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Abstract

The knee joint is crucial for movement, especially during squatting, which puts a lot of mechanical stress on it. In this study,
we developed a mathematical model to explore how stress is distributed across the knee joint while squatting. Using MATLAB,
we simulated the forces acting on the knee’s cartilage, ligaments, and tendons. Findings identified key areas where stress tends
to concentrate, providing important insights for preventing injuries and improving rehabilitation strategies. Interestingly, the
highest stress was found at the Tibiofemoral contact area, with a maximum flexion angle of 90°—in witro, it reached 90.67
MPa, while our mathematical model showed 95.2 MPa. We derived the relevant equations in MATLAB and plotted the

results to visualize the data.

Keywords: Total knee arthroplasty (TKA), Knee joint biomechanics, Mathematical modeling of knee joint stress,
Mathematical equations for knee joint mechanics, MATLAB.

1. INTRODUCTION

Squatting is a fundamental movement in daily activities and athletic performance, but it places significant loads
on the knee joint. When performed incorrectly, it can contribute to conditions such as osteoarthritis and
ligament injuries. Understanding the biomechanical behavior of the knee during squatting is essential for injury
prevention, rehabilitation, and implant design. This study develops a MATLAB-based model to simulate knee
joint stresses during squatting, offering insights into joint mechanics under both static and dynamic conditions.
Computational modeling techniques such as forward dynamics and finite element analysis (FEA) are widely used
to study knee biomechanics. Forward dynamics approaches using MATLAB/Simulink simulate muscle forces
and joint motion during gait, providing insights into muscle activation patterns and joint stability(Lim et al.,
2003). FEA, on the other hand, is used to investigate tibiofemoral and patellofemoral contact mechanics during
deep squatting, revealing stress distribution patterns and potential risks associated with high-flexion
postures(Kothurkar et al., 2023b).

Accurate modeling is also vital for distinguishing between healthy and osteoarthritic knee joints. Using data from
the Osteoarthritis Initiative, transferable modeling methods simulate and compare joint kinematics, contact
mechanics, and tissue deformation patterns, enhancing the predictive accuracy of osteoarthritis progression(Paz
et al., 2023). Experimental studies measuring knee flexion angles during squat exercises provide real-world data
for validating computational models, improving rehabilitation protocols and injury prevention strategies(Tarnita
et al., 2016).

Finally, computer-aided design (CAD) and simulation tools play a key role in knee implant development. By
applying FEA and CAD techniques, researchers can model and optimize implant designs, predicting their
behavior and enhancing performance(Jitesh Madhavi et al., 2017) (Madhavi, 2024) Additionally, musculoskeletal
finite element models of animal knee joints, such as rat models, offer valuable insights into joint biomechanics
and osteoarthritis progression, supporting preclinical research and therapeutic interventions (Orozco et al.,

2022).
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2. METHODOLOGY

2.1 Mathematical Modeling
A two-dimensional inverse dynamics model was developed to estimate the forces and moments acting on the
knee joint. The governing equations for joint motion and forces were derived using Newton-Euler principles.
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Fig. 1. Kinematics of Two-link mechanism representing knee joint.
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Kinematic Analysis:

e Position Equations:

x=lcos@ y = Isin@

e Velocity Equations:
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e Acceleration Equations:
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Kinetic and Potential Energy:

¢ Potential Energy:
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Using the Lagrangian (a=Ek—Ep\alpha = E_k - E_pa=Ek—Ep), the equations of motion were derived for both
links (representing the thigh and shank) to describe knee joint dynamics.
Then the equation of motion for 0;
a (6o<) de _
dt 98,7 dé, _ ,
mal’0, muli’0,  mabg cos 81 cos 82 mulyg sin 01 sin 62 = malil, 0% sin 02
3 + 3 + > - > -mzlilz cos 6,0, T =

0

2.2 Data Processing in MATLAB

MATLAB scripts were developed for:

1. Pre-processing: Setting up model parameters and initial conditions.

2. Solving Governing Equations: Using symbolic computations for dynamic equations.

3. Post-processing: Analyzing stress contours and stress distributions under varying squatting depths and angles.
% Parameters (example values, replace with actual values if provided)

m1 = 10; % mass of link 1 (kg)
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m2 = 8; % mass of link 2 (kg)
11 = 1; % length of link 1 (m)
12 = 0.8; % length of link 2 (m)

g = 9.81; % gravitational acceleration (m/s"2)

% Time vector

t = linspace(0, 10, 100); % time from O to 10 seconds

% Define symbolic variables for angles and their

derivatives syms thetal(t) theta2(t)

thetal_dot = diff(thetal, t); % first derivative of thetal
thetal_dot = diff(theta2, t); % first derivative of theta2
thetal_ddot = diff(thetal_dot, t); % second derivative of thetal
thetal ddot = diff(thetaZ dot, t); % second derivative of theta2

% Kinematics for link 1

x1 = (11/2) * cos(thetal);

yl =(11/2) * sin(thetal);

vx1 = diff(x1, t);

vyl = diff(yl, t);

% Kinematics for link 2

x2 = 11 * cos(thetal) + (12/2) * cos(thetal + theta2);
y2 = 11 * sin(thetal) + (12/2) * sin(thetal + theta2);
vx2 = diff(x2, t);

vy2 = diff(y2, t);

% Potential Energy
Ep=ml*g*yl+m2*g*y2

% Kinetic Energy for Link 1
I1=(ml*11A2)/ 12;
Ekl=(1/2) * m1 * (wx1A2 + vylA2) + (1/2) * 11 * thetal_dotA2;

% Kinetic Energy for Link 2

12=(m2 * 12A2) / 12;

Ek2 =(1/2) * m2 * (wx2A2 + vw2A2) + (1/2) * 12 * theta2_dotA2;
% Total Kinetic Energy

Ek = Ek1 + Ek2;

% Lagrangian

L =Ek-Ep;

% Derive equations of motion using Lagrange's equations
eql = diff(diff(L, diff(thetal, t)), t) - diff(L, thetal);

eq2 = diff(diff(L, diff(theta2, t)), t) - diff(L, theta2);

% Simplify equations of motion

eql_simplified = simplify(eq1);

eq?2_simplified = simplify(eq2);

% Display results

disp('Equation of motion for thetal:);

pretty(eql_simplified)

disp('Equation of motion for theta2:");
pretty(eq2_simplified)
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Equation of motion for thetal:
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3. RESULTS AND DISCUSSION

e Stress Distribution: The peak stress was observed at the patellofemoral contact region during deep squatting.
e Ligament Tension: Increased significantly as squat depth progressed beyond 90°.

e Asymmetrical Stress: Noted in the tibiofemoral joint due to force imbalances.

e Model Validation: Compared with experimental data, showing strong agreement within an acceptable error
margin.
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The results of MATLAB is extracted and plotted as shown in below Fig.2.
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Fig. 2. Results plotted from Matlab.
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Table 1: Stress Analysis Results

Squat Angle (°) Forces (N) Critical Contact Area (mm2)  Induced Stress (MPa)
0 (Standing) 942.4 40 23.56
30 1438.8 40 35.97
60 1639 40 68.54
90 (Full Squat) 1945 40 95.19

4. CONCLUSION

This study successfully implemented a MATLAB-based mathematical model and FEA to evaluate knee joint stress
during squatting. The findings offer insights into optimizing squat techniques for injury prevention and
rehabilitation. Future work will focus on incorporating muscle forces and dynamic loading conditions for more
comprehensive biomechanical analysis.
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