ISSN: 2229-7359 Vol. 11 No. 2, 2025

https://www.theaspd.com/ijes.php

Staying or Leaving? An Indonesian Perspective on Turnover Intention Among Gen Z Employees

Iman Firmansyah ¹, Ratri Wahyuningtyas ²

¹School of Economics and Business, Telkom University, Bandung, West Java, 40257, Indonesia: imanfirmansyah@student.telkomuniversity.ac.id

²School of Economics and Business, Telkom University, Bandung, West Java, 40257, Indonesia:

ratriwahyu@telkomuniversity.ac.id (Corresponding Author)

Received: 08th March 2025 Revised: 20th April 2025 Accepted: 29th April 2025

Abstract: Generation Z is expected to dominate Indonesia's workforce in the coming years, bringing unique challenges for organizational management. This study analyzes factors influencing turnover intention among Generation Z employees in Indonesia, focusing on variables such as job stress, career development, workload, compensation, non-physical work environment, perceived organizational support, organizational commitment, job burnout, job insecurity, and work-life balance. Using a quantitative method with Exploratory Factor Analysis (EFA), data from 539 Generation Z respondents across 38 provinces in Indonesia were analyzed using IBM SPSS version 27. Findings reveal 26 factors influencing turnover intention, with perceived organizational support emerging as the most dominant, explaining 16.112% of the variance. The study highlights the importance of building a supportive and transparent work environment to retain young talent. Companies are encouraged to develop strategic human resource practices to reduce turnover intention and sustain business growth. Future studies should explore additional factors and apply broader sampling for generalization.

Keywords: Generation Z, Turnover Intention, Job Stress, Career Development, Workload, Compensation, Non-Physical Work Environment, Perceived Organizational Support, Organizational Commitment, Job Burnout, Job Insecurity, and Work-Life Balance.

1. INTRODUCTION

On a global scale, the issue of employee turnover intention, especially among Generation Z, is a serious concern in the modern world of work. Generation Z born between 1997 and 2012 is projected to be the main force of the future workforce, and their tendency to change jobs quickly poses a big challenge for organizations in retaining the best talent (Deloitte, 2020). Global companies are starting to adopt various innovative strategies to understand the motivations and expectations of this generation, with the aim of reducing high turnover rates which can impact operational costs and organizational stability (Siddiqi et al., 2024). The company must make changes, because changes must occur and must be faced by every person and organization. (Wahyuningtyas et al., 2023). Human resources are seen as the most crucial component in determining organizational success, especially in organizations with high labor intensity (Wahyuningtyas, 2015). Employees play an active role as agents, thinkers, and planners who drive organizational activities (Dudija et al., 2024). Therefore, companies are expected to provide adequate support to enable employees to perform optimally and achieve their performance goals (Hanura et al., 2020).

Several factors have been identified as causes of turnover intention among Generation Z. These factors include work stress, job uncertainty, imbalance in work-life balance, dissatisfaction with compensation, lack of career development, and low perception of organizational support (Marcella & Ie, 2022; Damayanti & Wulansari, 2024). This dynamic is exacerbated by Generation Z's expectations for work flexibility, supportive organizational culture, and clarity in career paths, so that companies are required to be more adaptive in managing human resources in the digital era.

The impact of these various factors is very significant on the organization. High turnover not only causes increased recruitment and training costs, but also reduces the productivity and morale of remaining employees (Abet et al., 2024). In addition, companies risk losing the knowledge base they have built and facing disruptions in operational continuity. In the long term, this condition can reduce the

ISSN: 2229-7359 Vol. 11 No. 2, 2025

https://www.theaspd.com/ijes.php

company's reputation in the eyes of potential candidates and external stakeholders (Halim & Antolis, 2021).

In the context of this research, the turnover intention variable is analyzed more deeply through various factors, such as job stress, career development, workload, compensation, non-physical work environment, perceived organizational support, organizational commitment, job burnout, job insecurity, and work-life balance. This research focuses specifically on Generation Z employees in Indonesia, considering their large proportion of the population and their dominance in the national labor market in the next five years (Central Statistics Agency, 2020; Databoks, 2021). Organizational success is closely linked to how effectively employees are valued, supported, and treated within the workplace environment (Kinasih & Indiyati, 2023).

Based on findings in research conducted by Halim & Antolis (2021) entitled "Analysis of Influencing Factors *Turnover intention* Agent at PT AIA Branch X Malang". This research aims to identify the influencing factors *turnover intention* to the agent at PT AIA Branch X Malang. The results of this research show that various factors, such as *work-life balance*, *personality-job fit*, work stress, employee relations, compensation, physical work environment, job satisfaction, organizational culture, career development, and organizational commitment are confirmed to influence *turnover intention* agent at PT AIA Branch X Malang. The variable that has the most significant influence on *turnover intention agent* at PT AIA Branch.

This research focuses on companies that want to recruit members of Generation Z who are just starting their careers, to analyze influencing factors *turnover intention* for Generation Z employees in Indonesia who can increase their engagement with work. This research is relevant to understanding the dynamics *turnover intention* among Generation Z employees in Indonesia, especially amidst the challenges of an ever-changing job market. By understanding the influencing factors *turnover intention*, companies can develop more effective strategies for recruiting and retaining employees. Generation Z is often thought of as having turnover levels who are high and tend to change jobs after feeling that it does not suit their preferences at the company. This phenomenon is known as "jumping fleas".

A strategic approach to enhancing employee engagement and reducing turnover intention is the development of Green Human Capital. By fostering employees' competencies and awareness towards innovation and sustainability, organizations can create a meaningful work environment aligned with Generation Z's values, thereby potentially reducing turnover rates (Yulaeli et al., 2024). Therefore, based on this background and the phenomena that occur, this encourages the author to research further and carry out further exploration regarding this matter. "Analysis of Influencing Factors *Turnover Intention* on Generation Z Employees in Indonesia." It is hoped that this research will provide a useful role for and make a significant contribution to organizations in analyzing and reducing levels of *turnover* that occur in the company as well as in the context of the organization as a whole.

The formulation of this research problem is:

- 1. What are the factors that shape *Turnover Intention* among Generation Z employees in Indonesia?
- 2. What are the dominant factors in forming *Turnover Intention* among Generation Z employees in Indonesia?

The aims of this research are:

- 1. To find out the factors that make up *Turnover Intention* among Gen Z employees in Indonesia.
- 2. To find out the dominant factors in forming *Turnover Intention* among Generation Z employees in Indonesia.

The hypothesis in this research is prepared based on the background, problem formulation, and framework of thought that has been previously stated.

H1: There are factors that form *Turnover Intention* among Generation Z employees in Indonesia.

H2: There are dominant factors in shaping *Turnover Intention* among Generation Z employees in Indonesia

ISSN: 2229-7359 Vol. 11 No. 2, 2025

https://www.theaspd.com/ijes.php

2. METHOD

Types of research

This research uses quantitative methods. Quantitative methods are more systematic, measurable, planned and structured, and are not influenced by conditions in the field. Based on the background that has been presented, this research is categorized as descriptive research.

Population and Sample

The population in this study is considered unlimited because the author cannot calculate or estimate with certainty how many Indonesians are classified as Generation Z employees.

This research uses non-probability sampling techniques with method *purposive sampling* because the population is unlimited. The sample in this study was Generation Z employees who met the characteristics: An employee; 18-28 years old; Work for a company or agency domiciled in Indonesia. In this research there are 77 indicators, so the recommended minimum sample size is 539 respondents (77 indicators x 7). Therefore, the final sample size used in this study consisted of 539 Generation Z respondents from 38 provinces across Indonesia.

Data Collection and Data Sources

In this research, data collection was carried out through distributing questionnaires. Data source. In this research, primary data collection techniques were carried out using a questionnaire distributed online via *Google Form*. The type of questionnaire used in this research is a closed questionnaire, where respondents only need to choose the answers provided by the author. The author distributed the questionnaire to all Generation Z employees in Indonesia. In this research, secondary data was obtained through literature study. Secondary data in this research was obtained from books, previous research, information from the internet, journals, articles and reports related to the phenomenon under study.

Validity and Reliability Test

Validity Test

The validity test in this research was carried out by collecting data from 30 samples through distributing questionnaires in the pre-test, carried out using IBM SPSS version 27 software. A question is declared valid if the item-total score correlation value (r count) is greater than r table (r count > r table). In this study, with a sample size of 30 and a significance level of 5% (α = 0.05), the r table value used was 0.361. The validity test was carried out using the Pearson Product Moment correlation method.

Reliability Test

In this research using *software* IBM SPSS version 27 to carry out reliability testing of the questionnaire used. Reliability test results will be carried out using 30 samples.

Technical Data Analysis

In this research, the author used a questionnaire as an instrument. Each question item in the questionnaire is accompanied by five answer choices that respondents can choose. This research uses factor analysis techniques which function to analyze the relationship between variables. This technique is used primarily to reduce or simplify data by changing a number of variables into fewer new variables. The main focus of this technique is to define the structure that exists among the analyzed variables. Factor analysis provides a tool for studying the structure of internal relationships or correlations between many variables, with the aim of explaining these correlations, which are then assumed to represent the dimensions contained in the data.

ISSN: 2229-7359 Vol. 11 No. 2, 2025

https://www.theaspd.com/ijes.php

3. FINDINGS AND DISCUSSIONS

Factor Analysis Results

Uji Kaiser Meyer Olkin (KMO) and Bartlett's Test of Sphericity

Table 1 KMO results and Bartlett's Test

KMO and Bartlett's Test

Kaiser-Meyer-Olkin M	Kaiser-Meyer-Olkin Measure of Sampling Adequacy.				
Bartlett's Test of Sphericity	Approx. Chi-Square	15083.773			
Ophenetty	df	4005			
	Say.	.000			

Source: Author's Processed Data (2025)

Based on the output table above, the KMO-MSA value is 0.881 (greater than 0.5) indicating that the variable has an adequate level of sample adequacy and can be analyzed further. Plus, results Bartlett's Test of Sphericity shows a significance value of 0.000 (smaller than 0.05), which indicates there is a significant correlation between variables, so factor analysis can be carried out.

Anti-Image Matrices

Table 2 Value Anti-Image Matrices

Item	Anti-Image Matrices	Item	Anti-Image Matrices	Item	Anti-Image Matrices
SK1	0.901	K2	0.882	JB1	0.707
SK2	0.474	K3	0.863	JB2	0.487
SK3	0.583	K4	0.928	JB3	0.755
SK4	0.636	K5	0.919	JB4	0.701
SK5	0.653	K6	0.875	JB5	0.668
SK6	0.707	K7	0.910	JB6	0.580
SK7	0.618	K8	0.894	JB7	0.682
SK8	0.542	К9	0.892	JB8	0.651
SK9	0.675	LKNF1	0.920	JB9	0.699
PK1	0.921	LKNF2	0.836	JI 1	0.639
PK2	0.831	LKNF3	0.866	JI2	0.475
PK3	0.878	LKNF4	0.901	JI3	0.703
PK4	0.925	LKNF5	0.907	JI4	0.623

ISSN: 2229-7359 Vol. 11 No. 2, 2025

https://www.theaspd.com/ijes.php

0.911	LKNF6	0.917	JI5	0.604
0.917	LKNF7	0.899	JI6	0.641
0.907	LKNF8	0.896	JI7	0.575
0.902	LKNF9	0.883	JI8	0.585
0.958	PDO1	0.927	JI9	0.653
0.617	PDO2	0.826	JI10	0.588
0.639	PDO3	0.902	WLB1	0.940
0.923	PDO4	0.923	WLB2	0.896
0.926	PDO5	0.919	WLB3	0.906
0.744	PDO6	0.924	WLB4	0.702
0.917	KO1	0.903	WLB5	0.920
0.629	KO2	0.856	WLB6	0.595
0.954	KO3	0.861	WLB7	0.931
0.936	KO4	0.937	WLB8	0.923
0.708	KO5	0.895	WLB9	0.928
0.651	KO6	0.869	WLB10	0.921
0.952	KO7	0.895	WLB11	0.879
0.928	KO8	0.892	WLB12	0.936
	0.907 0.902 0.958 0.617 0.639 0.923 0.926 0.744 0.917 0.629 0.954 0.936 0.708 0.651 0.952	0.907 LKNF8 0.902 LKNF9 0.958 PDO1 0.617 PDO2 0.639 PDO3 0.923 PDO4 0.926 PDO5 0.744 PDO6 0.917 KO1 0.629 KO2 0.954 KO3 0.936 KO4 0.708 KO5 0.651 KO6 0.952 KO7	0.907 LKNF8 0.896 0.902 LKNF9 0.883 0.958 PDO1 0.927 0.617 PDO2 0.826 0.639 PDO3 0.902 0.923 PDO4 0.923 0.926 PDO5 0.919 0.744 PDO6 0.924 0.917 KO1 0.903 0.629 KO2 0.856 0.954 KO3 0.861 0.936 KO4 0.937 0.708 KO5 0.895 0.651 KO6 0.869 0.952 KO7 0.895	0.907 LKNF8 0.896 JI7 0.902 LKNF9 0.883 JI8 0.958 PDO1 0.927 JI9 0.617 PDO2 0.826 JI10 0.639 PDO3 0.902 WLB1 0.923 PDO4 0.923 WLB2 0.926 PDO5 0.919 WLB3 0.744 PDO6 0.924 WLB4 0.917 KO1 0.903 WLB5 0.629 KO2 0.856 WLB6 0.954 KO3 0.861 WLB7 0.936 KO4 0.937 WLB8 0.708 KO5 0.895 WLB9 0.651 KO6 0.869 WLB10 0.952 KO7 0.895 WLB11

Source: Author's Processed Data (2025)

Variable Extraction

The communality value of each variable can be found in Table 3.

Table 3 Communality Values

	Initial	Extraction		Initial	Extraction		Initial	Extraction
SK1	1.000	.613	К3	1.000	.648	JB3	1.000	.535
SK3	1.000	.634	K4	1.000	.530	JB4	1.000	.572
SK4	1.000	.644	K5	1.000	.618	JB5	1.000	.606
SK5	1.000	.609	K6	1.000	.666	JB6	1.000	.599
SK6	1.000	.700	K7	1.000	.592	JB7	1.000	.647
SK7	1.000	.664	K8	1.000	.625	JB8	1.000	.572

ISSN: 2229-7359 Vol. 11 No. 2, 2025

https://www.theaspd.com/ijes.php

SK9	1.000							
	1.000	.660	LKNF1	1.000	.673	JI 1	1.000	.636
PK1	1.000	.634	LKNF2	1.000	.690	JI3	1.000	.499
PK2	1.000	.657	LKNF3	1.000	.707	JI4	1.000	.646
PK3	1.000	.634	LKNF4	1.000	.516	JI5	1.000	.583
PK4	1.000	.564	LKNF5	1.000	.632	JI6	1.000	.548
PK5	1.000	.614	LKNF6	1.000	.595	JI7	1.000	.665
PK6	1.000	.596	LKNF7	1.000	.633	JI8	1.000	.587
PK7	1.000	.627	LKNF8	1.000	.634	JI9	1.000	.550
PK8	1.000	.620	LKNF9	1.000	580	JI10	1.000	.675
BK1	1.000	.685	PDO1	1.000	.609	WLB1	1.000	.637
BK2	1.000	.599	PDO2	1.000	.631	WLB2	1.000	.648
BK3	1.000	.552	PDO3	1.000	.628	WLB3	1.000	.521
BK4	1.000	.629	PDO4	1.000	.490	WLB4	1.000	.674
BK5	1.000	.573	PDO5	1.000	.564	WLB5	1.000	.578
BK6	1.000	.576	PDO6	1.000	.576	WLB6	1.000	.731
BK7	1.000	.663	KO1	1.000	.619	WLB7	1.000	.622
BK8	1.000	.563	KO2	1.000	.587	WLB8	1.000	.604
BK9	1.000	.546	КО3	1.000	.623	WLB9	1.000	.597
BK10	1.000	.623	KO4	1.000	.597	WLB10	1.000	.603
BK11	1.000	.609	KO5	1.000	.637	WLB11	1.000	.626
BK12	1.000	.602	KO6	1.000	.620	WLB12	1.000	.612
BK13	1.000	.637	КО7	1.000	.632			
K1	1.000	.652	KO8	1.000	.648			
K2	1.000	.580	JB1	1.000	.611			

Extraction Method: Principal Component Analysis

Source: Author's Processed Data (2025)

In the table above, there are values initial and extraction. Mark initial shows the variable variance before extraction, while the value extraction describes the percentage of variance of a variable that can be explained by the factors formed. The greater the value extraction, the stronger the relationship between

ISSN: 2229-7359 Vol. 11 No. 2, 2025

https://www.theaspd.com/ijes.php

the variables and the factors that will be formed. The table shows that each variable has a value above 0.5, and variables with a value closer to 1 have a stronger relationship with the factors formed.

Determining the Number of Factors (Factoring)

The calculation results are related to the total variance explained shown in Table 4.

Table 4 Total Variance

	Initial Eigenvalues									
Component	Total	% of Variance	Cumulative %	Component	Total	% of Variance	Cumulative %			
1	14.501	16.112	16.112	15	1.315	1.461	45.980			
2	3.690	4.400	20.512	16	1.303	1.448	47.428			
3	2.747	3.052	23.564	17	1.235	1.373	48.801			
4	2.258	2.509	26.073	18	1.206	1.340	50.140			
5	2.113	2.348	28.421	19	1.198	1.331	51.471			
6	1.915	2.128	30.549	20	1.175	1.305	52.776			
7	1.860	2.067	32.616	21	1.140	1.267	54.043			
8	1.722	1.913	34.528	22	1.110	1.233	55.277			
9	1.670	1.855	36.383	23	1.105	1.227	56.504			
10	1.605	1.784	38.167	24	1.097	1.219	57.723			
11	1.471	1.634	39.801	25	1.061	1.179	58.902			
12	1.458	1.620	41.421	26	1.026	1.140	60.042			
13	1.423	1.581	43.002	27	1.017	1.130	61.171			
14	1.365	1.517	44.519							

Extraction Method: Principal Component Analysis

Source: Author's Processed Data (2025)

Table 4 shows that there are 27 factors with eigenvalue ≥1, which cumulatively explain 61.171% of the total variance. The first factor, namely organizational support, is the most dominant with a contribution of 16.112%. These results indicate a strong factor structure in shaping the turnover intention of Generation Z employees in Indonesia. Apart from that, the number of factors can also be seen from scree plot diagram formed. Scree plot explains the relationship between the number of factors formed in graphic form which is explained in Figure 1.

ISSN: 2229-7359 Vol. 11 No. 2, 2025

https://www.theaspd.com/ijes.php

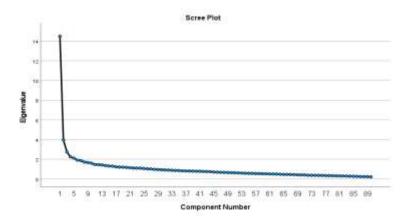


Figure 1 Scree Plot

Source: Author's Processed Data (2025)

Figure 1 above shows the results of grouping based on value *updated eigenvalue*. The higher the value *own* a factor, the higher its position in the graph. There are 27 factors with values of *eigenvalue* above 1.0, while items along the descending line are items with value of *eigenvalue* below 1.0.

Factor Rotation

The results of factor rotation are shown in Table 5 below.

Table 5 Rotation Factor Values

Factor	Item	Factor Loading	Factor	Item	Factor Loading
	SK1	0.513	9	JI 1	0.547
	PK1	0.650		JI3	0.537
	BK1	0.523		JI6	0.608
1	K1	0.630	10	K6	0.618
	LKNF1	0.608		K9	0.578
	PDO1	0.647	11	PDO2	0.686
	WLB1	0.539	12	JB6	0.691
	BK4	0.687		JB8	0.580
	BK7	0.753	13	SK5	0.722
2	BK9	0.647	14	LKNF3	0.652
	BK13	0.610		LKNF8	0.628
	WLB5	0.619	15	PK3	0.670
	WLB7	0.625	16	SK6	0.726
3	WLB8	0.633		SK7	-0.678

ISSN: 2229-7359 Vol. 11 No. 2, 2025

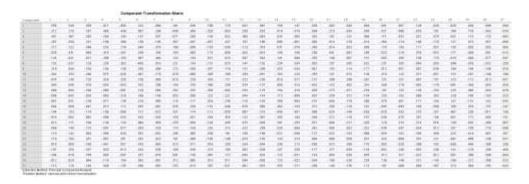
https://www.theaspd.com/ijes.php

	WLB10	0.607	17	JI9	-0.645	
	WLB11	0.683	18	КО3	-0.607	
	WLB12	0.538	19	KO6	0.680	
	BK2	0.616	20	SK3	0.738	
	BK3	0.517	21	SK8	-0.653	
4	BK8	0.566		SK9	0.684	
	BK11	0.695	22	PK5	0.659	
	BK12	0.672	23	JI10	0.766	
	JB1	0.606	24	JB5	0.693	
5	JB4	0.664	25	JI8	0.688	
	JB7	0.666	27	K3	0.646	
6	LKNF9	0.682		JI5	-0.511	
7	WLB4	0.742				
(WLB6	0.807				
8	LKNF7	0.652				
1						

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization

Source: Author's Processed Data (2025)


Table 5 shows the distribution of variables that have been extracted into factors that are formed based on *factor loading* after the rotation process is carried out. Factor 26 does not appear in the rotation results because it has a loading factor of less than 0.5. Orthogonal rotation method (*varimax*) is used to minimize the number of variables with high loadings, so that factors with a low contribution in explaining variance can be filtered out. Technically, this factor is still present, but it is not strong enough to show because its contribution to the variance is very small. Thus, factor 26 will be considered absent in further analysis. As a result, the number of factors which previously numbered 27 has now been reduced to 26 factors. Next, each variable that is in the same factor is grouped.

Factor Transformation Matrix

The correlation value between factors 1 to factor 27 that is formed can be analyzed via *Factor Transformation Matrix*, which is presented in Figure 2 below.

ISSN: 2229-7359 Vol. 11 No. 2, 2025

https://www.theaspd.com/ijes.php

Extraction Method: Principal Component Analysis Rotation Method: Varimax with Kaiser Normalization

Figure 2 Factor Transformation Matrix

Source: Author's Processed Data (2025)

Factor Naming

Table 6 Grouping Statement Items according to Order Factor Loading

Factor	Item	Statement	Factor Loading
	SK1	I can manage well any increase in the amount of work I receive	0.513
	PK1	Company policies support employee career development effectively	0.650
	BK1	The work I do is a type of work that is relatively easy to do	0.523
1	K1	The amount of salary I receive meets my needs	0.630
	LKNF1	My boss treats all employees in the company well	0.608
	PDOI1	My company shows significant concern for me	0.647
	WLB1	I work according to the working hours determined by the company	0.539
	BK4	The targets I have to achieve at work are relatively low	0.687
	BK7	I often succeed in completing every task given well	0.753
2	ВК9	I always try to actively participate in contributing ideas in an effort to provide the best performance in the work I do	0.647
	BK13	My current job brings me happiness	0.610
	WLB5	I can divide responsibilities between personal and work matters	0.619
	WLB7	I can divide commitments between personal matters and work	0.625
3	WLB8	I always come to work on time without feeling forced	0.633

International Journal of Environmental Sciences ISSN: 2229-7359 Vol. 11 No. 2, 2025 https://www.theaspd.com/ijes.php

	WLB10	The tasks given are according to my abilities	0.607
	WLB11	My family always supports my career and work	0.683
	WLB12	My current job is what I want	0.538
	BK2	The work I do is work that does not always require special skills	0.616
	BK3	The work I do every day does not require much physical effort	0.517
4	BK8	I feel satisfied with my current job	0.566
	BK11	I am willing to do work that is outside of my main obligations, if the work is in accordance with my abilities	0.695
	BK12	I have never been tired to the point of stress when doing work	0.672
	JB1	I remain emotionally stable in my work	0.606
5	JB4	I am comfortable working with people of various natures throughout the day	0.664
	JB7	I give my best by working hard at work	0.666
6	LKNF9	My colleagues and I provide support and assistance to each other when someone needs help	0.682
7	WLB4	I can complete my work in the office without having to work at home	0.742
	WLB6	My work responsibilities are light	0.807
8	LKNF7	Collaboration at the company where I work is going well	0.652
	JI 1	I am confident that I will stay with my current job at the company	0.547
9	JI3	I am confident in the sustainability of my work	0.537
	JI6	I am confident that I can pursue my career in the long term	0.608
10	K6	The benefits I receive from the company are able to improve my welfare	0.618
	K9	I can enjoy the work facilities at my workplace to fulfill my comfort and make it easier for me when I work	0578
11	PDO2	My company weighs my goals closely with my values	0.686
12	JB6	I feel happy with my current job	0.691
	JB8	I feel comfortable when working with other people directly	0.580
13	SK5	My company provides opportunities for employees to advance in positions	0.722

ISSN: 2229-7359 Vol. 11 No. 2, 2025

https://www.theaspd.com/ijes.php

	LKNF3	My supervisor supervises my performance in the office well	0.652
14	LKNF8	The relationships between team members at the company where I work are harmonious	0.628
15	PK3	In my company, educational level is one of the main requirements for career development	0.670
16	SK6 My company provides personal development training to employees		0.726
	SK7	I have a good working relationship with my colleagues	-0.678
17	JI9	I have the opportunity to get an increase in income	-0.645
18	КО3	The company I work for motivates me to achieve better	-0.607
19	KO6	I will stay at this company because I am guided to have a better career	0.680
20	SK3	I know the clarity regarding the responsibilities related to my position	0.738
21	SK8	I get good treatment from my coworkers	-0.653
	SK9	I have a good working relationship with my boss	0.684
22	PK5	The company provides training to employees to improve work quality	0.659
23	JI10	I feel comfortable when doing work	0.766
24	JB5	I have energy at work	0.693
25	JI8	My job position is safe with fair assessment	0.688
27	К3	The salary I receive is in accordance with the rules set by the government	0.646
	JI5	I have a small chance of getting another assignment in a similar position	-0.511

Source: Author's Processed Data (2025)

Based on Table 6, the author named the factors by identifying each statement item and the relationship between items in one factor. To avoid confusion, newly formed factors should not be given the same name as the manifest variable. Kline (2016) explains the three main principles in naming factors. First, factor names are only used to facilitate verbal communication. Second, factors should not be considered as something that is absolutely real. Third, it should not be assumed that two factors with the same name have identical meaning (*jingle fallacy*). Naming a factor can use a new term that reflects the variables in it or take the name of one of the dominant variables in forming the factor.

ISSN: 2229-7359 Vol. 11 No. 2, 2025

https://www.theaspd.com/ijes.php

Factors of Turnover Intention

Based on previous studies, there were initially ten determinants of turnover intention. However, the results of this study's data analysis identified twenty-six factors that contribute to the turnover intention of Generation Z employees in Indonesia. These factors are presented in Figure 3.

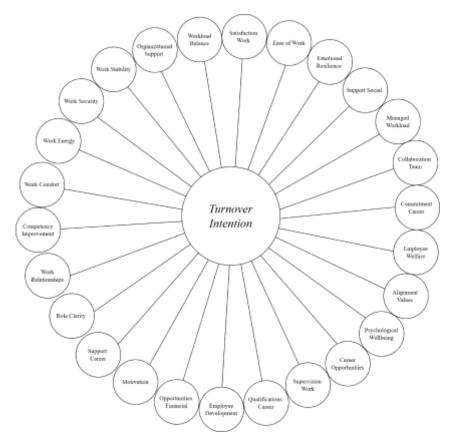


Figure 3 Names of New Factors

Source: Author's Processed Data (2025)

4. CONCLUSION

This research reveals that there are 26 factors that shape turnover intention among Generation Z employees in Indonesia. The factor with the most dominant influence is organizational support which explains 16.112% of the variance, followed by workload balance, job satisfaction, ease of work, and psychological well-being. These findings show that Generation Z really pays attention to aspects of emotional support, a positive work environment, and value alignment between the individual and the company. Thus, this research answers the main question about the forming and dominant factors that influence Generation Z's job turnover intention. However, this research has several limitations, including the use of an exploratory approach which does not test causal relationships between variables and the limited population which is focused only on Generation Z in Indonesia. The use of purposive sampling techniques also limits the generalizability of findings to a wider population. However, the contribution of this research is quite significant, both theoretically and practically. Academically, this study expands the literature on turnover intention by producing new factors that are relevant to the generational context and local culture. Practically, these results provide strategic guidance for companies in designing employee retention policies that are more targeted and evidence-based.

ISSN: 2229-7359 Vol. 11 No. 2, 2025

https://www.theaspd.com/ijes.php

REFERENCES

- Abet, Z., Mohd Anuar, M. A., Arshad, M. M., & Ismail, I. A. (2024). Factors affecting turnover intention of Nigerian employees: The moderation effect of organizational commitment. *Helion*, 10(1). https://doi.org/10.1016/j.heliyon.2023.e23087
- Central Bureau of Statistics. (2020). Population by Region, Generation Classification, and Gender, Indonesia, 2020.
- Damayanti, I., & Wulansari, P. (2024). The Influence of Compensation and Non-Physical Work Environment on Employee Turnover Intention among Generation Z in Bandung City. *IRJEMS International Research Journal of Economics and Management Studies*, 1. https://doi.org/10.56472/25835238/IRJEMS-V3I1P139
- Deloitte. (2020). Understanding Generation Z in the workplace: New employee engagement tactics for changing demographics.
- Dudija, N., Naibaho, S., & Wibowo, S. B. (2024). Enhancing Performance: The Role of Organizational Culture, Commitment, and Support in Indonesian Paper Industry. *Jurnal Psikologi*, 51(2), 141. https://doi.org/10.22146/jpsi.81915
- Halim, L., & Antolis, K. (2021). Analysis of Factors that Influence Agent Turnover Intention at PT AIA Branch X Malang. Economics, Finance, Investment and Sharia (EQUITY), 2(2), 177–186. https://doi.org/10.47065/ekuitas.v2i2.667
- Hanura, F., Anggadwita, G., Prasetio, A. P., & Luturlean, B. S. (2020). Does work-life balance mediate the relationship between HR practices and affective organisational commitment Perspective of a telecommunication industry in Indonesia. *International Journal of Learning and Intellectual Capital*, 1(1), 1. https://doi.org/10.1504/ijlic.2020.10031821
- Kinasih, F.T., & Indiyati, D. (2023). The Influence Of Perceived Organizational Support and Work Environment on Turnover Intention (Study on Millennial Employees In West Java). *JHHS (Journal of Humanities and Social Studies*), 07. https://doi.org/10.33751/jhss.v7i3.8769
- Kline, R. B. (2016). Principles and Practice of Structural Equation Modeling (4th ed.). The Guilford Press.
- Marcella, J., & Ie, M. (2022). The Influence of Job Stress, Job Satisfaction, and Career Development on Employee Turnover Intention. *Muara Journal of Economics and Business*, 6(1), 213. https://doi.org/10.24912/jmieb.v6i1.18321
- Siddiqi, K. O., Rahman, M. H., Esquivias, M. A., & Hutapea, L. M. N. (2024). The effect of perceived organizational and supervisor support on nurses' turnover intention in Bangladesh: Does workfamily conflict play a role? *Social Sciences and Humanities Open*, 10. https://doi.org/10.1016/j.ssaho.2024.100992
- Wahyuningtyas, R., Disastra, G., & Rismayani, R. (2023). Toward cooperative competitiveness for community development in Economic Society 5.0. *Journal of Enterprising Communities*, 17(3), 594–620. https://doi.org/10.1108/JEC-10-2021-0149
- Wahyuningtyas, R. (2015). An integrated talent management system: challenges for competitive advantage. *International Business Management*, 9(4), 384-390.
- Yulaeli, T., Murwaningsari, E., & Mulyani, S. D. (2024). The Influence of Green Human Capital and Green Creativity on Business Performance with Green Environmental Commitment as Moderation. International Journal of Environmental Sciences, 10(1). http://www.theaspd.com/ijes.php