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Abstract  
Scene classification is an important perception task for autonomous driving which allows for a higher level understanding 
of any traffic condition. Despite advancements in deep learning for scene classification, existing models struggle to generalize 
under domain shifts caused by geographic, lighting, and weather variations, leading to notable performance drops in real-
world applications. With this challenge in mind, we propose a novel domain adaptive scene classification architecture to 
combine supervised contrastive learning with Bayesian uncertainty-aware feature fusion. The architecture first extracts 
global and local representations through an enhanced backbone model generated by Inception-V1 and Faster R-CNN to 
obtain class discriminative representations, however we are not limited in that we can use any backbone we choose. Next 
we also employ a momentum-encoded contrastive objective to align the representations and enhance the image 
representation space across source and target domains whereas there is no need to have any target labels. Finally, we 
developed a uncertainty-aware fusion module that uses Monte Carlo Dropout to weight the models predictions based on 
the confidence score from the model, as such, even if we the model has seen ambiguous or new domains we can use the 
collective models decision-making to maintain robustness for scene understanding from image representations. We provide 
comprehensive ablation studies on benchmark datasets (KITTI, BDD100K, Cityscapes) and real-world dashcam videos, 
demonstrating significant gains over state-of-the-art baselines in domain-level accuracy and generalization robustness. This 
work offers a strong basis for domain adaptive and reliable scene classification for use within safety critical applications 
in autonomous systems. 
Keywords: Domain Adaptation, Scene Classification, Contrastive Learning, Uncertainty Estimation, Autonomous 
Driving, Deep Neural Networks   
 
INTRODUCTION: 
Scene classification is crucial in the environmental perception hierarchy of autonomous vehicles, 
allowing systems to reason about high-level semantic contexts such as crosswalks, highways and 
parking lots. Knowing what type of scene in which the system is operating enables downstream tasks 
like path planning, obstacle avoidance, and behaviour prediction. While recent breakthroughs in 
deep convolutional neural networks (CNNs) and region based feature extractors have shown to 
improve scene classification accuracy [1], [2], [3], this performance often relies on the premise that 
the training and deployment domains follow similar distributions. However, this assumption is rarely 
the case in the real-world autonomous driving scenario [4], [5]. The issue stems from domain shift, 
denoting the discrepancy between training and deployment domains. Domain shifts can arise from 
various factors including lighting conditions (day vs. night), weather (clear skies vs. foggy), geographic 
diversity (urban vs. rural), and sensor modality (dashcam vs. LiDAR models) [7], [8], [9]. Models 
trained on datasets such as KITTI or Place365 may greatly suffer in performance when applied to 
diverse real-world scenes acquired in uncontrolled environments. This performance degradation can 
lead to undermining autonomy and therefore the reliability and safety of autonomous driving 
systems. 
These methods have been effectively applied to vision tasks such as classification, segmentation, and 
retrieval, frequently surpassing traditional supervised pre-training approaches [13], [14]. Supervised 
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contrastive learning extends this idea by leveraging label information [15], [17] to group semantically 
similar samples together in the feature space, providing better class separation and robustness [15], 
[16], [17]. In domain adaptation, contrastive learning can serve as an effective mechanism for aligning 
source and target distributions without explicit labels, especially when combined with momentum 
encoding or memory banks to maintain stable feature representations [13], [14], [18]. 
Our work builds upon this foundation by integrating supervised contrastive learning with a 
momentum encoder, enabling robust feature alignment across domains for scene classification.  
• First, to minimize domain discrepancies without relying on target domain labels, we propose a 

supervised contrastive learning pipeline for the source domain, coupled with an unsupervised 
alignment strategy that leverages a momentum encoder to align source and target distributions.  

• Second, we design a feature fusion module that incorporates Bayesian uncertainty modelling, 
specifically Monte Carlo Dropout [18], [19]-to estimate confidence in both local (object-centric) 
and global (scene-level) predictions. These confidence scores are used to perform uncertainty-
weighted fusion, enabling robust scene classification even under noisy, occluded, or ambiguous 
conditions. 

Our key contributions are as follows: 
• We introduce a contrastive learning-based domain adaptation framework that effectively aligns 

source and target domain representations without the need for target domain labels. 
• We design an uncertainty-aware fusion module that adaptively integrates local and global visual 

features based on model confidence, enhancing robustness to domain shifts. 
• We perform extensive evaluations on standard benchmarks—KITTI, BDD100K, and Cityscapes 

[31], [32]-as well as real-world dashcam footage, demonstrating that our approach consistently 
outperforms existing state-of-the-art methods in both accuracy and generalization. 

By incorporating contrastive representation learning and uncertainty modelling into the scene 
classification pipeline, our method presents a scalable and robust solution for domain-adaptive 
perception in autonomous driving scenarios. 
Related Work 
Scene Classification in Autonomous Driving 
Scene classification is a core component in the perception stack of autonomous vehicles, enabling 
systems to interpret high-level driving contexts such as intersections, highways, and residential zones. 
Early methods relied heavily on handcrafted features and traditional machine learning classifiers, but 
the advent of deep learning has significantly advanced performance in this area. Convolutional 
Neural Networks (CNNs), such as AlexNet [1], VGG, and Inception, have demonstrated strong 
capabilities in extracting hierarchical features from road scenes. These architectures have been 
employed in end-to-end pipelines for scene recognition, often trained on datasets like KITTI and 
Places365.Region-based models like Faster R-CNN [2] have further improved scene understanding 
by enabling simultaneous object detection and scene classification, particularly when key scene-
defining elements—e.g., pedestrians, crosswalks, or signage—are present. More recently, transformer-
based models such as Vision Transformers (ViT) [4] and Swin Transformers [5] have shown 
promising results in scene classification by modelling long-range dependencies and global context. 
However, these models typically assume domain consistency between training and deployment data, 
which limits their real-world applicability [6]. 
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Domain Adaptation Techniques 
Domain adaptation (DA) addresses the challenge of transferring knowledge [6], [7], [8] from a labelled 
source domain to an unlabelled target domain with different data distributions. DA methods are 
generally classified into feature-level and image-level adaptation techniques. 
(i) Feature-level adaptation focuses on aligning feature representations between domains to minimize 
distributional shifts. One of the most prominent approaches is adversarial domain adaptation, where 
a domain discriminator is trained to distinguish between source and target features, while the feature 
extractor attempts to deceive the discriminator. Techniques such as Domain-Adversarial Neural 
Networks (DANN) [7], Conditional Domain Adversarial Networks (CDAN) [8], and Minimum Class 
Confusion (MCC) [9] have been widely applied in visual recognition tasks, including scene 
classification [10]. 
(ii) Image-level adaptation aims to translate images from the source domain [10] into the style of the 
target domain (or vice versa) using generative models like CycleGAN, UNIT, or CUT. These 
approaches can help reduce domain gaps caused by differences in colour distributions, lighting, or 
scene composition [11]. However, they often introduce artifacts or fail to preserve semantic 
consistency, making them less reliable for critical applications such as autonomous driving [11]. 
Despite their effectiveness, most DA techniques assume either abundant target domain data or static 
feature extraction strategies, which limits their scalability and generalization in dynamic, real-world 
conditions. 
Contrastive Learning in Vision 
Contrastive learning has emerged as a powerful paradigm [9], [15] for learning discriminative 
representations in both supervised and unsupervised settings. Self-supervised contrastive methods 
like SimCLR and MoCo rely on augmenting instances and maximizing agreement between positive 
pairs while contrasting them against negative pairs. Contrastive representation learning methods 
have been used in a wide range of vision tasks, including, but not limited to, classification, 
segmentation, and retrieval, and have been shown to outperform previous work on supervised pre-
training [13]. Supervised contrastive learning takes this one step further, as it uses label information 
to group semantically similar samples together within the embedding space, resulting in better class 
separation and robustness. In domain adaptation, contrastive learning [14] can be seen as an effective 
way to align source and target distributions without label information; particularly attractive is the 
promise of using the same architecture or task during the target fine-tuning task [15], especially 
alongside momentum encoding or memory banks to ensure consistent representations for the 
features of interest [16]. Building on this work, we use supervised contrastive learning with a 
momentum encoder [17] to achieve robust alignment of features across the source and target 
distributions for scene classification. 
Uncertainty in Deep Learning 
It is important to understand and quantify uncertainty [13] in deep learning models, as these models 
are often used in safety-critical applications such as autonomous driving. The sources of uncertainty 
can be broadly classified as either aleatoric or epistemic. Aleatoric uncertainty is due to the noise 
associated with the data being used for a model (such as poor lighting or occlusions) while epistemic 
uncertainty is due to the model sucking knowledge about the input space (often due to having limited 
amounts of training data).There has been significant work done to develop Bayesian deep learning 
methods to model these types of uncertainty. For example, Monte Carlo Dropout [18], deep 
ensembles, and evidential learning [11], [27] are all approaches to estimating predictive uncertainty 
and act as viable strategies without very much computational cost [19]. In recent work, we showed 
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that modelling uncertainty when fusing multimodal or multiscale features improves the robustness 
and reliability of deep models even if ambiguity or adversarial situations are present. 
In this work, we adopt a Monte Carlo Dropout approach to obtain confidence scores for the local 
and global features and we then use the scores within an uncertainty-aware fusion framework that 
seeks to improve the generalization performance of the model in the presence of domain shift. 
Proposed Method 
This section introduces our proposed domain-adaptive scene classification framework, which 
integrates contrastive representation alignment and uncertainty-aware feature fusion. The overall 
architecture is illustrated in Figure 1 (to be added), comprising a dual-branch encoder (global and 
local), a contrastive alignment module, and an uncertainty-aware fusion network for robust final 
classification. 
Figure 1: A schematic diagram showing the dual-branch encoder design (global and local), contrastive alignment 
with a momentum encoder, and uncertainty-aware fusion head. This visual helps reader grasp the end-to-end 
pipeline proposed for robust domain-adaptive scene classification 

 
Problem Formulation 
Let 𝒟𝑠 = {(𝑥𝑖

𝑠, 𝑦𝑖
𝑠)}𝑖=1

𝑁𝑠   denote the labelled source domain, where 𝑥𝑖
𝑠 ∈ 𝒳  represents the input 

scene image and 𝑦𝑖
𝑠 ∈ 𝑌  its corresponding scene label. Let 𝒟𝑡 = {𝑥𝑗

𝑡}
𝑗=1

𝑁𝑡
 denote the unlabelled 

target domain, which follows a distribution different from Ds due to domain shift (e.g., lighting, 
location, camera). The goal of unsupervised domain adaptation is to learn a model that performs 
accurate scene classification on Dt, using supervision only from Ds. 
 

𝒙𝒊
𝒔 ∈ 𝓧                             Eq-1 

 
To this end, our approach seeks to: 
1. Extract transferable scene representations from both domains. 
2. Align feature distributions via contrastive learning. 
3. Fuse local and global features using uncertainty-aware weighting. 
4. Train a classifier that generalizes across both domains. 
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Backbone Architecture 
The model comprises two complementary modules: a global scene encoder and a local object-centric 
encoder. These capture both holistic and fine-grained semantics crucial for robust scene 
classification. 
(a) Global Feature Extractor 
We employ ResNet-50 [2] or EfficientNet-B3 [2] as the global feature encoder Fg(⋅), which outputs a 
global embedding zg ∈ Rd for each image. The backbone is pre-trained on ImageNet and fine-tuned 
on the source dataset. 
(b) Local Object Extractor 
An improved Faster R-CNN [3] with a spatial attention-enhanced ResNet [3] backbone is used to 
detect representative objects (e.g., crosswalks, pedestrians, gas stations). Detected object features 

{𝒛𝒍
𝒌}

𝒌=𝟏

𝑲
 are pooled and aggregated into a single local descriptor z1 ∈ Rd using a max or attention-

based fusion mechanism. 
The dual descriptors zg and zl represents the global scene context and localized semantic cues, 
respectively. 
Contrastive Representation Alignment 
To minimize domain divergence, we adopt a two-level contrastive learning strategy using both 
labelled source data and unlabelled target data. 
(a) Supervised Contrastive Loss (Source) 
For labelled source samples, we use the Supervised Contrastive Loss 𝑳sup   to bring together 
embedding of the same class while pushing apart different ones: 

𝑳sup = ∑  𝒊∈𝓘
−𝟏

|𝓟(𝒊)|
∑  𝒑∈𝓟(𝒊) 𝐥𝐨𝐠 

𝐞𝐱𝐩 (𝒛𝒊⋅𝒛𝒑/𝝉)

∑  𝒂∈𝓐(𝒊)  𝐞𝐱𝐩 (𝒛𝒊⋅𝒛𝒂/𝝉)
  Eq-2 

Where 𝒫(𝑖)  are positives, 𝒜(𝑖)  includes all anchors except 𝑖 , and 𝜏  is a temperature parameter. 
 
(b) Unsupervised Contrastive Alignment (Target) 
To align target features 𝑧𝑡 with source representations, we employ a MoCo-style momentum encoder 
𝐹𝑚(⋅) that updates slowly to provide stable features. We minimize the instance-level contrastive loss 
between the global features 𝑧𝑔

𝑡  of the target and momentum features from the source memory bank: 

𝑳unsup = ∑  
𝑵𝒕
𝒊=𝟏 𝐥𝐨𝐠 

𝐞𝐱𝐩 (𝒛𝒊
𝒕⋅𝒛𝒊

𝒔/𝝉)

∑  𝑴
𝒋=𝟏  𝐞𝐱𝐩 (𝒛𝒊

𝒕⋅𝒛𝒋
𝒔/𝝉)

              Eq-3 

This encourages semantic alignment between domains without target labels. 
Uncertainty-Aware Fusion Module 
Local and global descriptors may have varying reliability under different scenarios. For example, local 
detection may be noisy in night-time scenes, while global context may be misleading in cluttered 
environments. To address this, we compute predictive uncertainty for both branches and fuse them 
adaptively. 
(a) Uncertainty Estimation 
We use Monte Carlo Dropout during inference to sample predictions and estimate epistemic 
uncertainty: 

𝐕𝐚𝐫(𝒛) =
𝟏

𝑻
∑  𝑻

𝒕=𝟏 𝒛(𝒕) ⋅ 𝒛(𝒕) − (
𝟏

𝑻
∑  𝑻

𝒕=𝟏  𝒛(𝒕))
𝟐

  Eq-4 

Where T is the number of stochastic forward passes. 
 
(b) Confidence-Weighted Fusion 
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Final embedding 𝑧𝑓  is computed by weighting local and global descriptors inversely to their 
uncertainty: 

𝒛𝒇 =
𝒘𝒈⋅𝒛𝒈+𝒘𝒍⋅𝒛𝒍

𝒘𝒈+𝒘𝒍
,  where 𝒘 =

𝟏

𝐕𝐚𝐫(𝒛)+𝝐
 Eq-5 

 
Overall Training Strategy 
The model is trained end-to-end using a multi-task loss function: 

𝑳total = 𝑳cls + 𝝀𝟏𝑳sup + 𝝀𝟐𝑳unsup + 𝝀𝟑𝑳fusion   Eq-6 
• 𝐿cls  : Cross-entropy scene classification loss. 
• 𝐿sup  : Supervised contrastive loss (source domain). 
• 𝐿unsup  : Unsupervised contrastive alignment (target domain). 
• 𝐿fusion  : Auxiliary KL-divergence or entropy regularization for fusion stability. 
• 𝜆1, 𝜆2, 𝜆3 : Hyperparameters balancing each term. 

All components are jointly optimized to enable robust and generalizable scene understanding in 
unseen driving environments. 
Experimental Setup 
To evaluate the effectiveness and generalization capabilities of our proposed domain-adaptive scene 
classification framework, we conduct extensive experiments using multiple public benchmarks that 
simulate realistic domain shift conditions. This section describes the datasets, evaluation metrics, 
implementation details, and baseline configurations. 
Datasets 
We adopt four widely-used datasets, partitioned into labelled source domains and unlabelled target 
domains for the unsupervised domain adaptation (UDA) setting. 
(i) Source Domain: 
• KITTI 

The KITTI [31] Vision Benchmark Suite provides high-resolution RGB images [4] captured from 
a vehicle-mounted camera in urban environments. For scene classification, we extract five scene 
categories—crosswalk, street, gas station, parking lot, and highway—from KITTI’s raw dataset, 
totalling 15,000 labelled images. 

• Places365 
This large-scale scene classification dataset contains over 1.8 million images across 365 scene 
types. We select a subset matching KITTI categories to pretrain the global encoder, which 
enhances semantic richness and generalization. 

(ii) Target Domain (Unlabelled): 
• BDD100K 

The Berkeley [32] Deep Drive dataset consists of 100,000 video frames [5] with a broad range of 
driving conditions including day/night, rain/snow, and different cities. We extract 20,000 
unlabelled images representing the same five scene categories. 

• Cityscapes 
This dataset contains high-quality urban driving images from 50 European cities under diverse 
lighting and weather. We use 5,000 unlabelled images as an auxiliary test domain to evaluate 
cross-geography adaptation. 

All datasets are pre-processed by resizing images to 224×224, applying horizontal flipping, colour 
jittering, and random cropping for augmentation. 
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Evaluation Metrics 
We assess model performance using the following metrics, each chosen to capture a different aspect 

of classification robustness: 
• Accuracy: The overall top-1 classification rate on the target domain. 
• Mean Average Precision (mAP): Evaluates precision-recall trade-offs across classes. 
• Area Under the ROC Curve (AUROC): Measures class separability and confidence. 
• Expected Calibration Error (ECE): Quantifies the mismatch between predicted probabilities 

and actual accuracies, offering insight into model reliability under uncertainty [30]. 
In ablation studies, we also report F1-scores, standard deviation across runs, and entropy of 
prediction distributions to analyse fusion quality. 
Implementation Details 
Our framework is implemented in both PyTorch 1.13 and TensorFlow 2.10 for cross-validation of 
reproducibility. Key implementation parameters are listed below: 
Table 1 outlines the training hyper parameters, model configurations, and implementation settings used in our 
experiments. It ensures reproducibility by detailing backbone choices, learning rate schedule, optimization 
methods, dropout strategy, and hardware specifications. 
Table 1. Training parameters and implementation details of the proposed framework 

Component Value / Choice 
Backbones ResNet-50, EfficientNet-B3 
Local Feature Extractor Faster R-CNN with ResNet-101 + Attention 
Momentum Encoder MoCo v2-style with EMA (τ = 0.999) 
Batch Size 64 (32 source, 32 target) 
Optimizer AdamW 
Initial Learning Rate 1e-4 (linear warm-up for 5 epochs) 
Scheduler Cosine Annealing (T_max = 100) 
Weight Decay 0.00001 
Dropout Rate 0.5 (for MC Dropout) 
Epochs 100 
Contrastive Loss Temp 0.07 
Hardware NVIDIA RTX 3090 (24GB), 256GB RAM 
Training Time ~9 hours per source-target pair 

 
All experiments are repeated three times with different random seeds to ensure statistical 
significance. Code and trained models will be made available upon publication for reproducibility. 
 
RESULTS AND DISCUSSION 
This section presents quantitative and qualitative results to evaluate the effectiveness of our proposed 
framework under domain shift. We first assess domain adaptation performance, followed by 
comprehensive ablation studies. Finally, we analyse uncertainty estimation and provide visual results 
in various real-world conditions. 
Domain Adaptation Performance 
We evaluate the performance of our model on two domain adaptation setups: 

• Source → Target: KITTI → BDD100K and Places365 → Cityscapes 
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• Baseline Comparison: Models trained only on source domain (no adaptation) vs. our full 
domain-adaptive model 

Table 2 compares the classification performance of our proposed framework against baseline domain adaptation 
methods (DANN, CDAN, MCD) on two setups—KITTI → BDD100K and Places365 → Cityscapes—
demonstrating improved accuracy from contrastive alignment and uncertainty-aware fusion 
Table 2. Accuracy comparison on domain adaptation tasks 

Method KITTI → BDD100K Places365 → Cityscapes 
Source Only (ResNet50) 73.82% 71.43% 
DANN [1] 76.35% 73.91% 
CDAN [2] 77.62% 75.22% 
MCD [3] 78.04% 75.89% 
Ours (Full Model) 81.57% 79.14% 

Figure 2: Grouped bar chart showing accuracy on BDD100K and Cityscapes datasets across different 
adaptation baselines. This supports claims that the proposed method consistently outperforms state-of-the-art 
approaches. 

 
The results demonstrate that our method outperforms existing domain adaptation baselines by a 
margin of 3–4%, verifying the effectiveness of contrastive alignment and uncertainty fusion. Notably, 
improvements are consistent across both urban (Cityscapes) and diverse-condition (BDD100K) target 
domains. 
Ablation Study 
We evaluate the individual contributions of each component by removing or modifying key modules 
in our architecture: 
Table 3 presents ablation results showing the contribution of key modules (contrastive learning, uncertainty-
aware fusion) to the overall performance, as evaluated using Accuracy, mAP, and Expected Calibration Error 
(ECE) 

Table 3. Ablation study on components of the proposed model 
Model Variant Accuracy (%) mAP (%) ECE (%) ↓ 

Full Model 81.57 79.12 1.96 
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– w/o Contrastive Learning 77.24 75.36 3.42 
– w/o Uncertainty-Aware Fusion 78.01 76.84 2.88 
– Standard Feature Fusion (avg pooling) 79.16 77.01 2.62 

Figure 3: Bar chart comparing performance of model variants—full model, without contrastive learning, without 
uncertainty fusion. It validates the individual contribution of each architectural component to performance and 
calibration. 

 
These results highlight: 
• Contrastive learning contributes most to feature alignment and classification. 
• Uncertainty-aware fusion improves both accuracy and calibration. 
• Naive averaging underperforms compared to confidence-based weighting, especially in 

noisy/ambiguous cases. 
 
Uncertainty Analysis 
To evaluate uncertainty modelling, we examine: 
• Calibration plots (Figure 4a) show that our model is better calibrated than baselines, with lower 

Expected Calibration Error (ECE) [30]. 
• Reliability diagrams confirm a closer alignment between confidence and true likelihood of 

correctness. 
• Confidence maps (Figure 4b) visualize pixel-wise entropy, clearly showing reduced uncertainty 

in informative scene regions (e.g., zebra crossings, highway lanes). 
Table 4 provides a comparison of uncertainty calibration metrics—ECE, AUROC, and Negative Log Likelihood 
(NLL)—for various models and fusion strategies. It highlights the effectiveness of Monte Carlo Dropout and 
confidence-weighted fusion in improving model reliability. 
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Table 4. Uncertainty metrics comparison for calibrated prediction analysis 

Model ECE (%) ↓ AUROC (%) ↑ NLL ↓ 

Source Only (ResNet-50) 7.83 86.21 0.921 
DANN 5.91 88.45 0.786 
CDAN 5.46 89.12 0.744 
Ours w/o Uncertainty Fusion 3.77 91.35 0.561 
Ours (Standard Feature Fusion) 3.16 91.88 0.522 
Ours (Uncertainty-Aware Fusion) 1.96 93.41 0.418 

This confirms that Bayesian modelling via Monte Carlo Dropout enhances both interpretability and 
robustness [20], [26] in safety-critical scenes. 

 

 
 
 
 

 

Qualitative Results 
Figure 5 presents scene prediction outputs under different environmental conditions: 
• Day time vs. Night time: Our model consistently predicts scenes (e.g., gas station, parking lot) 

at night, where the baseline fails. 
• Rain and Fog: Despite occlusion and poor visibility, the model focuses on key features (e.g., lane 

markings, overhead signs) and provides correct predictions. 
• Complex Scenes: In ambiguous areas (e.g., street with adjacent gas station), the uncertainty-

aware fusion helps suppress misleading global cues and improves prediction accuracy. 
Figure 5: Sample predictions under diverse conditions (day, night, rain, fog). This figure demonstrates the 
robustness of the proposed model in challenging and ambiguous scenes compared to the baseline. 
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These examples demonstrate our framework’s robustness to real-world variability, supporting its 
practical deployment in autonomous systems. 
 
CONCLUSION AND FUTURE WORK 
CONCLUSION 
In this study, we proposed a novel domain-adaptive scene classification framework for autonomous 
driving that integrates supervised contrastive learning with Bayesian uncertainty-aware feature fusion. 
The model captures both global scene context and local object-centric cues using a dual-encoder 
architecture. A momentum-based contrastive alignment mechanism was employed to bridge the 
distributional gap between source and target domains, while Monte Carlo Dropout was used to 
estimate predictive uncertainty and drive confidence-weighted fusion of features. 
Extensive experiments on benchmark datasets - KITTI, BDD100K, Places365, and Cityscapes [31], 
[32] - demonstrated that our method outperforms state-of-the-art domain adaptation baselines in 
accuracy, calibration, and robustness under diverse environmental conditions. The ablation study 
further confirmed the individual contributions of contrastive learning and uncertainty-aware fusion. 
Additionally, the qualitative analysis validated the model’s effectiveness in handling real-world 
challenges such as poor lighting, weather variations, and complex or ambiguous scenes. 
Despite its strong performance, the proposed approach has a few limitations. First, the architecture 
introduces a moderate computational overhead due to the use of dual encoders and Monte Carlo 
sampling during inference. Second, the method assumes the availability of scene-annotated data in 
the source domain and may be less effective in low-resource or sparse-label scenarios. Finally, while 
the model is evaluated on static images, it does not yet leverage the temporal continuity present in 
driving sequences. 
Future Work 
To further enhance the applicability and scalability of our method, we identify several promising 
directions for future work: 
• Semi-Supervised Adaptation: Integrate limited target domain labels to guide the alignment 

process, enabling more efficient adaptation in partially labelled scenarios. 
• Edge Deployment Optimization: Compress the model using quantization, pruning, or 

knowledge distillation to enable real-time inference on embedded systems or automotive-grade 
edge devices. 

• Temporal Domain Adaptation: Extend the current framework to video-based scene 
classification by modelling scene transitions using recurrent units or Transformer-based 
temporal encoders [34], [35]. This will help in capturing motion context and improving temporal 
consistency in predictions. 

In summary, our work provides a principled and effective solution to the challenge of generalizing 
scene classification across domains and lays the groundwork for future deployment in real-world 
autonomous driving systems. 
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