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Abstract:  It is no marvel why Intrusion Detection Systems (IDS) are highly sought after in this age of online 
services that define the capabilities of enterprises. The current models usually break down in dynamic setting with 
elevated rates of false positive and false negative effectively, especially when the attack patterns are irregular or 
zero-day attacks. The paper has proposed an adaptive hybrid IDS framework that uses unsupervised deep learning 
and statistical based outlier detection in response to these limitations. Particularly, it combines three new modules 
such as Deep Contextual Clustering Algorithm (DCCA), Central Tendency Outlier Detection Algorithm 
(CTODA) and a Rule-Based Semantic Expansion Engine (RSEE). They combine to give a layered detection 
technique that compromises between behavioral learning and statistical accuracy and the interpretability of rules. 
The model was compared against NSL-KDD and KDD Cup 99 dataset and it was noted that the model reduced 
false alerts by a wide margin and the overall accuracy of the detection was 94%. Unlike stiff signature based 
systems, our framework dynamically adjusts to emerge threats, therefore it is much applicable in present-day cloud 
and web systems. The outcomes of the experiment confirm the generalizability of the model across the types of 
attacks, reduce fatigue among the analyzing experts, and provide the extended threat intelligence in real time. 
Keywords: Intrusion Detection, Deep Clustering, False Positive Reduction, Outlier Detection, Web Security, 
Unsupervised Learning, Rule-Based Inference 

1. INTRODUCTION 
 In the modern era of digital transformation, the exponential growth in web-based services has led to 
unprecedented convenience and scalability in enterprise operations. However, this evolution is not 
without its consequences. The same openness, decentralization, and flexibility that make web 
environments attractive to organizations also render them fertile ground for malicious intrusions and 
cyberattacks. As data becomes more distributed and dynamic across virtual infrastructures, the 
challenge of distinguishing benign user behavior from harmful anomalies becomes increasingly 
complex. 
Traditional cybersecurity mechanisms, such as firewalls and signature-based intrusion detection 
systems (IDS), are no longer sufficient in isolation. These systems often rely on predefined patterns 
or static rulesets, rendering them ineffective against emerging threats, zero-day vulnerabilities, or 
obfuscated attack vectors. More critically, their overreliance on static training data or deterministic 
logic has led to persistently high false positive and false negative rates. This inefficiency not only 
overloads security analysts with irrelevant alerts but also leaves systems vulnerable to silent breaches. 
From a technical standpoint, intrusion detection in web environments is fundamentally a 
highdimensional, real-time anomaly recognition problem. It must account for complex network 
behavior, temporal dependencies, user profiles, and heterogeneous protocols. Traditional machine 
learning models, particularly supervised classifiers, are often hindered by their dependence on large 
volumes of accurately labeled data-an unrealistic requirement in rapidly evolving threat landscapes. 
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Moreover, many existing solutions fail to generalize across different network topologies or adapt to 
the nuanced patterns of modern web traffic. 
Subjectively, the human and organizational cost of intrusion detection failure cannot be overstated. 
False positives lead to alert fatigue, desensitizing analysts and increasing the likelihood of genuine 
threats being ignored. False negatives, conversely, represent missed attacks-often only discovered after 
data loss, service disruption, or reputational damage has occurred. As enterprises become more 
reliant on interconnected digital ecosystems, there is a growing urgency for IDS solutions that are 
not only accurate and efficient but also adaptive and interpretable. 

 
Figure 1:  Intrusion Detection System Architecture:: 
This paper responds to that call by proposing a deep clustering-based hybrid framework aimed at 
reducing both false positive and false negative alerts in IDS, especially within complex and distributed 
web environments. By leveraging unsupervised learning principles, the system learns to detect 
irregular and unpredictable intrusion patterns without explicit labels. Unlike conventional models, 
it adapts dynamically to changes in traffic patterns and threat behaviors. Our dual-algorithm 
approachcomprising a Deep Contextual Clustering Algorithm (DCCA) and a Central Tendency 
Outlier Detection Algorithm (CTODA)—enables nuanced classification and robust anomaly 
identification through statistical and contextual understanding. The novelty of this approach lies in 
its holistic design: the combination of entropy-adjusted deep clustering for grouping behavioral 
similarities, and central tendency analytics for outlier detection, addresses the dual challenge of 
under-detection (false negatives) and over-detection (false positives). Moreover, the unsupervised 
nature of the system ensures it remains effective even in the absence of fresh labels or frequent model 
retraining. This work aligns itself with a broader vision: transforming intrusion detection from a 
static, reactive measure into a dynamic, predictive, and adaptive defense layer. By unifying statistical 
robustness with contextual intelligence, the proposed model bridges the gap between machine-driven 
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detection and human interpretability, offering a sustainable pathway toward secure web 
infrastructures in an era of constant digital flux. 

2. Related Work 
 Over the past decade, the research community has extensively investigated various techniques for 
intrusion detection in networked and cloud environments. Although numerous methodologies have 
shown promise in addressing specific aspects of the IDS problem, many still fall short when deployed 
in dynamic, real-time, and irregular web-based scenarios. This section critically surveys ten recent and 
notable contributions, highlighting their methodologies and explaining their contextual limitations. 
Salo et al. (2018) conducted a systematic literature review of 19 data mining techniques applied to 
IDS. Their study provides a broad theoretical overview of various data-driven approaches including 
decision trees, Naïve Bayes, and ensemble methods. While valuable for mapping research trends, the 
work remains largely subjective, lacking experimental validation or actionable conclusions. This 
restricts its direct utility in developing real-time systems where empirical evidence is crucial. 
Varma et al. (2018) focused on feature selection methods, presenting a taxonomy of soft computing 
techniques such as fuzzy rough sets and ant colony optimization. Although the paper offers deep 
insights into the theoretical strengths of each method, it does not provide experimental results or 
comparative metrics. This omission limits its application in performance-critical scenarios like web-
based intrusion detection, where empirical justification is essential. Peng et al. (2018) proposed a 
hybrid clustering approach using Mini-Batch K-means and PCA for IDS in big data environments. 
Their algorithm effectively handles high-dimensional data and is computationally efficient. However, 
the method assumes spherical clusters and equal density distributions-an unrealistic assumption for 
real-world network traffic, which is often irregular and noisy. 
Pan et al. (2015) developed a hybrid IDS using temporal state modeling for smart grid environments. 
Their solution is tailored for domain-specific applications and leverages behavior patterns unique to 
power systems. Despite its innovative modeling, the framework lacks generalizability to broader 
webbased or cloud environments due to its highly specialized design. Chen et al. (2016) utilized 
genetic programming for feature selection and support vector machines for classification. While this 
model successfully optimizes parameter tuning for intrusion thresholds, it is overly dependent on 
precise configuration of feature weights. In dynamic environments where traffic patterns evolve, this 
rigid dependence on static parameters reduces adaptability. 
AI-Yaseen et al. (2017) introduced a multi-level hybrid model combining SVM, Extreme Learning 
Machines (ELM), and a modified K-means algorithm. The integration aims to improve the 
classification of both known and unknown attacks. However, the framework does not incorporate 
contextual learning, thereby limiting its ability to detect previously unseen or anomalous patterns 
effectively. Zhu and Huang (2017) designed an IDS using hybrid data mining patterns, focusing 
primarily on host log analysis. While this method performs well in historical forensic analysis, its 
reliance on past data makes it ill-suited for real-time intrusion detection in distributed and high-speed 
web environments. Malhotra et al. (2017) presented a model combining genetic programming with 
k-nearest neighbors to reduce class overlap. Although it improves classification accuracy in controlled 
datasets, the method struggles with high-dimensional data and is sensitive to noise. This undermines 
its scalability and robustness, which are essential for large-scale web systems. Tabatabaefar et al. (2017) 
explored artificial immune systems for network intrusion detection, focusing on parameter deviations 
across resources. Their approach is biologically inspired and offers an adaptive detection layer. 
However, the model emphasizes detection rather than prevention, and lacks predictive capabilities 
to anticipate novel threats proactively. 
Sultana and Jabbar (2016) implemented an IDS using the AODE algorithm to classify attack types. 
While achieving respectable accuracy, their system requires meticulous tuning of probability 
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thresholds. Moreover, it does not offer interpretability or explainability-features that are increasingly 
necessary in modern cybersecurity contexts for trust and compliance. Across these works, common 
challenges persist: high dependency on static parameters, inability to handle irregular patterns, 
limited generalization, and insufficient contextual learning. Furthermore, few approaches adequately 
address the critical issue of false positives and false negatives-metrics that directly impact the trust 
and effectiveness of IDS in real-world deployment. 
In response to these gaps, this paper proposes a dual-algorithmic solution that combines deep 
clustering and statistical outlier detection. Unlike many of the reviewed methods, our framework 
emphasizes dynamic adaptability, contextual similarity, and generalizability, specifically targeting the 
minimization of false alerts while ensuring high detection fidelity. 

3. METHODOLOGY 
Web-based environments present an ever-evolving attack surface, where the presence of irregular 
intrusion patterns, adversarial traffic, and zero-day exploits severely undermines the reliability of 
conventional IDS systems. Given the unpredictable nature of these environments, the proposed 
methodology centers around a hybrid, unsupervised deep learning approach that dynamically adapts 
to new threats without explicit labels or static heuristics. 
This section presents a complete overview of the system methodology, detailing the three central 
algorithms-each designed to tackle unique facets of the intrusion detection problem. These include 
Deep Contextual Clustering (DCCA), Central Tendency Outlier Detection (CTODA), and the 
newly introduced Rule-Based Semantic Expansion Engine (RSEE). Collectively, these components 
establish a 
synergistic framework that systematically reduces false positives and false negatives by learning from 
the structure, context, and statistical behavior of network data. 
3.1 Methodological Framework Overview 
The proposed methodology is structured around the following major components: 

• Responsible for extracting high-dimensional network traffic features from benchmark 
datasets (e.g., NSL-KDD, KDD Cup 99). 

• Handles noise reduction, normalization, and missing value treatment. 
• Identifies the most discriminative features using backward elimination combined with 

domainaware grouping. 
• Significantly reduces time complexity and improves model focus on intrusion-relevant 

characteristics. 
• Clusters data instances based on deep similarity measures, contextual proximity, and 

entropybased neighborhood scoring. 
• Flags statistically deviant records that are structurally distant from normal behavior, based 

on central distribution metrics. 
• Extracts and refines interpretable rule sets, dynamically expanding upon them using 

predicate inference and logical composition. 
3.2 Algorithm 1: Deep Contextual Clustering Algorithm (DCCA) 
To identify clusters of similar behavior in unlabeled network traffic using entropy-augmented 
contextual similarity, thereby enabling detection of novel or irregular intrusion patterns. 
Conventional clustering algorithms like K-means assume that data is evenly distributed in spherical 
clusters-an assumption that does not hold true in web-based environments characterized by variable 
traffic densities and complex interaction patterns. DCCA overcomes this limitation by evaluating 
both Euclidean proximity and contextual entropy to measure deep similarity. 
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Let 𝐷 = {𝑥1, 𝑥2, … , 𝑥𝑛} be the normalized dataset with 𝑥𝑖 ∈ ℝ𝑚. The similarity between two data 
points 𝑥𝑖 and 𝑥𝑗 is computed using a Gaussian kernel function: 

Equation (10): \[ S_\{ij\} = \expไleft(-\frac\{\|x_i - x_j|^2\}\{2\sigma^2\}\right) ไ] 
This raw similarity is then refined by incorporating entropy-based weight adjustment: 
Equation (11): \[DS_\{ij\} = S_\{ij\} \cdot \logไleft(\frac\{1\}\{p_j + \epsilon\}ไright) \] 
Where 𝑝𝑗 is the empirical probability density at point 𝑥𝑗 and 𝜖 is a smoothing term to prevent 
undefined logarithms. 
To calculate local density 𝜌𝑖 for each data point, we sum the adjusted similarity across all neighboring 
points: 
Equation (12): [ \rho_i = \sum_{j=1}^{n} DS_{ij} ไ] 
Next, separation distance 𝛿𝑖 from higher-density neighbors is determined to identify cluster centers: 
 Equation (13): [ 1 delta_i = \min_{j: \rho_j > \rho_i} ∖∣ x_i - x_j| ∖]  
 Points with high 𝜌𝑖 and large 𝛿𝑖 are chosen as cluster centroids. All remaining points are assigned 
to clusters based on the closest neighbor with a higher density. 
The DCCA introduces contextual intelligence by weighting neighbors based on entropy-adjusted 
relevance. This allows the algorithm to recognize emerging anomalies that standard clustering might 
misclassify. Moreover, the density-centric assignment respects natural data boundaries and adapts to 
traffic shifts without retraining. 
3.3 Central Tendency Outlier Detection Algorithm (CTODA) 
To identify statistical outliers that deviate significantly from the central behavioral pattern across 
multiple network feature domains. 
Deep Contextual Clustering Algorithm (DCCA) 
Objective: To cluster unlabeled data using similarity measures based on both Euclidean and 
contextual distances. 
Stepwise Description: 

1. Normalize dataset 𝐷 using Min-Max scaling. 
2. For each feature vector 𝑥𝑖, compute its contextual similarity with all other vectors using: 

𝑆𝑖𝑗 = exp⁡ (−
‖𝑥𝑖 − 𝑥𝑗‖

2

2𝜎2
) 

3. Define deep similarity using entropy-adjusted weight: 

𝐷𝑆𝑖𝑗 = 𝑆𝑖𝑗 ⋅ log⁡ (
1

𝑝𝑗
) 

where 𝑝𝑗 is the probability of data point 𝑥𝑗 's occurrence. 
4. Define deep density of a point: 

𝜌𝑖 =∑ 

𝑗

𝐷𝑆𝑖𝑗 

5. Identify centroids as local maxima of 𝜌𝑖 and assign clusters using nearest-neighbor path with 
density guidance: 

𝛿𝑖 = min
𝑗:𝜌𝑗>𝜌𝑖

 ‖𝑥𝑖 − 𝑥𝑗‖ 

Alg-1 
Input: Dataset D with n data points 
Output: Clusters C1, C2, ..., Ck 
1. Normalize D 
2. For each pair (xi, xj): 
    Compute similarity Sij 
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    Compute adjusted similarity DSij 
3. For each xi: 
    Compute density rho_i 
4. Identify peak points as cluster centers 
5. Assign other points to the cluster of nearest higher-density neighbor 
 
This approach dynamically adjusts similarity based on data density and entropy, making it more 
robust to non-linear separations and irregular cluster shapes. It overcomes the limitations of K-means 
by not assuming spherical clusters and uses adaptive neighborhood density to avoid overfitting. 
4.2 Algorithm 2: Central Tendency Outlier Detection Algorithm (CTODA) 
Objective: To detect outliers (anomalies) by measuring deviations from learned central tendencies 
across feature domains. 
Stepwise Description: 

1. For each feature domain 𝑓 ∈ 𝐹, compute: 

𝜇𝑓 =
1

𝑛
∑  

𝑛

𝑖=1

𝑥𝑖,𝑓⁡ and ⁡𝜎𝑓 = √
1

𝑛
∑  

𝑛

𝑖=1

  (𝑥𝑖,𝑓 − 𝜇𝑓)
2
 

2. Define central zone: 
𝑍𝑓 = [𝜇𝑓 − 𝛼 ⋅ 𝜎𝑓 , 𝜇𝑓 + 𝛼 ⋅ 𝜎𝑓] 

3. Compute anomaly score for a point 𝑥𝑖 : 

𝐴(𝑥𝑖) = ∑  

𝑓∈𝐹

𝕀(𝑥𝑖,𝑓 ∉ 𝑍𝑓) 

where 𝕀 is the indicator function. 
4. If 𝐴(𝑥𝑖) > 𝜃, label 𝑥𝑖 as an outlier (potential intrusion). 

 
Alg-2 
Input: Dataset D with features F 
Output: List of detected outliers 
1. For each feature f in F: 
    Compute mean mu_f and std deviation sigma_f 
2. Define zone Z_f using alpha parameter 
3. For each poin\overline{t xi:} 
    Count feature violations outside Z_f 
    If count > threshold, mark as outlier 
 
This algorithm detects rare, irregular intrusions that evade density-based methods. It adapts the 
central zone for each feature based on statistical variability, which is especially effective in 
environments with noisy or semi-structured traffic like web services. 
Detailed Methodology 
Outliers often represent low-frequency or stealthy attacks that evade rule-based or clustering methods. 
CTODA identifies such instances by quantifying each point's deviation from the central tendency of  
its feature domain. 
Let 𝑥𝑖,𝑓 denote the value of feature 𝑓 in record 𝑥𝑖. For each feature: 
<div align="center"> 
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 Equation (14): [ ∖ mu_f = \frac{1}{n} \sum_{i=1}^{n} x_{i,f}, \quad \sigma_f = \sqrt 
{1𝑓𝑟𝑎𝑐{1}{𝑛} ∖ 𝑠𝑢𝑚_{𝑖 = 1}∧{𝑛}(𝑥−{𝑖, 𝑓} −∖ 𝑚𝑢_𝑓)∧2} ∖] </ div > 
A point is considered an outlier in feature 𝑓 if it lies outside the central zone: 
 Equation (15): [ Z_f = [\mu_f - \alpha \cdot \sigma_f, \mu_f + \alpha \cdot \sigma_f] ไ] 
The total anomaly score for each record 𝑥𝑖 is then calculated as the number of feature zones it 
violates. 
A threshold is applied to classify 𝑥𝑖 as normal or anomalous. 
CTODA provides a statistically sound, interpretable mechanism to flag unknown attack patterns, 
especially those that fall between cluster boundaries or mimic normal behavior. By grounding 
detection in statistical principles, it provides an orthogonal detection layer complementing DCCA. 
3.4 Algorithm 3: Rule-Based Semantic Expansion Engine (RSEE) 
Objective 
To enhance the explainability and adaptability of IDS by extracting, refining, and semantically 
expanding rule sets derived from inferred behaviors. 
Methodology and Components 

• Rule Generation: From labeled/clustered datasets, derive rules 𝑅 = {𝑟1, 𝑟2, … , 𝑟𝑘} in the 
form of feature-value predicates. 

• Confidence Scoring: Evaluate rules based on frequency and precision on historical data. 
• Semantic Expansion: Infer new rules by detecting logically inferable predicates (e.g., if 𝑓1 > 

0.7 ⇒ 𝑓2 < 0.2 ) through co-occurrence analysis and information gain. 
• Pruning: Eliminate low-confidence or redundant rules to maintain performance. 

While this algorithm doesn't require new equations beyond those previously used for clustering and 
statistics, its contribution is interpretability and continuity-providing human-understandable 
decisions that adapt over time. 
3.5 Integrated Methodology Pipeline 
The combined methodology can be summarized as: 

1. Data Ingestion → Normalize → Extract Discriminative Features (via Hybrid Subset Selection) 
2. Deep Contextual Clustering (DCCA) → Cluster all records 
3. CTODA → Identify outliers unfit for clustering 
4. RSEE → Convert learned patterns into adaptive rules 
5. Real-time Prediction → New instances are matched against RSEE rules, or reprocessed 

through DCCA/CTODA if unmatched 
This hybrid pipeline ensures that the detection is non-monolithic, adaptable, and resistant to 
adversarial drift. DCCA provides macro-level behavioral segmentation, CTODA offers micro-level 
statistical scrutiny, and RSEE gives long-term explainability and continuity. 
 The core strength of this methodological design lies in its multi-perspective view of the intrusion 
problem. Rather than relying on a single abstraction layer, the proposed solution combines structural 
learning, statistical reasoning, and logical inference into one unified detection engine. Each layer 
independently contributes to reducing false positives and false negatives while enabling deeper 
behavioral understanding. 
In practice, this means that: 

• DCCA captures group behavior anomalies (e.g., unusual access patterns). 
• CTODA isolates individual record anomalies (e.g., rare combinations). 
• RSEE sustains these insights into long-term, human-verifiable rules. 

This robust, extensible, and data-driven approach ensures that the intrusion detection system not 
only reacts but learns and evolves-turning static alert systems into intelligent, adaptive security 
sentinels. 
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4. Experimental Setup and Results Analysis 
To evaluate the effectiveness of the proposed Deep Contextual Clustering Algorithm (DCCA), 
Central Tendency Outlier Detection Algorithm (CTODA), and Rule-Based Semantic Expansion 
Engine (RSEE), a robust and diverse experimental setup was established. This section presents the 
testing environment, dataset information, evaluation metrics, detailed result tables, visual 
comparisons, and comprehensive interpretations of system performance. 
The evaluation experiments were conducted in a controlled environment to ensure consistency, 
reproducibility, and accuracy. The system configuration and software stack are detailed in Table 1. 
Table 1: Experimental Setup Details 

Parameter Specification 
Operating System Ubuntu 20.04 LTS 
Processor Intel Core i7-10750H (6-core, 2.6 GHz ) 
RAM 16 GB DDR4 
GPU NVIDIA GTX 1660 Ti (6GB VRAM) 
Frameworks Used Scikit-learn, TensorFlow, Matplotlib 
Programming 
Language 

Python 3.9 

Evaluation Tools Custom-built pipeline + Pandas + Seaborn 
Dataset Sources NSL-KDD, KDD Cup 99 
Metrics Used Accuracy, Precision, Recall, F1-Score, False Positives, False Negatives, 

ROC AUC 
 
Two widely recognized benchmark datasets were used to evaluate the algorithms: 

• NSL-KDD: A refined version of the original KDD Cup 99, containing 125,973 labeled 
instances across 22 attack types. It addresses redundancy and class imbalance, making it more 
suitable for robust IDS evaluation. 

• KDD Cup 99: The original dataset with 4.9 million records; used here for comparative 
testing and scalability analysis. 

Each dataset contains 41 features representing network traffic behaviors. Features were grouped and 
preprocessed into four categories: 

1. Network Infrastructure (e.g., protocol_type, service) 
2. Data Security (e.g., login attempts, root access) 
3. Data Integrity (e.g., file accesses, shell commands) 
4. Reactive Features (e.g., connection count, destination host rate) 

All features were normalized using Min-Max scaling and missing values were handled using 
domainspecific imputation logic. 
The datasets were divided into: 

• Training Set: 70% 
• Testing Set: 30% 

Clustering (DCCA) was applied on both labeled and unlabeled data, followed by CTODA for 
statistical outlier detection. RSEE was used to create a semantic rule set from the results. 
4.3 Evaluation Metrics 
The following metrics were computed: 

• Accuracy: Correct predictions / Total predictions 
• Precision: TP / (TP + FP) 
• Recall: TP / (TP + FN) 
• F1-Score: Harmonic mean of Precision and Recall 
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• False Positive Rate (FPR): FP / (FP + TN) 
• False Negative Rate (FNR): FN / (FN + TP) 
• ROC AUC Score: Area under the ROC curve 

4.4 Comparative Results and Analysis 
The experimental results are summarized in the Results Table presented to you. Let's now discuss 
and interpret the findings through key visual figures. 

 
Figure 2: Accuracy Comparison 
The proposed hybrid model that combines DCCA + CTODA + RSEE outperformed all other 
baseline and hybrid algorithms, achieving an impressive accuracy of 𝟗𝟒%. The sharp jump from 
conventional models like SVM and Random Forest demonstrates the power of deep unsupervised 
learning in capturing irregular patterns. 

 
Figure 2: Precision vs. Recall Scatter Plot 
The top-right cluster (DCCA, Hybrid, Final Proposed) shows models with high precision and recall, 
indicating effective intrusion identification with minimal false alarms. The distance between points 
visually represents performance disparity. 
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Figure 3: Histogram of F1-Score Distribution 
The distribution shows a clear progression. Traditional models hover around 0.80 , while deep 
clustering and hybrid variants reach above 0.93 , proving the model's generalization capability on 
both known and zero-day intrusions. 

 
Figure 4: Performance Breakdown Pie Chart 
The pie chart illustrates the relative strength of each metric in the final model. Notably, precision 
and recall were almost equally weighted ( ∼ 93% ), indicating a balanced and trustworthy detection 
system. 

 

Figure 5: ROC AUC Comparison 
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The ROC AUC of the proposed model is 𝟎. 𝟗𝟒𝟓, confirming its capability to separate positive and 
negative classes effectively. This validates robustness even in noisy or imbalanced data settings. 

• Hybrid Synergy: The combination of DCCA and CTODA improved accuracy from 0.91 and 
0.89 (individually) to 0.93 when integrated, proving synergistic value. 

• Rule Integration: When RSEE was added to the hybrid, interpretability increased without 
sacrificing performance. Final F1-score reached 𝟎. 𝟗𝟑𝟓. 

• Error Reduction: False Positive and False Negative rates dropped to 0.06, a significant 
improvement from 0.12-0.18 in classical ML models. 

Subjectively, the most compelling evidence lies not just in numerical superiority but in adaptive 
consistency. The system maintained high recall across varied test splits, proving it does not overfit to 
a specific attack pattern. The addition of the RSEE module enabled human-verifiable rules, turning 
the system into a proactive IDS that security analysts can interpret and trust. 
Moreover, these results highlight a major paradigm shift: from rigid, signature-based detection toward 
fluid, self-adjusting, unsupervised frameworks that operate in real-time, without supervision, and 
grow more intelligent with data exposure. 

5. CONCLUSION  
Smart and dynamic security systems will be needed with the growth of cyber threats surface area made 
exponentially larger by the adventure of web-based infrastructures. The widely adopted traditional 
IDS models are still ineffective in addressing the challenges that are presented by dynamic attack 
vectors, mainly through their reliance on labeled data as well as on fixed rule sets. The paper has 
filled these gaps by suggesting an adaptive IDS model that is based on three new components, 
including DCCA, CTODA, and RSEE. The Deep Contextual Clustering Algorithm proved to have 
an immense ability to cluster behavior similarities without using any predefined labels. It successfully 
discovered abnormal behaviors even when such behaviors were integrated into ordinary traffic, 
accomplishing what traditional models could hardly do. In the meantime, the Central Tendency 
Outlier Detection Algorithm was also able to give another perspective through which statistical 
anomalies that are usually missed by systems focused on behavior could be precisely identified. The 
use of these two sub-elements alone made a sturdy unsupervised base, which can achieve high 
accuracy in detection with little configuration. Rule-Based Semantic Expansion Engine gave crucial 
interpretability to the security analysts, who could learn and certify the choices of the system. This 
solves one of the common criticisms of deep learning models, which is that of lack of transparency. 
Extraction of human-readable rules of clustered and anomalous data provides the system with 
transparency, trust, and continuous learning. Comparisons based on experimental tests done on 
NSL-KDD data and KDD Cup 99 data indicated that the framework was superior in terms of 
accuracy, recall and minimization of errors. It is worth noting that false positive and false negative 
levels decreased to 6% whereas the final detection accuracy was 94 percent. These results indicate 
not only the efficiency of the algorithms, but also the overall architecture of the framework that is 
designed to involve several learning paradigms and unify them into one system. Based on personal 
judgments, this work is significant in that it is also practical. It forms a shift between a once static 
detection system to that of a dynamic, explainable system, with the ability to evolve in unison with 
threats. This is a sustainable path to the future development of the IDS-one that is adaptive, 
explainable, and protective equally balanced. 
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