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Abstract 
This study develops a robust oil price forecasting framework by integrating wavelet transformation, multicollinearity 
diagnostics, and ARIMAX modeling enhanced with Monte Carlo simulation. The dataset includes key economic indicators 
such as OPEC production, global demand and supply, GDP figures, and oil transportation costs. Preliminary analysis revealed 
strong multicollinearity among explanatory variables, which was successfully mitigated using Haar wavelet decomposition. 
Stationarity of the oil price series was confirmed through the Augmented Dickey-Fuller (ADF) test after first differencing. 
Several ARIMAX model configurations were tested, with ARIMA(2,1,1) emerging as the optimal model based on AIC, 
RMSE, and MAPE criteria. Monte Carlo simulations, conducted over 1,000 iterations, demonstrated the model's forecasting 
stability and predictive reliability. Forecasts for the 2025–2026 period suggest a relatively stable oil market, with price 
projections ranging between $76.96 and $79.57 per barrel. The study's methodological framework offers a valuable approach 
for short-term energy market forecasting and supports informed decision-making by policymakers and stakeholders in the oil 
industry. 
 
Key words: ARIMAX modeling, OPEC oil forecasting, multivariate wavelet techniques, time series analysis, wavelet 
transformation, forecasting accuracy, model order optimization, multicollinearity testing and time series simulation. 
 
1.1 INTRODUCTION 
Forecasting oil prices remains a pivotal concern for both economic stability and strategic planning, especially for 
oil-dependent economies and organizations like the Organization of the Petroleum Exporting Countries (OPEC). 
Given the volatility in oil prices, driven by factors such as supply-demand imbalances, geopolitical events, and 
economic trends, precise and adaptive forecasting models are crucial. Traditional models, like ARIMA, focus 
solely on past price patterns and often fail to account for external influencing factors that impact oil prices. To 
address these complexities, the ARIMAX (AutoRegressive Integrated Moving Average with Exogenous variables) 
model offers an advantage by incorporating external economic and production variables. In this study, we 
introduce key variables that influence oil prices, such as OPEC production levels, global oil demand and supply, 
transportation costs, OPEC and non-OPEC GDP, and world population. By capturing these economic 
indicators, we aim to enhance the ARIMAX model's accuracy and adaptability in predicting OPEC oil prices. 
Further refinement of the ARIMAX model is achieved by employing multivariate wavelet analysis, a technique 
that decomposes time series data into multiple frequency components. Wavelet transformations enable the 
capture of complex, non-linear patterns and interactions between the influencing variables. This approach can 
reveal underlying trends, filter out noise, and address the non-stationary nature of oil price data. Additionally, 
multicollinearity testing is conducted to ensure the robustness of the exogenous variables, and simulations 
validate the model’s reliability across different scenarios. This study aims to establish an improved ARIMAX 
model that leverages multivariate wavelet analysis to better forecast OPEC oil prices, offering a comprehensive 
and resilient framework for understanding the global oil market’s behavior. 
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1.2 Objectives 
1. Optimize ARIMAX Model Orders: To improve forecasting accuracy for OPEC oil prices by refining ARIMAX 
models with a selection of relevant economic and production variables. 
2. Incorporate Multivariate Wavelet Analysis: To utilize wavelet analysis for decomposing oil price data and 
associated economic indicators (OPEC production, global demand and supply, transportation costs, GDP for 
OPEC and non-OPEC countries, and population) to capture both linear and non-linear patterns that may 
enhance predictive performance. 
3. Address Multicollinearity: To test for and mitigate multicollinearity among the exogenous variables, ensuring 
robust and reliable forecasting results from the ARIMAX model. 
4. Simulate and Validate Forecasts: To perform simulations for model validation, assessing the ARIMAX model's 
performance under various economic conditions and external influences to enhance predictive robustness. 
5. Conduct Model Diagnostics: To perform residual and accuracy analyses, using metrics such as RMSE, AIC, 
and BIC, to evaluate the performance and suitability of the optimized ARIMAX model for forecasting oil prices. 
6. Develop a Comprehensive Methodology: To provide a methodological framework combining ARIMAX 
modeling, multivariate wavelet analysis, simulation, and diagnostic testing for forecasting applications in energy 
and commodity markets. 
 
1.3 Problem of the Study 
The primary challenge addressed in this study is the accurate forecasting of OPEC oil prices, which are affected 
by a complex mix of production levels, demand, supply, transportation costs, GDP, and population trends. 
Traditional ARIMA models are limited in their capacity to incorporate these external factors, leading to less 
reliable predictions. Moreover, the potential multicollinearity among these variables can compromise the stability 
and accuracy of forecasts. This study seeks to enhance the ARIMAX model by integrating multivariate wavelet 
analysis, enabling the capture of intricate patterns within the economic indicators and oil price data. Through 
this approach, we aim to improve the model's responsiveness to both short-term fluctuations and long-term 
trends, thereby providing a more robust and adaptable forecasting tool for OPEC oil prices. The research 
addresses the challenges of multicollinearity and model validation, contributing to the development of a more 
comprehensive approach for forecasting in volatile and complex economic environments. 
 
2. LITERATURE REVIEW 
 
2.1 Oil Price Forecasting and ARIMAX Models 
Oil price forecasting plays a critical role in economic policy and planning. The ARIMA model, proposed by Box 
et al. (1970), has been extensively used for time series forecasting due to its capability to capture temporal patterns. 
However, oil prices are influenced by various exogenous factors, making ARIMA insufficient. ARIMAX models, 
which incorporate external variables, provide a more dynamic and accurate forecasting approach. Studies by 
Alquist & Kilian (2010) and Baumeister & Kilian (2014) found that including global economic indicators and 
geopolitical events significantly enhances the accuracy of oil price predictions. Narayan & Narayan (2007) 
demonstrated that modeling oil price volatility with ARIMAX models outperforms univariate models. Ali et al. 
(2024) also highlighted the impact of multifractal dynamics in financial markets, underlining the importance of 
incorporating multiple external variables for more precise forecasting.evaluate the effectiveness of three 
forecasting models—ARIMA, TARMA and ENNReg—in predicting Brent crude oil pricesati, Mati, S., Ismael, G. 
Y., Usman, A. G., Samour, A., Aliyu, N., Alsakarneh, R. A. I., & Abba, S. I. (2025). 
 
2.2 Wavelet Analysis in Time Series Forecasting 
Wavelet analysis, introduced by Daubechies (1992), provides a robust method for decomposing time series data 
into different frequency components. This technique allows for the simultaneous analysis of short- and long-term 
patterns, aiding in the denoising of data and improving model accuracy. Nourani et al. (2011) and Paul & Garai 
(2022) used wavelet analysis to enhance the prediction of complex time series, while Zhao et al. (2023) applied 
wavelet techniques to study the linkages between energy prices and stocks. Multivariate wavelet analysis, which 
decomposes both the main time series and its exogenous variables, has been shown to capture interactions at 
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various scales (Fu et al., 2022; Mirzadeh et al., 2022). Integrating wavelet analysis into ARIMAX models is a 
promising yet underexplored area, particularly in the context of oil price forecasting. 
 
2.3 Incorporating External Factors in Oil Price Forecasting  
Oil prices are highly sensitive to global events and economic conditions. Mati et al. (2023) examined the influence 
of the Russo-Ukrainian war on Brent crude oil prices using ARIMA, TARMA, and ENNReg models. Their study 
underscored the importance of including complex external influences in forecasting models. ARIMAX models, 
which can integrate various exogenous variables, are well-suited for this task, as highlighted by Ali, Albarwari, & 
Haydier (2023). However, incorporating multiple variables can lead to multicollinearity, which can distort the 
reliability of the model’s forecasts (Gujarati, 2009). Thus, effective multicollinearity testing, such as using the 
Variance Inflation Factor (VIF), is necessary for maintaining model robustness (Kutner et al., 2005).This initiative 
thrives on collaborative efforts between different parties like the organization employees, religious leaders, the 
police force and the community at large to facilitate knowledge sharing and transfer between these parties. In 
addition, solving problems of genderbased violence also require much social capital as it entails relationship 
building, a solid networking system, instilling feelings of trust and safety to ensure the flow of communication 
Ismael, G. Y. (2022).  
 
2.4 Simulation for Model Validation 
Simulating synthetic datasets that mimic real-world conditions is an essential method for validating forecasting 
models (Granger, 2014). In the context of ARIMAX modeling, simulations help explore the impact of exogenous 
variables and assess the model's sensitivity to various factors. Wang et al. (2019) applied improved ARIMA 
methods to reservoir water quality prediction, using simulations to validate model performance. Although 
simulation techniques are used in time series forecasting, their integration with multivariate wavelet-transformed 
data in ARIMAX models for oil price forecasting is less explored. 
 
2.5 Multicollinearity in ARIMAX Models 
Multicollinearity, or the presence of high correlations among explanatory variables, can distort model reliability. 
For ARIMAX models incorporating multiple exogenous variables, addressing multicollinearity is crucial. Gujarati 
(2009) emphasizes that the application of tools like the Variance Inflation Factor (VIF) is essential in detecting 
and managing multicollinearity in multivariate models. This research gap—dealing with multicollinearity in 
multivariate wavelet-transformed ARIMAX models—offers a compelling area for this study. 
 
2.6 Research Gap 
Despite the extensive research on ARIMAX models, wavelet analysis, and multicollinearity testing, their 
combined application in the context of OPEC oil price forecasting has been limited. This study aims to enhance 
ARIMAX model orders using multivariate wavelet analysis, incorporate simulation for model validation, and 
address multicollinearity to improve forecasting accuracy. 
 
3. METHODOLOGY 
This section outlines the process for building an optimized ARIMAX model enhanced by multivariate wavelet 
analysis to forecast OPEC oil prices. It includes steps in data collection, stationarity testing, wavelet 
decomposition, model building, simulation, and diagnostics to ensure the robustness and accuracy of the 
forecasts. 
 
3.1 Data Collection and Preparation 
The This study utilizes a comprehensive quarterly dataset covering the period from Q1 2003 to Q2 2025. The 
data was compiled from multiple authoritative sources, including the OPEC Annual Statistical Bulletin, World 
Bank GDP Data, and the UN World Population Prospects. The structured time series includes one dependent 
variable and several independent variables believed to have a significant influence on global oil prices. 
• Dependent Variable: 
➢ Price (Y): Measured in USD per barrel, sourced from OPEC statistics. 
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• Independent Variables: 
➢ OPEC Production (x1): Crude oil output from OPEC member countries. 
➢ Total World Demand (x2): Global demand for crude oil, reported quarterly. 
➢ Total World Supply (x3): Global production of crude oil from all sources. 
➢ OPEC Oil Transportation Costs: Reflects estimated logistics and shipping expenses specific to OPEC 
exports. 
➢ OPEC GDP: Combined gross domestic product of OPEC countries. 
➢ Non-OPEC GDP: Aggregated GDP of non-OPEC countries, obtained from the World Bank. 
➢ Population (billions): Global population estimates sourced from the United Nations' World Population 
Prospects. 
 
The dataset captures both seasonal and cyclical variations in the global oil market by using a quarterly frequency. 
To ensure data continuity, linear interpolation was applied to impute missing values. Each numeric variable was 
then standardized using Z-score normalization, which helped remove scale differences and improved model 
convergence, especially when fitting ARIMAX models with multiple explanatory variables. This cleaned and 
standardized dataset serves as the foundation for the wavelet transformation and time series forecasting 
techniques presented in the following chapters. 
 
3.2 Testing for Stationarity 
To test for stationarity in the time series data, we apply the Augmented Dickey-Fuller (ADF) test, which assesses 
whether a unit root is present in the data, indicating non-stationarity. The general form of the ADF test is: 

∆𝑌𝑡 = 𝛼 + 𝛽𝑡 + 𝛾𝑌𝑡−1 + 𝛿1∆𝑌𝑡−1 + 𝛿2∆𝑌𝑡−2 + ⋯ + 𝛿𝑝∆𝑌𝑡−𝑝 + 𝜖𝑡 
 
Where: 
• 𝑌𝑡 is the variable being tested for stationarity (e.g., oil price, production). 
• ∆𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−1 represents the first difference of 𝑌𝑡 
• 𝛼 is a constant. 
• 𝛽𝑡 is a time trend. 
• 𝛾 is the coefficient of 𝑌𝑡−1, which is critical for determining stationarity. If 𝛾 is significantly different from 

zero, the series is considered stationary. 
• 𝛿  represents the coefficients for the lagged differences. 
• 𝜖𝑡  is the error term. 
 
The null hypothesis  𝐻0: 𝛾 = 0 implies a unit root, suggesting that the series is non-stationary. If the test statistic 
is less than the critical value, we reject 𝐻0, indicating stationarity. 
 
3.3 Multicollinearity Testing 
To assess multicollinearity among the independent variables, we calculate the Variance Inflation Factor (VIF) 
for each variable. The VIF for a variable 𝑋𝑖  is calculated as: 

𝑉𝐼𝐹 =
1

1 − 𝑅𝑖
2 

 
Where: 
• 𝑅𝑖

2 is the coefficient of determination obtained by regressing 𝑋𝑖   on all other independent variables. 
A VIF value greater than 10 typically indicates high multicollinearity. If multicollinearity is detected, we use 
methods such as removing variables or stepwise regression to mitigate its impact. 
  
3.4 Multivariate Wavelet Analysis 
For wavelet transformation, the time series 𝑋(𝑡) is decomposed into different scales using a wavelet function 
∅(𝑡). The wavelet transform of 𝑋(𝑡) can be represented as: 



International Journal of Environmental Sciences   
ISSN: 2229-7359 
Vol. 11 No. 15s, 2025  
https://www.theaspd.com/ijes.php  
 

2317 

𝑊(𝑠, 𝜏) = ∫ 𝑋(𝑡)
∞

−∞

∅∗(
𝑡 − 𝜏

𝑠
)𝑑𝑡 

 
Where: 
• 𝑊(𝑠, 𝜏) the wavelet coefficients at scale sss and position 𝜏. 
• ∅(

𝑡−𝜏

𝑠
) is the scaled and translated wavelet function. 

• 𝑠 is the scaling parameter that adjusts the width of the wavelet, capturing different frequencies. 
• 𝜏 is the translation parameter that shifts the wavelet along the time axis. 
 
The decomposition is applied to both the dependent and independent variables to capture patterns across various 
frequencies, allowing the ARIMAX model to incorporate short-term and long-term trends. 
 
3.5 ARIMAX Model Building 
The general ARIMAX model incorporates autoregressive (AR), differencing (I), moving average (MA), and 
exogenous (X) components. The model equation is expressed as: 

𝑌𝑡 = 𝑐 + ∑ ∅𝑖𝑌𝑡−𝑖 +

𝑝

𝑖=1

∑ 𝜃𝑗𝜖𝑡−𝑗 +

𝑞

𝑗=1

∑ 𝛽𝑘𝑋𝑡,𝑘 +

𝑚

𝑘=1

𝜖𝑡 

Where: 
• 𝑌𝑡 is the dependent variable (oil price) at time ttt. 
• 𝑐  is a constant term. 
• ∅𝑖 are the coefficients of the autoregressive terms (AR) with lag 𝑖. 
• 𝜃𝑗 are the coefficients of the moving average terms (MA) with lag 𝑗. 
• 𝛽𝑘 represents the coefficients of the exogenous variables 𝑋𝑡,𝑘, such as production and demand. 
• 𝜖𝑡 is the error term at time 𝑡. 
 
The optimal model configuration is selected by minimizing criteria like the Akaike Information Criterion (AIC). 
 
3.6 Simulation 
3.6.1 Simulation Process 
For validation, we conduct Monte Carlo simulations. The process involves generating synthetic time series data 
from the fitted ARIMAX model and comparing its forecasting accuracy. This is mathematically represented as: 

𝑌𝑡
𝑠𝑖𝑚 = 𝑓(∅,̂ 𝜃, 𝛽̂, 𝜖𝑡

𝑠𝑖𝑚) 
 
Where: 
• 𝑌𝑡

𝑠𝑖𝑚 is the simulated value at time ttt. 
• ∅,̂ 𝜃 𝑎𝑛𝑑 𝛽̂ are the estimated parameters from the ARIMAX model. 
• 𝜖𝑡

𝑠𝑖𝑚 represents randomly generated errors. 
 
The process involved the following steps: 
a. Generating Simulated Data 
• Using the fitted ARIMAX model, synthetic time series of oil prices were generated. 
• This involved running 1,000 iterations, where each iteration produced a unique trajectory of oil prices based 
on: 
1. Model Coefficients: Parameters estimated during the ARIMAX modeling process, including the effects of 

autoregressive (AR), moving average (MA), and exogenous (X) variables. 
2. Residual Errors: Randomly sampled residuals from the fitted model, which reflect the stochastic (random) 

component of the oil price movements. 
b. Aggregating Results 
• For each time point (e.g., quarterly), the simulation yielded 1,000 predicted values. 
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• The mean of these values was calculated for each time point, providing a single, averaged forecast for that 
period. 

• Additionally, variability measures, such as the standard deviation and 95% confidence intervals, were 
computed to quantify the uncertainty surrounding the predictions. 

 
4.6.2 Comparison with Historical Data 
To validate the simulation results, the averaged forecasts were compared with historical oil price data using the 
following approaches: 
a. Overlaying Historical and Simulated Data 
• The averaged forecasts were plotted alongside the actual historical oil prices. 
• This visual comparison allowed for an assessment of how well the ARIMAX model, augmented by the 

simulation process, captured historical trends and fluctuations. 
 

b. Statistical Measures for Accuracy 
• Forecast accuracy was evaluated using quantitative metrics: 
o Mean Absolute Percentage Error (MAPE): Measures the percentage error of the forecasts relative to actual 

values. 
o Root Mean Square Error (RMSE): Highlights the magnitude of forecast errors, with greater weight given to 

larger deviations. 
o Mean Absolute Error (MAE): Provides a linear average of the absolute errors. 
• These metrics offered a numerical understanding of how closely the simulations aligned with historical data. 

 
c. Validation Through Backtesting 
• Historical data were divided into: 
o Training Set: Used to fit the ARIMAX model. 
o Testing Set: Used to evaluate the model’s out-of-sample forecasting performance. 
• The averaged simulated values for the testing period were compared with the actual historical values to ensure 

that the model generalized well beyond the training data. 
 
4.6.3 Capturing Trends and Variability 
a. Trends Captured 
• The ARIMAX model, enhanced by multivariate wavelet analysis, successfully replicated key trends observed 

in historical oil prices, including: 
❖ Long-term directional movements (e.g., upward or downward trends). 
❖ Short-term fluctuations driven by external economic and geopolitical factors. 
b. Accounting for Variability 
• By generating 1,000 simulations, the model captured the natural variability and stochastic nature of oil prices. 
• Confidence intervals around the averaged forecasts highlighted the range of potential outcomes, reflecting 

the inherent uncertainty in forecasting. 
 
4.6.4. Role of Simulation in the Study 
The simulation process played a critical role in: 
1. Validating the Model: Confirming that the ARIMAX model reliably reproduced historical trends and 
predicted plausible future outcomes. 
2. Enhancing Forecast Robustness: By averaging multiple simulations, the influence of random noise was 
minimized, yielding stable and consistent forecasts. 
3. Quantifying Uncertainty: Providing confidence intervals around predictions offered stakeholders a 
probabilistic understanding of potential future scenarios. 
 
3.7 Model Diagnostics 
Diagnostic testing includes: 
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• Residual Analysis: The Ljung-Box test checks for autocorrelation in the residuals. The null hypothesis of no 
autocorrelation is tested using: 

𝑄 = 𝑛(𝑛 + 2) ∑
𝜌̂𝑘

2

𝑛 − 𝑘

𝑚

𝑘=1

 

 
Where 𝑛 is the sample size, 𝜌̂𝑘 is the autocorrelation at lag 𝑘, and 𝑄 is the test statistic. 
• Accuracy Metrics: Forecast accuracy is evaluated using Root Mean Square Error (RMSE): 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑌𝑡 − 𝑌̂𝑡)2

𝑛

𝑡=1

 

And Mean Absolute Percentage Error (MAPE): 

𝑀𝐴𝑃𝐸 = √
100

𝑛
∑ |

𝑌𝑡 − 𝑌̂𝑡

𝑌𝑡
|

𝑛

𝑡=1

 

 
• Goodness-of-Fit: The Akaike Information Criterion (AIC) for model comparison is calculated as: 

𝐴𝐼𝐶 = 2𝑘 − 2ln (𝐿̂) 
 
Where 𝑘 is the number of estimated parameters, and 𝐿̂ is the maximum likelihood of the model. 
These equations support the rigorous statistical testing and model selection to ensure a robust ARIMAX model 
with wavelet-enhanced forecasting accuracy. 
 
Chapter 4: Results and Analysis 4.1 Introduction 
This chapter presents the findings from the ARIMAX modeling using wavelet-transformed variables to forecast 
oil prices. The analysis includes descriptive statistics, stationarity testing, multicollinearity diagnostics before and 
after wavelet filtering, model comparison, Monte Carlo simulations, and forecasts for future oil prices. 
 
4.2 Descriptive Statistics 
Descriptive statistics offer a preliminary overview of the data. Table 4.1 summarizes the key variables, highlighting 
central tendencies and dispersion in oil price and its predictors. 
 

Table 4.1: Descriptive Statistics 
Variable Mean Min Max 
Oil Price 70.40 25.88 117.63 
OPEC Production 29,523,500 23,858,000 33,135,000 
World Demand 91,448,889 76,400,000 105,000,000 
World Supply 91,619,222 78,100,000 103,200,000 
Transport Costs 50,278 20,000 400,000 
OPEC GDP 0.8018 0.325 1.1425 
Non-OPEC GDP 18.54 8.65 27.62 
Population 7.099 6.2 8.02 

 
4.3 Stationarity Testing 
The Augmented Dickey-Fuller (ADF) test assesses the stationarity of the time series. Non-stationary data require 
differencing for ARIMA modeling. Table 4.2 presents the results. 
 

Table 4.2: ADF Test Results 
Test Dickey-Fuller Lag Order P-Value Stationary 
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ADF Log -2.8905 4 0.2095 No 
ADF Diff(Log) -4.3643 4 < 0.01 Yes 

 
4.4 Multicollinearity Analysis 
4.4.1 Before Wavelet Filtering 
Variance Inflation Factor (VIF) was calculated to assess multicollinearity. Several variables showed high VIF 
values, indicating strong collinearity. 

Table 4.3: VIF Values Before Wavelet Filtering 
Variable VIF 
OPEC Production 3.58 
World Demand 24.75 
World Supply 45.86 
Transport Cost 1.13 
OPEC GDP 20.12 
Non-OPEC GDP 85.26 
Population 73.29 

 
Figure 4.1: Correlation Matrix Before Wavelet 

 
 
4.4.2 After Wavelet Filtering 
After wavelet decomposition, VIF values decreased significantly, confirming reduced multicollinearity. 
 

Table 4.4: VIF Values After Wavelet Filtering 
Variable VIF 
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OPEC Production (Filtered) 2.74 
World Demand (Filtered) 4.63 
World Supply (Filtered) 7.22 
Transport Cost (Filtered) 1.04 
OPEC GDP (Filtered) 1.08 
Population (Filtered) 1.10 

4.5 ARIMAX Model Estimation 
Two ARIMAX models were compared based on AIC, RMSE, and MAPE. ARIMA(2,1,1) provided better 
performance and was selected as the final model. 
 

Table 4.5: ARIMAX Model Summary 
Model AIC RMSE MAPE (%) MAE 
ARIMA(0,1,1) -39.16 0.1224 1.98 0.0829 
ARIMA(2,1,1) -39.21 0.1166 1.86 0.0783 

 
4.6 Monte Carlo Simulation 
Monte Carlo simulation was employed to account for uncertainty in oil price forecasting by generating 1,000 
future simulation paths using the fitted ARIMAX models. This stochastic approach incorporates randomness in 
residuals and allows exploration of a probabilistic distribution of possible outcomes. As detailed in Section 3.6, 
the simulations provide a more comprehensive perspective compared to single deterministic forecasts. Figure 4.3 
illustrates the average forecasted paths from both ARIMA(0,1,1) and ARIMA(2,1,1). The forecast intervals 
exhibit low dispersion, indicating a high degree of model stability and consistent results across simulations. 
The primary advantage of Monte Carlo simulation is its ability to provide a probabilistic range of forecasts rather 
than a single deterministic prediction. This is particularly useful in volatile markets like oil, where numerous 
economic and geopolitical factors introduce uncertainty. 
Figure 4.3 visualizes the average trajectory of the simulations for both ARIMA(0,1,1) and ARIMA(2,1,1) models.  
 
The results indicate that: 
• Both models produce highly consistent forecasts with minimal divergence. 
• The ARIMA(2,1,1) model shows slightly higher forecasted prices in most future quarters, aligning with its lower 

AIC and error metrics. 
• The spread of the simulation outcomes is relatively narrow, suggesting a stable forecasting model with low 

variance in prediction intervals. 
 
Overall, the Monte Carlo approach confirms that the ARIMA(2,1,1) model not only fits the historical data well 
but also maintains predictive stability under repeated sampling. This strengthens confidence in its use for policy 
and investment decisions related to oil price trends. 
 

Figure 4.3: Monte Carlo Simulation Results 
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4.7 Forecasting 
Forecasted oil prices for the period 2025–2026 were generated using both ARIMA(0,1,1) and ARIMA(2,1,1) 
models, based on wavelet-transformed and scaled explanatory variables. These forecasts were produced using 
Monte Carlo simulation with 1,000 iterations to ensure robustness against uncertainty. The predicted prices, as 
presented in Table 4.6, show that both models provide highly consistent outputs. However, ARIMA(2,1,1) 
generally produces slightly higher values, reflecting its stronger sensitivity to underlying market trends. These 
results suggest a moderately stable pricing environment, with fluctuations remaining within a tight and 
manageable range for the forecasted period. 

 
Table 4.6: Forecasted Oil Prices 

Quarter ARIMA(0,1,1) ARIMA(2,1,1) 
2025 Q1 77.43 77.43 
2025 Q2 77.20 79.57 
2025 Q3 76.96 78.70 
2025 Q4 77.20 77.87 
2026 Q1 77.59 78.06 
2026 Q2 77.88 78.71 
2026 Q3 77.77 79.09 
2026 Q4 77.51 79.03 

 
4.8 CONCLUSION 
This chapter demonstrated that the application of wavelet decomposition significantly improved data quality by 
eliminating multicollinearity and noise, resulting in a more robust ARIMAX modeling framework. Model 
diagnostics confirmed that ARIMA(2,1,1) offered the best performance across key metrics including AIC, RMSE, 
and MAPE. Furthermore, Monte Carlo simulation validated the consistency and reliability of the forecasts across 
1,000 future replications. The projected oil prices suggest relative stability with minor upward trends. These 
findings confirm the practicality of integrating wavelet transformation, ARIMAX modeling, and simulation 
techniques to support strategic planning and decision-making in oil market forecasting. 
 
4.9 DISCUSSION 
The results presented in this chapter underscore the importance of data transformation and model selection in 
time series forecasting, particularly in volatile markets like oil. The successful application of wavelet 
decomposition significantly reduced multicollinearity, a common issue in economic time series data, thus 
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improving the reliability of regression coefficients in the ARIMAX model. The comparison between 
ARIMA(0,1,1) and ARIMA(2,1,1) models revealed that even small improvements in model specification—such 
as incorporating additional autoregressive terms—can enhance forecasting performance. The Monte Carlo 
simulation technique provided a comprehensive view of forecast uncertainty and demonstrated that the models 
produce stable and consistent outputs. The predicted stability in oil prices reflects current global economic 
conditions and suggests that the influencing variables used—such as production, demand, GDP, and transport 
costs—were appropriate and relevant. These findings support the practical value of combining wavelet 
transformation with ARIMAX modeling and emphasize the need for careful diagnostic testing and model 
validation in time series analysis. 
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Appendices (Optional) 

# 0. Load Required Libraries 
# ------------------------------- 
packages <- c("forecast", "wavelets", "car", "tseries", "Metrics", "dplyr", "corrplot") 
lapply(packages, function(pkg) { 
  if (!require(pkg, character.only = TRUE)) install.packages(pkg, dependencies = TRUE) 
  library(pkg, character.only = TRUE) 
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}) 
 
# ------------------------------- 
# 1. Load and Prepare Data 
# ------------------------------- 
setwd("C:/Users/HC/Desktop/wavelet") 
oil_data <- read.csv("Opec oil.csv") 
colnames(oil_data) <- c("Year_Quarter", "Price_Y", "Opec_Production_x1", "Total_Word_Demand_x2", 
                        "Total_Word_Supply_x3", "OPEC_Oil_Transportation_Costs", "OPEC_GDP", 
                        "Non_OPEC_GDP", "Population_billions") 
cols_to_clean <- colnames(oil_data)[2:9] 
oil_data[cols_to_clean] <- lapply(oil_data[cols_to_clean], function(x) as.numeric(gsub(",", "", x))) 
oil_data <- na.omit(oil_data) 
 
cat("Table 4.1: Descriptive Statistics\\n") 
print(summary(oil_data)) 
 
# ------------------------------- 
# 2. ADF Test 
# ------------------------------- 
cat("Table 4.2: ADF Test Results\\n") 
adf_log <- adf.test(log(oil_data$Price_Y), alternative = "stationary") 
adf_diff <- adf.test(diff(log(oil_data$Price_Y)), alternative = "stationary") 
print(adf_log) 
print(adf_diff) 
 
# ------------------------------- 
# 3. Time Series and Correlation Matrix 
# ------------------------------- 
oil_price <- ts(log(oil_data$Price_Y), frequency = 4) 
opec_production <- ts(oil_data$Opec_Production_x1, frequency = 4) 
world_demand <- ts(oil_data$Total_Word_Demand_x2, frequency = 4) 
world_supply <- ts(oil_data$Total_Word_Supply_x3, frequency = 4) 
transport_cost <- ts(oil_data$OPEC_Oil_Transportation_Costs, frequency = 4) 
opec_gdp <- ts(oil_data$OPEC_GDP, frequency = 4) 
non_opec_gdp <- ts(oil_data$Non_OPEC_GDP, frequency = 4) 
population <- ts(oil_data$Population_billions, frequency = 4) 
 
cor_matrix <- cor(data.frame(opec_production, world_demand, world_supply, transport_cost, 
                             opec_gdp, non_opec_gdp, population), use = "complete.obs") 
cat("Figure 4.1: Correlation Matrix\\n") 
corrplot(cor_matrix, method = "color", type = "upper", tl.cex = 0.8) 
 
# ------------------------------- 
# 4. VIF Before Wavelet Filtering 
# ------------------------------- 
raw_df <- data.frame(opec_production, world_demand, world_supply, transport_cost, 
                     opec_gdp, non_opec_gdp, population) 
cat("Table 4.3: VIF Values Before Wavelet Filtering\\n") 
print(vif(lm(oil_price ~ ., data = raw_df))) 
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# ------------------------------- 
# 4.4.2 After Wavelet Filtering 
# ------------------------------- 
wavelet_vars <- list( 
  opec_production = dwt(opec_production, filter = "haar")@W$W1, 
  world_demand = dwt(world_demand, filter = "haar")@W$W1, 
  world_supply = dwt(world_supply, filter = "haar")@W$W1, 
  transport_cost = dwt(transport_cost, filter = "haar")@W$W1, 
  opec_gdp = dwt(opec_gdp, filter = "haar")@W$W1, 
  non_opec_gdp = dwt(non_opec_gdp, filter = "haar")@W$W1, 
  population = dwt(population, filter = "haar")@W$W1 
) 
min_len <- min(sapply(wavelet_vars, length)) 
wavelet_df <- as.data.frame(lapply(wavelet_vars, function(x) head(x, min_len))) 
oil_price_trunc <- head(oil_price, min_len) 
 
remove_aliased <- function(df, y) { 
  fit <- lm(y ~ ., data = df) 
  valid_vars <- names(coef(fit))[!is.na(coef(fit))] 
  df[, valid_vars[valid_vars != "(Intercept)"), drop = FALSE] 
} 
wavelet_df_clean <- remove_aliased(wavelet_df, oil_price_trunc) 
wavelet_df_scaled <- scale(wavelet_df_clean) 
 
cat("Table 4.4: VIF Values After Wavelet Filtering\\n") 
print(vif(lm(oil_price_trunc ~ ., data = as.data.frame(wavelet_df_scaled)))) 
 
# ------------------------------- 
# 5. Fit ARIMA(0,1,1) and ARIMA(2,1,1) 
# ------------------------------- 
model_011 <- Arima(oil_price_trunc, order = c(0,1,1), xreg = wavelet_df_scaled) 
model_211 <- Arima(oil_price_trunc, order = c(2,1,1), xreg = wavelet_df_scaled) 
 
cat("Table 4.5: ARIMAX Model Summary\\n") 
print(summary(model_011)) 
print(summary(model_211)) 
 
# ------------------------------- 
# 6. Monte Carlo Forecasts 
# ------------------------------- 
future_exog <- matrix(rep(tail(wavelet_df_scaled, 1), 8), ncol = ncol(wavelet_df_scaled), byrow = TRUE) 
colnames(future_exog) <- colnames(wavelet_df_scaled) 
 
set.seed(123) 
sim_log_011 <- replicate(1000, simulate(model_011, nsim = 8, xreg = future_exog)) 
sim_log_211 <- replicate(1000, simulate(model_211, nsim = 8, xreg = future_exog)) 
 
forecast_011 <- exp(apply(sim_log_011, 1, mean)) 
forecast_211 <- exp(apply(sim_log_211, 1, mean)) 
 
last_actual <- tail(oil_data$Price_Y, 1) 
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forecast_011_adj <- forecast_011 * (last_actual / forecast_011[1]) 
forecast_211_adj <- forecast_211 * (last_actual / forecast_211[1]) 
 
forecast_quarters <- paste0(rep(2025:2026, each = 4), " Q", rep(1:4, 2)) 
forecast_table <- data.frame( 
  Quarter = forecast_quarters, 
  ARIMA_011 = round(forecast_011_adj, 2), 
  ARIMA_211 = round(forecast_211_adj, 2) 
) 
 
cat("Table 4.6: Forecasted Oil Prices\\n") 
print(forecast_table) 
 
# ------------------------------- 
# 7. Forecast Plot – Figure 4.3: Monte Carlo Simulation Results 
# ------------------------------- 
plot(forecast_011_adj, type = "l", col = "blue", lwd = 2, 
     ylim = range(c(forecast_011_adj, forecast_211_adj)), 
     main = "Figure 4.3: Monte Carlo Simulation Results", 
     ylab = "Forecasted Oil Price", xlab = "Future Quarters", 
     xaxt = "n") 
axis(1, at = 1:8, labels = forecast_quarters, las = 2, cex.axis = 0.8) 
lines(forecast_211_adj, col = "red", lwd = 2, lty = 2) 
legend("topleft", legend = c("ARIMA(0,1,1)", "ARIMA(2,1,1)"), 
       col = c("blue", "red"), lwd = 2, lty = 1:2) 

 


