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Abstract:  
Banana crops in tropical regions are increasingly threatened by fungal leaf diseases such as Cordana, Sigatoka, and 
Pestalotiopsis. Traditional computer vision approaches for plant pathology often rely on edge-based filtering, which struggles 
under variable illumination and noisy textures. This study presents a revitalized classic approach that leverages multi-scale 
Gabor filtering, CLAHE-enhanced contrast, and adaptive Otsu thresholding to segment symptomatic regions from both 
ground and UAV-captured images. Haralick texture and color moment descriptors are extracted and classified using a 
Random Forest ensemble. Performance was benchmarked against SVM-RBF and MLP baselines under a leaf-exclusive 5-fold 
cross-validation scheme. The proposed method achieved 94.2 % accuracy and a macro F1-score of 0.942, outperforming 
both baselines significantly (p < 0.05). The pipeline maintains interpretability and low latency (0.038 s/tile), making it 
suitable for integration into lightweight agricultural drones and diagnostic tools for smallholder farmers. 
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INTRODUCTION 
Banana (Musa spp.) remains a staple food and cash crop across tropical regions, particularly in Southeast Asia 
and Latin America. In the Philippines, the economic viability of banana cultivation is frequently threatened by 
foliar diseases such as Cordana leaf spot, Black and Yellow Sigatoka, and Pestalotiopsis leaf blight. These fungal 
pathogens cause premature leaf necrosis, reducing photosynthetic capacity and fruit yield. Early detection and 
classification of these diseases are essential for timely intervention and precision agriculture. 
Numerous studies have employed computer vision methods for plant disease detection. While convolutional 
neural networks (CNNs) have become dominant in recent literature, their deployment on low-power edge 
devices remains challenging due to high resource demands and lack of interpretability. Classical image-filtering 
approaches though more interpretable and computationally lightweight are often dismissed due to limited 
segmentation accuracy under complex field conditions. This study aims to bridge this performance gap by 
modernizing the classical pipeline. 
 
This study introduces a hybrid diagnostic framework that retains the ethos of traditional filtering while 
embracing advanced descriptors and ensemble learning. Multi-scale Gabor filters are used to enhance lesion 
visibility, complemented by CLAHE for contrast normalization and adaptive thresholding for segmentation. 
Discriminative features including Haralick texture metrics and statistical color moments are classified using a 
Random Forest ensemble. This study benchmarked its model against SVM-RBF and MLP classifiers and 
validate performance through stratified leaf-exclusive 5-fold cross-validation. Segmentation fidelity is also 
quantified against expert-annotated masks using mIoU and SSIM. The goal is to offer an accessible yet robust 
tool for in-field banana disease monitoring. 
 
MATERIALS AND METHODS 
The following are the sequential stages which were executed to accurately identify the diseased portion of 
the banana leaf. 
I. Image Acquisition 
     High‑resolution (4K, 8‑bit RGB) images of symptomatic and healthy banana leaves were captured: Ground 

level: Nikon D750 DSLR + 60 mm macro lens (300 images). 
     UAV platform: DJI Mavic 3 at 25 m AGL (180 orthomosaic tiles). 
     All sessions were conducted between 09:00 – 11:00 in the morning on clear days in Negros Occidental, 
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Philippines to minimize illumination variance. Images were saved in RAW (NEF/DNG) and converted 
to PNG with colour calibration using an X‑Rite ColourChecker Classic. 

 
I. Pre-Processing 
1. Colour correction: 24-patch colour-chart–based polynomial regression. 
2. Noise suppression: Bilateral filter (kernel 9×9, σₛ = 75, σᵣ = 25) to preserve edges. 
3. Contrast enhancement: CLAHE (clipLimit = 3.0, tileGridSize = 8×8) applied per Lab* L-channel. 
 
II. Lesion Amplification and Segmentation 
Multi-scale 2-D Gabor filters (5 frequencies × 8 orientations) highlight anisotropic streaks and rings typical of 
Cordana, Sigatoka, and Pestalotiopsis. The magnitude response M(x,y) is thresholded with adaptive Otsu to 
generate the binary lesion mask S(x,y), followed by morphological opening–closing (disk r = 3 px) to remove 
speckle and fill gaps. 
 
Segmentation quality is evaluated with mean Intersection-over-Union (mIoU) and Structural Similarity 
Index (SSIM) against expert-annotated ground truth masks (n = 90). 
 
III. Feature Extraction 
For each connected lesion region, the following descriptors are pooled (mean + std): 
• 13 Haralick texture features from the gray-level co-occurrence matrix (GLCM, d = [1,2,3] 
px). 
• RGB and HSV color moments (μ, σ, skewness; 18 features). 
• Normalized lesion ratio (lesion area / total leaf area). 
 
The resulting 46-dimensional feature vector is z-score normalized prior to classification. 
 
IV. Classification and Validation 
Classifier Configuration 
• Random Forest (RF): 100 trees, unlimited depth, Gini impurity criterion, bootstrap sampling enabled, 

max_features="sqrt", and class-balanced weights to offset the 14 % prevalence of Pestalotiopsis lesions. Feature 
importance is logged via mean decrease in Gini for agronomic interpretability. 

• SVM with RBF kernel (SVM-RBF): Hyper-parameters tuned by nested grid-search (C ∈ {1, 10, 100}, γ ∈ 
{10⁻³, 10⁻², 10⁻¹, 1}) using the inner validation split of each outer fold. Probability estimates are calibrated with 
Platt scaling, enabling class-wise ROC curves. 

• Shallow Multilayer Perceptron (MLP): Single hidden layer (64 neurons, ReLU activation), batch_size = 32, 
Adam optimiser (lr = 10⁻³), l2 = 10⁻⁴, and early stopping (patience = 10) based on validation loss. 

 
Hyper‑parameter search is wrapped in nested 3‑fold cross‑validation within each outer fold 
to avoid optimistic bias. 
 
V. Validation Protocol 
A stratified 5-fold cross-validation scheme is employed where leaf exclusivity is strictly enforced: all tiles 
originating from the same physical leaf reside in the same fold to remove spatial correlation. Class proportions 
differ by < 2 % across folds. For each fold we report: 
• Accuracy 
• Macro-Precision, Macro-Recall, Macro-F1 (averaged across the four classes) 
• Class-wise ROC-AUC and macro ROC-AUC using one-vs-rest strategy Scores are averaged across folds and 

reported as mean ± 1 SD 
 
VI. Statistical Analysis 
Paired McNemar’s χ² test (α = 0.05) compares RF to SVM‑RBF and MLP using pooled predictions from all outer 
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folds; p‑values are Bonferroni‑adjusted for the two comparisons. Cohen’s κ quantifies inter‑rater agreement 
between RF predictions and expert ground‑truth labels, and 95 % confidence intervals for primary metrics are 
obtained via 10 000‑sample bootstrap. All analyses are executed in scikit‑learn 1.5 and statsmodels 0.15 
 
RESULTS, INTERPRETATION, AND DISCUSSION 
 

 
Figure 1. results visualization comparing the performance of the three models 

 
Table 1. Cross‑validated classification performance (n = 480 images) 

 
 
The Random Forest significantly outperformed the SVM baseline (McNemar χ² = 5.63, p = 0.018), 
confirming the benefit of ensemble learning on heterogeneous texture‑colour features. The classifier 
confusion matrix (not shown for brevity) indicates that most misclassifications occur between Cordana and 
Sigatoka lesions characterized by similar speckled patterns at early stages. 
 
Segmentation metrics averaged over the test folds were mIoU = 0.87 ± 0.03 and SSIM = 0.92 ± 0.02, 
markedly higher than the edge‑threshold pipeline of Canny + MSE/PSNR (mIoU = 0.65, SSIM = 0.71, based 
on re‑implementation). Visual inspection shows that Gabor responses localize elongated streaks missed by 
pure edge operators, particularly under variable illumination. 
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Computation cost: end‑to‑end inference on a 512×512 tile averages 0.038 s (CUDA‑accelerated), satisfying 
near‑real‑time agronomic monitoring requirements. 
 
SUMMARY AND CONCLUSION 
This study introduced a multi‑scale Gabor + Random Forest framework that materially advances banana‑leaf 
disease diagnostics while honoring the classic image‑filtering paradigm. Compared with prior edge‑based 
operators, the new pipeline achieved a 29 % relative gain in segmentation IoU and a 3 – 6 pp boost in 
classification accuracy, all at sub‑40 ms inference latency. The results underscore the value of coupling richly 
descriptive texture filters with ensemble learning, offering an accessible yet powerful tool for precision 
agriculture. Future work will explore fusing hyperspectral bands and self‑supervised feature learning to further 
improve early‑stage detection. 
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