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Abstract 
Landslides are severe geological phenomena that often result in the loss of human lives, destruction of property, and 
interruption of economic activities. The use of image-based techniques in landslide investigations plays a pivotal role in the 
assessment of vulnerability to landslides and risk. Satellite imagery has been extensively used in practical applications for 
conducting such studies; yet, it requires substantial allocation of labor and time constraints. This paper presents a novel 
approach for the detection and segmentation of landslide zones using satellite pictures. The proposed framework is built on a 
two-phase data-driven methodology that utilizes image analysis techniques. During the first step, the Faster-RCNN 
technique is used to train an object identification model to identify the precise position of landslides within satellite pictures 
on a large scale. The suggested and displayed boundary boxes depict the locations of each landslide. The second stage 
involves the partitioning of the satellite photographs into smaller images determined by the location information that is 
supplied by the bounding boxes. After that, a method called boundary identification is used to determine the border 
parameters of each loess landslide that has been found. This helps to enhance the effectiveness of the segmentation 
procedure. Because additional inception blocks with dilatation were included in the construction of the segmentation U-Net, 
its effectiveness in landslide segmentation has significantly increased as a direct consequence. It is well known that 
separating loess landslides into their parts is a difficult task. This is mostly attributable to the intrinsic qualities of boundary 
information that is ambiguous. The novel framework is tested in comparison to the  conventional U-Net as well as other 
modern benchmark landslide segmentation methods. The results of the computer analysis show that the suggested structure 
achieves a level of accuracy in dividing up loess landslides that is much higher than that achieved by the other benchmarking 
methods that were looked at. 
 
Keywords: Loess landslide, data-driven methodology, Object detection, RCNN technique  Image segmentation, Boundary 
detection, Data fusion. 
 
1. INTRODUCTION 
Landslides are an instance of geohazard that have the potential to produce cascading effects, which may result 
in major destruction of human life as well as natural resources, infrastructures and buildings situated on steep 
terrain. [1]. A typical landslide often encompasses the displacement of a conglomeration of detritus and 
boulders, as well as the collapse of slopes, which may be investigated by factors such as precipitation, fast 
snowmelt, seismic activity, and volcanic emissions [2]. Loess, a silt-based material created by wind-blown dust, 
covers 10% of Earth's territory. Loess-dominated landslides are collectively called loess landslides. Mudstone is 
usually present in loess landslides. Loess landslides are tiny and short-lived, caused by fluidization and melting. 
Most loess plateau landslides are loess or loess bedrock. Loess landslides have a sliding surface within the 
stratum. The sliding surface of the loess bedrock landslide is often located at the boundary between the 
bedrock and loess layers [3]. Loess collapses are always caused by water, comprising irrigation, tectonic 
precipitation, and groundwater dynamics. Hence soil structure and porosity play a vital role in the cause of 
landslides. Despite the great progress made in scientific studies on the identification and segmentation of 
landslides, there is a significant gap in attaining full automation of image-based analysis for landslides. 
Image-based landslide research is vital for both understanding the processes of landslides and decreasing the 
harm they cause. Typical tasks include detecting landslides, classifying them, segmenting them, extracting 
features, and performing geomorphological analysis [4]. Satellite images show the extent of landslides. 
Landslides reveal rock and dirt, altering picture sub-region pixel brightness. Landslide distribution and genetics 
affect picture characteristics [5]. The brightness, strong contrast, and scar-like margins of landslide-induced 
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images are crucial for interpreting them visually and semiautomatic or automated geohazard classification [6]. 
Remote sensing uses satellite image reflectance information (pixel values) to assess the identification of 
changes, land surveillance (urban planning trends), and vegetation study. 
Satellite imagery is voluminous due to its size (depending on spatial resolution) and definition (depending on 
spectral resolution). Sensor features including resolution of space, collection date, the use of georeferencing, 
along with cloud cover are included in satellite picture information. Satellite picture AI pipelines need this 
data to analyze and manage. The process of obtaining satellite imagery via the use of optical sensors is 
illustrated in Figure 1. 

 
Fig.1. Satellite picture acquisition using optical sensor 

 
Approaches based on artificial intelligence, remote sensing, along human-centric detection may be grouped as 
three distinct types of research that have been done in the past on the identification and categorization of 
landslides via the use of satellite pictures. The bulk of the work for human-centric detection is predicated on 
the assessment of specialists based on satellite or other image analysis, with field surveys subsequently serving to 
increase the dependability even more [7-9]. For instance, satellite imagery is used to conduct many case 
studies to detect landslides that were caused by earthquakes. On the other hand, human-centric landslide area 
identification is very labour-intensive and ineffective. 
Remote sensing technology has advanced rapidly, enabling semiautomatic landslide detection and improving 
efficiency. Airborne InSAR or LiDAR data is used for most of the work. In [10], InSAR data was processed 
using continuous scatter interferometry to identify and categorize landslides as flows, falls, or slides. High-
resolution LiDAR data to identify landslides and estimate risk using morphological analysis [11]. A persistent 
homology technique for LiDAR-derived digital topography model landslide detection [12] is employed. All 
three  methods of remote sensing have produced very accurate landslide detection, which assists with both 
localization as well as identification. These findings have shown promise as a tool for  remote monitoring. In 
recent years, deep learning algorithms in artificial intelligence (AI) have proven useful for assessing landslide 
aspects using massive imagery sets. Convolutional neural networks, often known as CNNs, are an innovative 
technique for processing image data and obtaining a wide variety of information from those images. CNNs 
have shown to be useful in a variety of industries, including the energy sector [13-15]. 
 
2. LITERATURE SURVEY 
Landslides, which are among the most extreme threats [16], are initiated by human activities, geology, 
hydrology, and geology. Seismic activity, heightened precipitation, and anthropogenic activities all possess the 
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capacity to trigger catastrophic landslides. An evaluation by Landslides of heightened intensity would manifest 
in conjunction with increasingly severe weather phenomena induced by climate change. Prodigious landslides 
possess the capacity to induce substantial infrastructure destruction and lead to notable loss of life. Prediction 
and management of landslides are thus critical to prevent and mitigate the devastation that can ensue as a 
consequence of this danger. In the absence of reliable precursory data, however, real-time landslide timing 
forecasting is frequently difficult to achieve [17]. 
Being susceptible mapping, which is similar to landslide prediction [18], considers "where" collapses are most 
likely to occur in the future. The term "susceptibility" pertains to the probability that landslides will transpire at 
a given site as a result of specific geological and environmental characteristics [19]. 
Hazard management begins with landslip susceptibility (LSM) mapping. This is because it calculates landslip 
probabilities and determines landslip zones. Additionally, it may provide scientific catastrophe management 
advice. Landslide susceptibility mapping uses environmental factors. Geographical terminology, land use 
vegetation cover (LULC), and rainfall have been linked to landslides in LSM research. Slope stability is affected 
by vegetation cover, which enhances slope materials cohesion and lowers pore water pressures via 
transpiration, as well as slope aspect, which affects rainfall and sunshine accumulation [20]. Landslides are 
distributed by geology, notably rock hardness. Slope failure decreases with rock hardness. Hard rock reduces 
landslides [21]. Several methods may reveal underlying patterns between landslip episodes and environmental 
circumstances, allowing exact susceptibility prediction. LSM has been addressed using several qualitative and 
quantitative methodologies in recent years. Knowledge-based qualitative methods use geomorphologist 
expertise. These methods are being superseded by quantitative ones. Data-driven or physical-based quantitative 
methods exist. 
Considering sedimentary soils and rocks around landslides is important [22]. Data-driven LSM techniques 
have improved thanks to GIS, analytical algorithms, as well as machine learning. Random forests, logistic 
modelling, synthetic neural networks, and the backing vector machines function in LSM. LSM alternatives 
include hybrid models that combine statistics learning and machine learning. 
Landslides harm lives and destroy resources. Natural disasters cost money to reconstruct structures, lose 
property value, disrupt transportation, treat injuries, and destroy timber and fish populations. Landslides 
change water quality and quantity [23]. Landslide detection and  mapping are usually done in field 
investigations as part of a geomorphological study. Identifying past landslides is difficult with this method. AI-
based autonomous landslip detection is crucial to landslip prevention. Many geomorphological features suggest 
landslides. LRSTTC has expert- and field-verified landslides. FORMOSAT-2[24] sells affordable, high-
resolution photographs from Taiwan. FORMOSAT-2 photos assist Taiwanese landslip monitoring. The optical 
satellite FORMOSAT-2 has four multidimensional bands. Panchromatic groupings are 2 meters, and 
multidimensional 8 meters. The images are 8-bit radiometric. Geographic coverage maps accompany each 
photo. Write "ground truth" on the land cover maps. Each image pixel is categorized precisely. Manually 
manipulated photographs show land use. Model land cover includes water, vegetation, farms, and cities. 
The majority of the research in the literature compares machine learning and statistical techniques, whereas 
just a few compare CNN to more conventional methodologies [25]. Filling the void will need research into the 
available options and a quantitative, methodical evaluation of their relative merits. To test models and get 
reliable results, LSM research often uses comparative studies. Due to their fundamentally different approaches 
to data organization, a comparison between CNN and more conventional machine learning methods is crucial. 
It is essential to have an ample supply of training samples when applying deep learning to the job of identifying 
catastrophe areas. However, the conditions under which SAR images are taken vary with time, as the seasons 
do. It may also be difficult to rapidly gather a large number of training cases annotated with the proper class 
labels after a disaster has occurred. The image features of small-proportion photographs are more difficult to 
retain than the visual characteristics of large- proportion pictures due to the thickness of network connections 
and the increase in the area of reception. This makes the model more likely to misjudge or even completely 
miss major landslides than it is to correctly predict tiny avalanches. There is a considerable chance of false 
detection when trying to find landslides in locations with complicated backdrops if the area's spectral 
properties are similar to those of disaster zones. To address this problem, we suggest a tracking anomaly system 
capable of distinguishing out-of-the-ordinary photographs from ordinary ones. 
Deep learning on picture data has been widely investigated in landslide investigations. The contour-based 
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semantically segmented deep learning model detects and segments landslides [26]. Using pre- along with post-
landslide aerial pictures. A deep CNN model dubbed Land CNN to segment landslides better than existing 
benchmark algorithms. From satellite pictures as well as digital elevation model data, attention-boosted CNNs 
to identify landslide areas. In general, deep learning methods have improved pixel-level landslide detection and 
prediction[27,28]. 
In conclusion, the existing methods that are used to identify and categorize landslide zones have shown some 
encouraging signs of improvement but also contain several drawbacks. To begin, the tasks of landslide 
detection and segmentation are carried out independently in the majority of the case studies that are 
included in the published research. When it comes to segmentation jobs in particular, a considerable 
amount of manual work is necessary to find a landslide zone from a huge number of satellite photos using the 
judgment of specialists. Second, almost all of the uses of deep learning techniques on photos of landslides are 
for the aim of detection. For future geohazard mitigation, they lack crucial information such as exact boundary 
data regarding the target area. Furthermore, identifying the ground fact as the region impacted by the collapse 
pixel-by-pixel requires significant time and effort. This indicates that the possibility of employing completely 
automated methods is restricted as a result of the complexity and enormous expense of the procedures 
involved in the data pretreatment process. The primary objective of this study is to design and implement a 
system for the completely autonomous identification and segmentation of loess landslides using satellite 
imagery while simultaneously guaranteeing that it is both effective and accurate. Additionally, it is desired to 
attain pixel-level precision fragmentation of the landslide zone. This will make it possible for us to derive the 
limits of the landslide region for the sake of risk prevention. 
The aforementioned explanation leads to a two-phase based on pictures data-driven paradigm in this research. 
First, the Faster-RCNN system is retrained to identify the landslide area using transfer learning. Second, using 
the detection bounding boxes, a partitioning U-Net incorporating data fusion segments the landslide zone and 
makes pixel-level predictions. Benchmark segmentation methods like U-Net and FC-Dense Net are also 
compared. This study's primary contributions involve the following details. The proposed methodology 
combines detection along with segmentation algorithms in a unified framework to autonomously identify and 
delineate the landslide zone. Furthermore, this strategy represents a novel use  of  deep learning techniques for 
achieving more accurate segmentation of the loess landslide area. The work at hand presents increased 
technological complexity because of the limited variation in images between the area affected by landslides and 
the other portions of the picture. Additionally, the anticipated limits of the landslide zone are extracted to 
identify the high-risk area, and to mitigate potential geohazards. 
 
3. Proposed Methodology 
Using a two-phase framework, the primary objective of this study is to achieve completely automated 
identification and classification of a soil landslide zone from many different satellite photos. This will be 
accomplished by analyzing the images in two separate phases. The two-stage architecture proposed here is 
shown graphically in Figure 2. First, we trim a 2000x2000px sub-image from satellite images to help with our 
preliminary identification of the loess collapse zone. Every pixel here represents a 0.49 by 0.49 m section of the 
landslide zone. We identified the level of gravity of the avalanche zone with the help of geological 
professionals, and we utilized it as the focus point for the photo cropping. Next, we classify every loess 
landslide as the gold standard and utilize transferred learning to educate yet another Faster- RCNN model for 
object identification. The first stage of the process produces a false prediction that a soil landslide will not 
occur, as well as a box with borders that pinpoints the location of the soil collapse zone inside the original 
2000 by 2000-pixel input image. During the second step,  we begin by cropping a sub-image with dimensions of 
800 by 800 pixels. The centre of this sub- image is determined by the centre of the boundary rectangle that was 
generated during the first phase. Then, within the 800x800-pixel cropped image, we manually locate the 
landslide zone using a segmentation U-Net we trained using data fusion. The area affected by the soil landslide 
has been predicted down to the pixel. Furthermore, we extrapolate the bounds of the forecast result to display 
the landslide boundaries, providing important data for averting potential geohazards. 
 
3.1. Soil-Based Landslide Detection with Faster CNN 
The Faster-RCNN method belongs to the third generation of the RCNN family. It is designed to accurately 



International Journal of Environmental Sciences   
ISSN: 2229-7359 
Vol. 11 No. 16s, 2025  
https://www.theaspd.com/ijes.php  
 

1507 

predict both the description of the target item in an input picture and the existence of the object inside a 
proposed candidate area. In contrast to the first and later generations, such as the RCNN as well as the Fast-
RCNN, the Faster-RCNN presents a CNN- based alternative that is referred to as the regional proposal 
network (RPN). This network and the CNN-based recognizing network, exchange their respective biases along 
with weights with one another. The use of this technology results in significant improvements to the 
effectiveness of real-time object recognition regarding velocity as well as precision. These gains may be seen in 
the effectiveness of the process. Figure 1 provides a visual depiction of the architectural components of the 
RCNN method, which is the faster of the two. 
 

 
Fig.2. Structure of the two-stage scheme 

 
The Faster-RCNN uses the underlying network, RPN, and ROI pooling to  identify objects end-to-end. Figure 
2 demonstrates how the Faster-RCNN generates attribute activation mappings for an annotated image by using 
a large number of convolutional layers in common. These shareable convolutional layers are often 
implemented using pre-trained CNN baseline layers like VGG-16. After that, the RPN determines, with the 
help of bounding box regression, if the target object is in the foreground or the background, and it suggests the 
starting region, which indicates its presence in the image. After ROI pooling analyzes these ideas, two 
completely linked layers are layered. The first layer that is fully connected predicts item bounding box locations 
using a bounding regression box. The second fully linked layer uses SoftMax classification to identify item 
subcategories. A score that indicates the likelihood that a candidate item matches a sub-category is one of the 
outputs that a Faster-RCNN technique generates, along with a vector that provides the corner position, width, 
and height of the projected bounding box. 
Training of the categorization and regression components of the Faster-RCNN architecture is accomplished by  
the use of various loss functions as  well  as equations.  These components are responsible for generating 
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region suggestions, wherein the object class, as well  as relative location, are recognized. 
 

 
 
The terms Ncl and Nlc are used to normalize the two loss functions, Lcl and Llc, respectively. The combination 
parameter ‘c’ is utilized in this context. The index i denotes the starting point in a mini-batch, and the Probi 
value indicates the predicted probability that the anchor i is an item. In addition, BVecti is a vector that 
represents the four individualized coordinates of the anticipated bounding box. BVecti is a representation of 
the predicted bounding box. Lcl and Llc are abbreviations that stand for "losses associated with classification" 
and "losses associated with localization loss," respectively. Following is a mathematical representation of the 
classification loss that may be used: 

 
In the above scenario, when the value of 𝑃��� is negative in nature, the likelihood of the fundamental tag ����∗ is 

determined to be 0. Alternatively, in the case when �����  is a positive number, the product of 𝑃��∗ is equal to 1. 
Mathematical expressions for the localization of regression loss look like this: 

 
 
Let's say p and q are the location of the box's center, and r and s are its width and height. The smoothing 
function may be expressed mathematically as: 

 
where x is the value of predicted bounding box. This study uses Faster-RCNN to identify landslides because its 
region proposal approach does regression and classification concurrently. The bounding boxes show the loess 
landslide's relative position, and the certainty score estimates its likelihood. Thus, the Faster-RCNN method 
uses U-Net to automatically focus on a tiny portion of the picture and enhance segmentation. 
 
3.2.U-Net for landslide segmentation 
In recent years, CNNs have shown remarkable success in tasks such as image classification, object recognition, 
and pixel-wise segmentation. On publicly available datasets, CNNs provide much better results than graph-cut 
and multi-atlas segmentation. There are three main factors that contribute to CNN's success. CNNs use 
stochastic descent optimization to learn particular visual characteristics to a given domain. Secondly, all pixels 
share learned kernels. Last but not least, images are used in convolutional procedures. Segmentation problems 
are a strong suit for full convolutional networks (FCNs) such as the U-Net architecture and Deep Medic. 
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Fig.3. Faster-RCNN algorithm schematic diagram 

The U-Net follows an encoder-decoder structure. It has been widely recognized for its exceptional performance 
in several intricate picture segmentation tasks, positioning it at the forefront of the field. The design of the 
system is characterized by its symmetry, consisting of two primary components: encoder networks and decoder 
networks. Like most convolutional neural networks (CNNs) used for image recognition, the encoder network 
uses convolutional layers to pull out features from the incoming image. These features are then down-sampled 
into latent layers, resulting in a more compact feature map.  
 
The latent vector located in the centre captures the whole visual context. In the meantime, the decoder 
network conducts up-sampling operations to align the output resolution with the dimensions of the input 
picture, hence facilitating accurate pixel-level prediction for the segmentation process. Furthermore, the use of 
skip connections facilitates the transmission of data between the corresponding resolution of the two 
components, hence enhancing the network's capacity to effectively segment pictures with greater accuracy. 
 
3.3. Functions for loss in segmentation 
All segmentation algorithms that were examined demonstrated identical performance in the pixel-level binary 
classification challenge. The objective of this job is to predict the label of each pixel in photographs of size 800 
× 800, to classify whether the pixel belongs to the forefront (loess landslide zone) or the background (non-
landslide region). The binary cross-entropy reduction function was used for all the methods examined in this 
study. It may be formally described as follows: 
 

The variable ���𝑃��� represents the likelihood of pixel i being classified as either a loess landslide zone or a non-

landslide region. The variable �� represents the fundamental truth label of each pixel "i". The variable "N" 
represents the entire number of    pixels in the given picture, which is 800 ×  800. 
 
4. Experimental Evaluation 
We created a two-phase satellite image framework to automatically identify and segment loess landslides. The 
network was trained to identify and segment loess landslides using supervised training. The evaluation data 
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showed that the suggested framework outperformed existing state-of-the-art algorithms in loess landslide 
identification and segmentation. The suggested two-phase structure offers three main benefits. First, it 
automatically detects and segments satellite photos in one step. Detecting the loess landslide zone in a wide 
satellite picture is faster and easier using the well-trained U-Net. Second, it allows pixel-level prediction of loess 
landslide zones, which is necessary for precise range estimate. Estimating this geohazard and its future 
recurrence depends on segmentation results. We retrieved loess landslide limits as well. The findings may help 
geologists detect and categorize landslide types. 
 
The literature study shows that loess landslide identification and segmentation is harder than other landslides. 
First, brightness, color, and surface information in loess landslide zones is more similar to non-landslide 
regions. This reduces both the detection as well as segmentation efficiency of all strategies in this work, and our 
landslide detection testing accuracy  was  0.5 mAP 
 

 
Fig.4. Final decoder network layer produces probability maps. 

 
. Because loess collapses are hard to see in huge satellite photos, data collecting takes longer and involves more 
manpower. So, they enhanced their splitting accuracy in a comparable spectrum  as ours but in a bigger 
picture. Another segmentation drawback is the absence of  runout- direction region boundaries. 
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Fig.5. Segmentation of loess landslides with ambiguous borders 

 
Experts set the runout direction ground truth limit, which may vary in a narrow range and lead to less exact 
standards while training deep neural networks. Therefore, border distance errors may be higher. As seen in Fig. 
5, bigger ASSD values may make deep neural networks' prediction difficult due to inadequate boundary 
information. Furthermore, source area separation fails. The segmentation identifies just the individual pixels of 
the loess landslide zone, not the source and runout areas. 
 
Table 1. Comparison of Existing Methods with Proposed Strategy 

Strategy Area Occurrence % Standard Error % Frequency Ratio Prediction Accuracy 

SVM 0.855 0.45 0.08 0.72 0.7 
ANN 0.945 0.36 0.07 0.71 0.75 

BAGGING 0.827 0.41 0.06 0.69 0.65 
PROPOSED 
METHOD 

0.857 0.37 0.07 0.68 0.91 

 
The absence of a clear border between the loess landslide subregions is the key reason. Thus, applying this 
approach to loess flow, loess-bedrock interface, and loess bedrock plane landslides would result in the same 
issues. 
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Fig.7. Comparative Analysis of Existing Methods with Proposed Methodology 

 
Table 1 provides with the comparison of existing approach with the proposed strategy and is illustrated in 
figure 7, which clearly depicts proposed method outperforms the state of art methods. 
 
CONCLUSION 
A unique two-phase data-driven system for automated loess landslide identification and segmentation using 
satellite pictures is presented in this research. The framework's initial step uses the Faster-RCNN technique to 
find loess avalanche geological features and name them with bounding boxes. Transfer learning was used over 
the pre-trained Faster-RCNN algorithm in this investigation. Loess landslide picture segmentation and pixel-
level prediction were examined in the second phase. To improve segmentation, a 2D U-Net with origination 
blocks was used. To identify loess landslides more efficiently and visually, segmentation boundaries were 
recovered and compared to geological expert ground truth labels. 
The suggested architecture automatically identified and segmented the loess landslide zone, ensuring a high-
quality border and total area prediction compared to powerful single identification or segmentation 
techniques. The updated U-Net's extra inception blocks enhanced features and segmentation performance. 
The suggested system is better for loess landslide identification and segmentation than previous related articles. 
Future visualization of segmentation U-Net latent characteristics will aid landslide hazard decision-making. 
Deep neural network mechanisms (e.g., U-Net) will be our key research focus in the future. To execute multi- 
objective segmentation, we want to build stronger segmentation algorithms. It can determine the source 
location from the runout, which improves landslide research. 
 
REFERENCES 
1. Xu Q, Li H, He Y, Liu F, Peng D (2019) Comparison of data-driven models of loess landslide runout distance 

estimation. Bull Eng Geol Env78(2):1281–1294 
2. Yildiz C, Acikgoz H, Korkmaz D, Budak U (2021) An improved residual-based convolutional neural network for very 

short-term wind power forecasting. Energy Convers Manag 228:113731 
3. Yu B, Chen F, Xu C (2020) Landslide detection based on contour-based deep learning framework in case of national 

scale of Nepal in 2015. Comput Geosci 135:104388 
4. Zeng J, Wang F, Deng J, Qin C, Zhai Y, Gan J, Piuri V (2020) Finger vein verification algorithm based on fully 

convolutional neural network and conditional random field. IEEE Access 8:65402–65419. 
5. Huizing, M. Heiligers, B. Dekker, J. deWit, L. Cifola, and R. Harmanny, ``Deep learning for classi_cation of mini-

UAVs using micro-Doppler spectrograms in cognitive radar,'' IEEE Aerosp. Electron. Syst. Mag., vol. 34, no. 11, pp. 
46_56, Nov. 2019, doi: 10.1109/MAES.2019.2933972. 

6. H. F. Ates, S. M. Hashir, T. Baykas, and B. K. Gunturk, ``Path loss exponent and shadowing factor prediction from 
satellite images using deep learning,'' IEEE Access, vol. 7, pp. 101366_101375, Jul. 2019, doi: 
10.1109/access.2019.2931072. 



International Journal of Environmental Sciences   
ISSN: 2229-7359 
Vol. 11 No. 16s, 2025  
https://www.theaspd.com/ijes.php  
 

1513 

7. Donati N, Sharma A, Ovsjanikov M (2020) Deep geometric functional maps: robust feature learning for shape 
correspondence. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 
8592–8601) 

8. Fan X, Scaringi G, Korup O, West AJ, van Westen CJ, Tanyas H, Huang R (2019) Earthquake-induced chains of 
geologic hazards: patterns, mechanisms, and impacts. Rev Geophys 57(2):421–503 

9. Feng W, Sui H, Huang W, Xu C, An K (2018) Water body extraction from very high- resolution remote sensing 
imagery using deep U-Net and a super pixel-based conditional random field model. IEEE Geosci Remote Sens Lett 
16(4):618–622 

10. Landslide Reporter Primer and Landslide Identi_cation The Landslide Reporter's Guide. Accessed: Feb. 9, 2020.  [Online]. 
Available: https://gpm.nasa.gov/landslides/guides/COOLRGuide_Primer.pdf 

11. M. Moine, A. Puissant, and J.-P. Malet. (2010). Detection of Landslides from Aerial and Satellite Images with a Semi-
Automatic Method. Application to the Barcelonnette Basin (Alpes-de-Hautes-Provence, France). Accessed: Feb. 16, 2020. 
[Online]. Available: https://halshs.archivesouvertes. fr/halshs-00467545 

12. T.-A. Bui, P.-J. Lee, K.-Y. Lum, C.-R. Chen, and S.-H. Shiu, ``Using BEMD in CNN to identify landslide in a satellite 
image,'' in Proc. Int. Conf. Syst. Sci. Eng. (ICSSE), Jul. 2019, pp. 94_97, doi: 10.1109 /ICSSE.2019.8823128. 

13. NASA Earth Observatory. (2014). Before and After the Sunkosi Landslide. Luton News. Accessed: Apr. 23,
 2020. [Online]. Available: https://earthobservatory.nasa.gov/images/84406/before-and-after-thesunkosi- 
landslide Sunkoshi landslide | IPLHQ. Accessed: May 19, 2020. [Online]. Available: https://iplhq.org/report/sunkoshi-
landslide/ 

14. M. Hassanein, Z. Lari, and N. El-Sheimy, ``A new vegetation segmentation approach for cropped _elds based on 
threshold detection from hue histograms,'' Sensors, vol. 18, no. 4, p. 1253, Apr. 2018, doi: 10.3390/s18041253. 

15. Ji S, Yu D, Shen C, Li W, Xu Q (2020) Landslide detection from an open satellite imagery and digital elevation model 
dataset using attention boosted convolutional neural networks. Landslides 17(6):1337–1352. 

16. Li H, Xu Q, He Y, Fan X, Li S (2020) Modeling and predicting reservoir landslide displacement with deep belief 
network and EWMA control charts: a case study in Three Gorges Reservoir. Landslides 17(3):693–707 

17. Liu Y, Cen C, Che Y, Ke R, Ma Y, Ma Y (2020) Detection of maize tassels from UAV RGB imagery with Faster R-
CNN. Remote Sensing 12(2):338. 

18. Mahmoud A, Mohamed S, El-Khoribi R, Abdelsalam H (2020) Object detection using adaptive mask RCNN in 
optical remote sensing images. Int J Intell Eng Syst 13:65–76 

19. Mohan A, Singh AK, Kumar B, Dwivedi R (2020) Review on remote sensing methods for landslide detection using 
machine and deep learning. Trans Emerg Telecommun Technol e3998. 

20. Ouyang T, He Y, Li H, Sun Z, Baek S (2019) Modeling and forecasting short-term power load with copula model and 
deep belief network. IEEE Transactions on Emerging Topics in Computational Intelligence 3(2):127–136. 

21. Ouyang T, Huang H, He Y, Tang Z (2020) Chaotic wind power time series prediction via switching data-driven modes. 
Renewable Energy 145:270–281. 

22. Pradhan B, Al-Najjar HA, Sameen MI, Mezaal MR, Alamri AM (2020) Landslide detection using a saliency feature 
enhancement technique from LiDAR-derived DEM and Orthophotos. IEEE Access 8:121942–121954. 

23. Pravitasari AA, Iriawan N, Almuhayar M, Azmi T, Fithriasari K, Purnami SW,  Ferriastuti W (2020) UNet-VGG16 
with transfer learning for MRI-based brain tumor segmentation. Telkomnika 18(3):1310–1318. 

24. Shi J, Chang Y, Xu C, Khan F, Chen G, Li C (2020) Real-time leak detection using an infrared camera and Faster R-
CNN technique. Comput& Chem Eng 135:106780. 

25. Syzdykbayev M, Karimi B, Karimi HA (2020) Persistent homology on LiDAR data to detect landslides. Remote 
Sensing of Environment 246:111816. 

26. Su, Z., Chow, J.K., Tan, P.S. et al. (2021). Deep convolutional neural network–based pixel-wise landslide inventory 
mapping. Landslides 18, 1421–1443. https:// doi. org/ 10. 1007/ s10346- 020- 01557-6. 

27. Wang Z, Wang X, Yang W, Xiao Y, Liu Y, Chen L (2020) yNet: a multiinput convolutional network for ultra-fast 
simulation of field evolvement. arXiv preprint arXiv:2012.10575. 

28. Zhong Z, Kim Y, Plichta K, Allen BG, Zhou L, Buatti J, Wu X (2019) Simultaneous cosegmentation of tumors in PET-
CT images using deep fully convolutional networks. Med Phys 46(2):619–633. 

https://halshs.archivesouvertes/
https://earthobservatory.nasa.gov/images/84406/before-and-after-thesunkosi-
https://earthobservatory.nasa.gov/images/84406/before-and-after-thesunkosi-

