chosen as the learning rate. After multiple trial-and-error runs, the value of this option was discovered. It was 
discovered that this value guarantees steady, rapid learning. In this study, the time needed to train the networks 
ranged from 2 to 5 minutes for single input networks and from 10 to 20 minutes for the three multi-input 
networks. The multi-input networks' complex structural design is to blame for this. To ensure network 
generalization and avoid over- or under-fitting, the early network training termination strategy was adopted. Figs. 
5–8 display the experimental influent and effluent BOD, COD, pH & TSS for the respective days. In influent 
sample, the peak BOD crossed 300mg, COD crossed 600mg, pH value rages from 2.7 to 17.7 and finally TSS 
reached around300mg and above in certain period.  
Based on the Figs. 9–12 shows the simulated influent and effluent BOD, COD, pH & TSS values for the 
Vitthalwadi STP. The variation between the experimental and the simulated values are similar in many points. 
The possibility of the error is not so high, this can be easily obderved through the charts. It has been observed 
using Figs. 13-15, that utilizing COD as an input in the CS stream produced more accurate forecasts of the BOD 
and COD than the forecast that is predicted by using TSS as an input in the CS stream. When employing BOD 
as an input in the CS stream, poor predictions of the outputs were produced. The values of MSE and R (a 
measure of goodness-of-fit) in figures 13-15 is very less when compared to the other methods as described in 
Table 1 and Fig 16. When COD/CS is utilized as a feed input for the ANN predictions of the outputs, it can be 
shown that MSE values are the lowest and R values are close to 1.0. 

 
Fig. 5 Experimental influent and effluent BOD over days 
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Fig. 6 Experimental influent and effluent COD over days 

 
Fig. 7 Experimental influent and effluent pH over days 

 
Fig. 8 Experimental influent and effluent TSS over days 

 

 
Fig. 9 Simulated influent and effluent BOD over days 
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Fig. 10 Simulated influent and effluent COD over days 

 
Fig. 11 Simulated influent and effluent pH over days 

 

 
Fig. 12 Simulated influent and effluent TSS over days 
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Fig. 13. Mean square error between Exp. & Sim. for BOD over days 

 
Fig. 14. Mean square error between Exp. & Sim. for COD over days 

 
 

 
Fig. 15. Mean square error between Exp. & Sim. for TSS over days 
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Fig. 16. Comparison of different approaches in terms of Accuracy 

 
Table 1: Evaluation of performance in terms of Accuracy 

Model Split ratio (70% training, 30% testing) Split ratio (80% training, 20% testing) 

ANN 91.589 92.058 
SVM 92.058 93.151 
RF 93.0281 94.448 
Proposed 94.828 95.621 

 
CONCLUSIONS 
Modeling a STP is challenging because of the plant's high nonlinearity, the non-uniformity and variability of the 
crude supply, and the biological treatment's inherent complexity. This issue was resolved, and the 
interdependency of the input–output variables was found, using a Neuro Support Machine modeling approach. 
Without employing mechanistic bio-modeling, which is extremely complex and unreliable, plant input–output 
data were used to forecast plant behavior. The single input and multi-input network topologies utilized in this 
study's modeling yielded equivalent forecasts of the plant performance requirements. When the COD was 
utilized as a network input, the first strategy produced better predictions. The second strategy, on the other hand, 
produces accurate results for every predicted variable. The efficiency, generalization, and simplicity of the ANN 
and SVM modeling technique make it an appealing option for modeling complicated systems, such as wastewater 
treatment processes. 
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