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Abstract:  The exponential growth of web-based infrastructures and the rise in sophisticated cyber threats have 
placed Intrusion Detection Systems (IDS) under immense performance pressure. Traditional IDS models, while 
accurate, often suffer from high processing latency due to large and redundant feature spaces. This research 
introduces a novel hybrid framework to enhance IDS performance by integrating three advanced feature selection 
algorithms: Hybrid Feature Subset Selection Algorithm (HSSA), Adaptive Mutual Relevance Pruning (AMRP), 
and Temporal Gradient-Based Feature Pruning (TGBFP). Each algorithm addresses specific bottlenecks related 
to detection speed, redundancy, and model interpretability. The proposed models are benchmarked using the NSL-
KDD dataset, incorporating both static and dynamic attack scenarios. HSSA, based on domain-informed 
backward elimination, achieves the highest detection accuracy ( 93.24% ) with the lowest response time (2.3s). 
AMRP optimally balances relevance and redundancy, while TGBFP dynamically filters features during model 
training via real-time gradient feedback. Together, these methods reduce false positives and processing load 
without sacrificing classification fidelity. Experimental validation through precision-recall analysis, ROC curves, 
and performance histograms confirms the efficacy of the proposed hybrid approach. The framework offers a 
scalable, real-time detection mechanism adaptable to diverse network environments. 
Keywords: Intrusion Detection System, Feature Selection, Supervised Learning, Gradient Analysis, 
Cybersecurity, Backward Elimination, Real-time Detection 

1. INTRODUCTION 
In the contemporary digital landscape, cybersecurity has become a critical cornerstone for 
maintaining the confidentiality, integrity, and availability of information systems. The rapid 
evolution of cloud computing, web-based applications, and interconnected infrastructures has 
introduced unprecedented scalability and flexibility. However, these very benefits have also exposed 
systems to increasingly complex and frequent cyber threats. Among these threats, intrusion attempts-
ranging from denial-ofservice attacks to zero-day exploits-have grown not only in volume but also in 
sophistication. As a result, Intrusion Detection Systems (IDS) have transitioned from being optional 
security layers to fundamental components of resilient network architectures. 
Traditional IDS models often depend on rigid signature-based or anomaly-based detection schemes. 
While these methods are effective against known attack patterns, they falter when confronted with 
novel or obfuscated intrusions. More critically, they are plagued by inefficiencies in processing time, 
particularly when deployed in environments with high-volume traffic and real-time constraints. This 
lag in detection not only hampers immediate response but can also render the system vulnerable 
during the window of exposure. In scenarios such as financial systems, healthcare networks, and 
critical infrastructure control systems, even milliseconds of delayed response can translate into 
catastrophic consequences. 
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Figure 1:  Hybrid Intrusion Detection System Architecture 
To mitigate these limitations, machine learning (ML) has been widely embraced for its capacity to 
learn evolving attack patterns and detect anomalies beyond pre-defined rules. However, this shift has 
introduced a new set of challenges. Most notably, ML-driven IDS systems often utilize datasets with 
a large number of features, many of which may be redundant, noisy, or irrelevant. This "feature bloat" 
increases computational overhead, slows down model training and inference, and may degrade the 
model's generalization capability. In highly dynamic environments, a bloated feature space can 
become a bottleneck that negates the benefits of intelligent detection. 
From a technical standpoint, feature selection plays a pivotal role in enhancing the operational 
efficiency of machine learning-based IDS. The objective is to retain only those features that 
significantly contribute to classification accuracy, while eliminating those that introduce redundancy 
or dilute model performance. Traditional feature selection techniques-such as filter methods (e.g., 
information gain, correlation scores) and wrapper methods (e.g., recursive feature elimination)-have 
provided useful baselines. However, they often treat features in isolation and fail to consider the 
interplay between feature sets, the context of intrusion scenarios, or the model's training dynamics. 
Moreover, many existing methods are static; they select features once and do not adapt to new attack 
trends or varying network loads. In security contexts, this lack of adaptability results in stale detection 
frameworks that become less effective over time. Furthermore, feature selection is frequently 
evaluated only for its impact on classification accuracy, neglecting its equally important effect on 
system response time, which is essential in real-time intrusion detection. 
This paper addresses the gap between accuracy-focused feature selection and efficiency-aware 
intrusion detection by introducing a Hybrid Feature Subset Selection Algorithm (HSSA). The 
proposed methodology is designed not only to improve detection precision but also to significantly 
reduce processing time, ensuring a more agile and responsive IDS. Our approach leverages backward 
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elimination guided by supervised learning metrics, enhanced through domain knowledge 
segmentation across four key dimensions: network infrastructure, data security, integrity 
management, and reactive security. 
In addition to HSSA, this work explores two alternate methodologies: 

a. Adaptive Mutual Relevance Pruning (AMRP) - A redundancy-aware, information-theoretic 
feature selection strategy that balances relevance with diversity. 

b. Temporal Gradient-Based Feature Pruning (TGBFP) - A learning-dynamics-based approach 
that observes the temporal impact of each feature during training, enabling data-driven 
feature deactivation. 

Both alternate methods are novel in their capacity to align feature selection with real-world IDS 
constraints, namely adaptability, low-latency processing, and generalization in volatile environments. 
The rest of this paper is organized as follows: Section II reviews relevant literature and highlights gaps 
in current IDS feature selection strategies. Section III describes the proposed methodologies in detail. 
Section IV presents experimental evaluations and comparative performance results. Finally, Section 
V concludes with insights and future directions. 
2. Related Work 
Intrusion Detection Systems (IDS) have been at the forefront of cybersecurity research, evolving 
rapidly to counter increasingly sophisticated threats. One critical challenge identified across most 
recent IDS frameworks is the lack of scalable, adaptive feature selection mechanisms that balance 
detection accuracy with response time. This section reviews contemporary research efforts focusing 
on IDS improvement, especially in feature selection, detection accuracy, time complexity, and 
adaptability to evolving threats.  
Zhou and colleagues proposed a Federated Feature Selection Mechanism (FFSM) using differential 
privacy for collaborative IDS models in distributed cloud environments. Their approach allows 
multiple nodes to locally compute feature rankings while preserving data privacy. However, their 
method relies heavily on filter-based relevance scoring, which lacks deeper learning-based adaptation. 
It also does not explicitly reduce processing latency, a key requirement for real-time detection. 
In their work on Multi-layered Deep Neural Network IDS (MDNN-IDS), Al-Dhief et al. incorporated 
convolutional layers to extract hierarchical features. While the model demonstrated improved 
accuracy over traditional ML models, it suffered from prolonged training and inference time due to 
its depth and the inclusion of all available features. The absence of dynamic feature pruning further 
limited its scalability. Singh and Maheshwari (2023) introduced a Hybrid SVM-Random Forest 
Ensemble that used wrapper-based feature selection with recursive elimination. The model showed 
modest gains in detection precision but failed to account for redundant feature interactions, leading 
to high false positives in dense traffic environments. Moreover, the approach did not scale well when 
applied to larger datasets like CICIDS2017. Wang et al. developed a Mutual Information Weighted 
KNN (MI-KNN) method that assigns weights to features based on their individual relevance to attack 
labels. While this increased classification accuracy, their methodology didn't account for cross-feature 
dependencies or relevance decay over time, resulting in poor generalization for zero-day attacks. 
Rashid and Malik (2022) study presented a Genetic Algorithm (GA)-enhanced Feature Optimizer for 
IDS on IoT networks. Though it successfully reduced feature dimensions by over 40%, the 
convergence time of the GA was too high for time-sensitive detection, and the system lacked 
adaptability when deployed across different network topologies. Elmasry proposed an Autoencoder-
based Dimensionality Reduction method for anomaly detection in smart grid IDS. While the 
reconstruction loss helped identify latent representations, the method did not incorporate explicit 
security domain knowledge, making it less interpretable and hard to configure for specific attack 
types (e.g., DDoS vs. XSS). 
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Bhandari and Sharma (2022) team built a Lightweight IDS for Edge Devices using decision trees and 
entropy filters. Although the model was efficient in computation, its filter-only approach failed to 
capture contextual patterns and sequential anomalies. This made it prone to false negatives, especially 
in adversarial environments. Tran et al. proposed a Graph Neural Network (GNN)-based IDS to 
learn the topology-aware patterns of network traffic. While it was novel in modeling communication 
patterns, the computational complexity was significantly high, and it demanded extensive pre-
processing which hindered realtime usability. Iqbal et al. (2021) used Principal Component Analysis 
(PCA) combined with Naïve Bayes for traffic classification. Though the approach reduced 
dimensionality effectively, it relied heavily on linear assumptions, making it ineffective for detecting 
non-linear attack patterns common in polymorphic malware or advanced persistent threats (APTs). 
Chen and Xie (2020) one of the earliest deep IDS frameworks evaluated here, the authors 
implemented a CNN-LSTM hybrid model. While it was able to capture both spatial and temporal 
aspects of traffic, the model required all 41 features from NSL-KDD, making it computationally 
expensive. The authors did not propose a feature selection strategy, leaving the model impractical for 
real-time embedded deployments. 

Table 1: State of the art Web Attacks IDS 
Author(s) & Year Methodology Strengths Weaknesses 
Zhou et al. (2024) Federated Feature 

Selection + DP 
Privacy-preserving Filter-based only; lacks 

latency reduction 
Al-Dhief et al. 
(2024) 

Multi-layered DNN for 
IDS 

Improved accuracy Long training time; no 
feature pruning 

Singh & 
Maheshwari 
(2023) 

SVM-RF Ensemble with 
RFE 

Better precision High FP due to redundant 
features 

Wang et al. 
(2023) 

Mutual Info-weighted 
KNN 

Simple and effective Poor feature interaction 
modeling 

Rashid & Malik 
(2022) 

GA-based Feature 
Optimization 

40% feature 
reduction 

generalizability 

Elmasry et al. 
(2022) 

Autoencoder for Smart 
Grid IDS 

Captures latent 
features 

Low interpretability; no 
domain-specific tuning 

Bhandari & 
Sharma (2022) 

Decision Trees + Entropy 
Filtering 

Lightweight on edge 
devices 

Lacks contextual 
correlation 

Tran et al. (2021) GNN for Topology-aware 
Detection 

Models traffic 
relations well 

Complex and resource-
heavy 

Iqbal et al. (2021) PCA + Naïve Bayes Good 
dimensionality 
reduction 

Linear model limitations 

Chen & Xie 
(2020) 

CNN-LSTM for 
TemporalSpatial 
Features 

Captures attack 
patterns well 

Requires all features; no 
selection mechanism 

 
While existing work has made meaningful contributions to improving accuracy and leveraging 
advanced ML architectures for IDS, very few studies have directly addressed the relationship between 
feature selection and real-time detection efficiency. Even fewer incorporate domain-specific 
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knowledge into the selection process or adapt the selection dynamically over time. Additionally, 
redundancy-aware pruning, gradient-based filtering, and temporal relevance scoring remain 
underexplored. This paper fills these critical gaps by proposing a Hybrid Feature Subset Selection 
Algorithm (HSSA) and two alternative methods that focus on reducing intrusion detection time 
without sacrificing accuracy-thereby aligning IDS design more closely with the demands of real-time, 
scalable cybersecurity. 

3. METHODOLOGY 
The domain of real-time Intrusion Detection Systems (IDS) demands both accuracy and speed in 
identifying threats. With the exponential growth of network traffic and evolving attack vectors, 
traditional detection mechanisms are struggling to scale. A common bottleneck lies in feature-rich 
datasets where many attributes contribute little or no value, thereby increasing the time complexity 
and reducing responsiveness. 
To address this, our work proposes an IDS framework centered on feature efficiency. It encompasses 
both static selection and dynamic pruning mechanisms that intelligently adapt the feature space 
based on behavioral learning, information gain, and gradient feedback. The framework integrates 
supervised and unsupervised logic to filter out redundant, noisy, and time-irrelevant features while 
retaining those that contribute to model accuracy and explainability. 
a. Data Acquisition Layer 
Captures input from traffic monitoring tools and sensor logs. Data preprocessing includes 
normalization, label encoding, and null value management. 
b. Preprocessing and Feature Engineering 
Applies correlation filtering, one-hot encoding, and statistical summarization. This phase prepares 
the dataset for meaningful feature interaction assessment. 
c. Feature Subset Selection Core 
Three algorithmic models operate here: 

• HSSA: Core backward elimination using knowledge subsets. 
• AMRP: Mutual information-based redundancy filter. 
• TGBFP: Real-time gradient feedback-driven pruning. 

d. Classification Engine 
Implements supervised classifiers (e.g., Random Forest, SVM) optimized using selected features. 
Handles attack type prediction and decision fusion. 
e. Decision and Alert Layer 
Translates predictions into actionable alerts and records. Integrates with SIEM systems. 
3.1: Hybrid Feature Subset Selection Algorithm (HSSA) 
HSSA combines domain-specific grouping of features with backward elimination based on prediction 
accuracy. It ensures feature sets are reduced without sacrificing knowledge completeness. 
Let 𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑛} be the full feature set. We segment 𝐹 into subsets: 

• 𝐹NI : Network Infrastructure 
• 𝐹DS : Data Security 
• 𝐹DIM  : Data Integrity Management 
• 𝐹RS : Reactive Security 

We iteratively build feature combinations and compute the Mean Absolute Error (MAE) for 
classification. 
Subset Combination for Knowledge Domains 

𝐹combined = 𝐹NI × 𝐹DS × 𝐹DIM × 𝐹RS  
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MAE for a Feature Set 

𝑀𝐴𝐸(𝐹𝑘) =
1

𝑚
∑ 

𝑚

𝑖=1

  |𝑦𝑖 − 𝑦̂𝑖(𝐹𝑘)|  

Final Optimal Subset Selection 
𝐹∗ = arg⁡ min

𝐹𝑘⊂𝐹combined 
 𝑀𝐴𝐸(𝐹𝑘)  

HSSA adds novelty by contextualizing features through security domain mapping before selection. 
This not only reduces overfitting but also ensures that removed features do not carry latent 
significance. The algorithm is adaptive, allowing scalability with large-scale datasets like CICIDS2017 
or NSL-KDD. 

3.2: Adaptive Mutual Relevance Pruning (AMRP) 
AMRP uses mutual information between features and class labels to rank features. It also considers 
redundancy by evaluating mutual relevance among features themselves. 

Mutual Information  

𝑀𝐼(𝑓𝑖, 𝑌) =∑  

𝑥,𝑦

 𝑃(𝑥, 𝑦)log⁡
𝑃(𝑥, 𝑦)

𝑃(𝑥)𝑃(𝑦)  

Average Redundancy Score 

𝑅(𝑓𝑖) =
1

|𝐹| − 1
∑  

𝑛

𝑗=1
𝑗≠𝑖

 𝑀𝐼(𝑓𝑖, 𝑓𝑗)  

Feature Utility Score 

𝑈(𝑓𝑖) =
𝑀𝐼(𝑓𝑖, 𝑌)

𝑅(𝑓𝑖) + 𝜖
 

AMRP introduces a principled balance between individual feature relevance and group redundancy. 
By maximizing the utility score, features that are both informative and unique are retained. This 
method is highly interpretable and performs well in multi-class scenarios with overlapping behavior 
(e.g., scanning vs. brute-force attacks). 

3.3: Temporal Gradient-Based Feature Pruning (TGBFP) 
TGBFP applies a novel real-time feedback loop during model training to identify and remove low-
impact features based on the gradients of the loss function over epochs. 
Temporal Gradient Flow (Described Verbally): 

1. Monitor the gradient ∇𝐿/∇𝑓𝑖 for each feature across epochs. 
2. Average the absolute gradients over time. 
3. Normalize and apply threshold-based pruning. 

To prevent redundancy, equations 16+ are reserved for full paper continuation. 
TGBFP is particularly valuable in real-time IDS where training evolves based on new traffic. By 
observing which features contribute less to reducing loss, it discards noise without requiring external 
heuristics or rule sets. This method excels in dynamic feature landscapes and cloud deployments 
where training data shifts over time. 
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Table 2: Proposed Contributions in Applicability Methodology 

Algorithm Key Innovation Applicability 

HSSA Security-domain-aware subset modeling Static and supervised IDS 

AMRP Redundancy-relevance balancing Filter-Wrapped hybrid models 

TGBFP Real-time gradient feedback Adaptive and online IDS 

 
Together, these algorithms form a layered defense mechanism in feature processing for IDS. They 
enable the system to dynamically adapt, maintain efficiency, and retain high classification quality 
with significantly reduced latency. This blend of supervised and feedback-aware methods enhances 
real-time threat mitigation capabilities while reducing computational overhead-a necessity in modern 
distributed and edge-deployed IDS environments. 
4. Experimental Setup and Results Analysis 
In order to evaluate the effectiveness of the proposed hybrid intrusion detection system (IDS) 
algorithms—namely HSSA, AMRP, and TGBFP—a comprehensive experimental framework was 
developed. Each algorithm was assessed based on its ability to reduce processing time, improve 
classification accuracy, and lower false positives and false negatives. 

Table 3: Experimental Setup Details 
Component Description 
Platform Intel i7, 16 GB RAM, Ubuntu 20.04 
Software Environment Python 3.10, scikit-learn, matplotlib, pandas 
Classifiers Used Random Forest, SVM, KNN 
Feature Engineering Tools Correlation filters, entropy measures 
Evaluation Metrics Accuracy, Precision, Recall, F1-score, Response Time, AUC 
Dataset Used NSL-KDD Dataset (corrected for redundancy and imbalance) 
Training-Test Split 70% Training, 30% Testing 
Cross-validation Stratified 10-fold cross-validation 

 
The experiments leveraged the NSL-KDD dataset, a widely used benchmark in intrusion detection 
research. This dataset addresses the redundancy and class imbalance issues found in its predecessor, 
KDDCup'99. 
a. Data Preprocessing and Utilization Strategy 

• All 41 features were initially considered, followed by reduction using the proposed feature 
selection methods. 

• The dataset was cleaned by removing duplicate records. 
• One-hot encoding was applied for categorical attributes such as protocol_type, service, and 

flag. 
• The dataset was segmented based on different attack classes: DoS, Probe, R2L, and U2R, 

with balanced samples for training and evaluation. 
b. Performance Metrics and Evaluation 
The proposed algorithms were evaluated using five major metrics: 

• Accuracy: Overall correctness of predictions. 
• Precision: Ratio of true positives to predicted positives. 
• Recall: Ratio of true positives to actual positives. 
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• F1-Score: Harmonic mean of precision and recall. 
• Response Time: Time taken to detect an intrusion. 
• False Positive Rate (FPR): Normal traffic incorrectly classified as attack. 

 

 
Figure 2: Accuracy Comparison 
The bar chart indicates that HSSA achieved the highest accuracy (93.24%), outperforming all others. 
This demonstrates the power of domain-specific backward elimination in preserving relevant 
knowledge while improving detection performance. 

 
Figure 2: Response Time Analysis 
 
The response time for HSSA was the lowest at 𝟐. 𝟑 seconds, while the full-feature model recorded 
the highest time of 4.7 seconds. This validates the hypothesis that pruning irrelevant features leads 
to faster inference. 
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Figure 3: F1-Score Distribution 
 
HSSA's slice dominates the pie chart, reflecting its balanced performance between precision and 
recall. AMRP and TGBFP also maintained good trade-offs, but were slightly less effective in detecting 
rare attack patterns like U2R. 

 
Figure 4: ROC Curve 
The ROC plot clearly highlights that HSSA achieved the highest AUC (0.94), indicating its superior 
discriminative ability. The performance decline in the full-feature model (AUC = 0.89 ) suggests 
overfitting due to noisy feature inclusion. 

 
Figure 5: Histogram of False Positive Rates 
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The histogram reveals that HSSA had the lowest false positive rate (3.2%), which is crucial for 
reducing alert fatigue in real-world deployments. In contrast, the full-feature model had the highest 
FPR at 6.2%. 

 
Figure 6: Scatter Plot - Precision vs Recall 
This plot illustrates the tight clustering of HSSA and AMRP toward the top-right quadrant, indicating 
high precision and recall simultaneously. TGBFP showed slight variation due to its temporal learning 
dependencies. 

Table 4: Performance Metrics 
Metric HSSA AMRP TGBFP Full-Feature 
Accuracy 93.24% 91.84% 91.10% 90.35% 
Precision 93.0% 92.0% 91.0% 89.0% 
Recall 93.5% 91.8% 91.0% 90.0% 
F1-Score 93.2% 91.9% 91.0% 89.5% 
Response Time (s) 2.3 2.6 2.9 4.7 
False Positive Rate 3.2% 4.5% 4.9% 6.2% 
ROC AUC 0.94 0.92 0.91 0.89 

 
• HSSA proved optimal for static and semi-dynamic environments where attack vectors are 

diverse and require nuanced understanding of domain-relevant features. 
• AMRP is ideal for environments with tight memory constraints, where relevance-to-

redundancy ratios can drive lightweight IDS deployments. 
• TGBFP is best suited for real-time streaming systems, where training-time feedback can 

dynamically guide feature importance. 
These experimental results support the core hypothesis: that a well-architected feature selection 
strategy can simultaneously reduce detection latency and improve predictive accuracy. 

5. CONCLUSION  
 Modern cyber threats are occurring with an ever-increasing complexity, thus demanding intrusion 
detection systems that are not only precise, but also fast, interpretable and adaptive. The work 
proposes and tests a holistic and hybrid architecture that balances IDS performance by means of 
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domain-focused feature and training-time retroactivity analysis. The first algorithm suggestion Hybrid 
Feature Subset Selection Algorithm (HSSA) is distinguished by the fact that backward elimination is 
smartly integrated with the feature domains based on knowledge. Given that it is capable of achieving 
better levels of detection precision with a drastic reduction in response time, it can seamlessly become 
an excellent model suited to security settings with high-throughput requirements. The second model 
is the model of Adaptive Mutual Relevance Pruning (AMRP), which builds on the system to be robust 
by removing redundant features in the most mathematically balanced relevance-to-redundancy ratio 
resulting in better generalization. Finally, Temporal GradientBased Feature Pruning (TGBFP), is the 
first feature pruning based on real-time training feedback to update which features to drop in an 
online manner in order to be especially well-suited to dynamic network topology and stream data 
pipelines. All of these three algorithms actually prove that the feature efficiency is not just a 
preprocessing mode, but an essential design principle of a contemporary IDS. The findings affirm 
that a thoughtful trade between domain expertise, statistical soundness and learning dynamics can 
result in accomplished systems that can produce early and trustworthiness threat detection. To 
continue this framework to federated or edge-based IDS systems and to consider adaptive thresholds 
utilizing reinforcement learning is a future research problem. 
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