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Abstract:Waterborne heavy metal contamination poses a critical threat to both ecosystem health and human well-being, particularly in 
developing regions lacking robust environmental monitoring infrastructure. This study presents an integrated approach combining 
traditional statistical analysis with artificial intelligence (AI) models to develop an early warning system (EWS) for detecting and 
predicting heavy metal pollution in surface waters. Water samples were collected across 20 locations over three seasons and analyzed for 
key physico-chemical parameters (pH, EC, DO, TDS, turbidity, temperature) and six priority heavy metals (As, Cd, Pb, Cr, Hg, Ni). 
Multivariate statistical tools, including Principal Component Analysis (PCA), were used to identify pollution gradients and key 
influencing factors. Machine learning models, Random Forest, Support Vector Regression, Gradient Boosting, and Artificial Neural 
Networks were trained to forecast heavy metal concentrations using environmental variables. Random Forest showed the best performance 
with an R² of 0.91 and the lowest RMSE, highlighting its predictive reliability. Feature importance analysis revealed TDS, EC, and 
turbidity as the strongest predictors of contamination. The results were used to build a GIS-compatible early warning framework capable 
of classifying contamination risk zones in near real-time. This study offers a replicable and scalable model for predictive toxicology and 
environmental management, enabling data-driven, preemptive responses to contamination events. 
Keywords: Environmental toxicology, heavy metals, machine learning, early warning system, Random Forest, water quality prediction, 
PCA, feature importance, GIS-based monitoring. 
 
INTRODUCTION 
Background and significance 
Environmental toxicology has emerged as a critical interdisciplinary field in response to increasing concerns about 
anthropogenic pollutants in natural ecosystems (Yi et al., 2024). Among these, heavy metal contamination in freshwater 
systems poses severe risks to ecological integrity, public health, and sustainable development. Waterborne heavy metals 
such as arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg) persist in the environment due to their non-biodegradable 
nature and bioaccumulative potential (Liu et al., 2024). Their presence, even at trace levels, can disrupt aquatic food 
chains, impair human organ systems, and lead to long-term health issues such as cancer, kidney failure, and developmental 
disorders. Despite the known hazards, traditional monitoring methods often lack the speed and predictive capacity needed 
for real-time intervention and early mitigation (Pérez-Beltrán et al., 2024). This necessitates the development of robust 
early warning systems (EWS) that integrate environmental monitoring with predictive analytics. 
Challenges in existing monitoring systems 
Conventional monitoring and regulatory frameworks often rely on periodic water sampling and laboratory-based chemical 
analysis (Nallakaruppan et al., 2024). Although accurate, these approaches are time-consuming, labor-intensive, and 
spatially limited. They typically fail to capture dynamic environmental changes, particularly in vulnerable or remote regions 
(Li et al., 2006). Moreover, the lag between data collection and decision-making can delay critical response measures, 
leading to irreversible ecological damage and public health crises. This limitation calls for the integration of intelligent 
and scalable approaches that can rapidly assess contamination levels and predict potential outbreaks (Wang et al., 2024). 
The role of Statistical and AI models 
Recent advances in data science and Artificial Intelligence (AI) have opened new frontiers in environmental monitoring. 
Machine learning algorithms, particularly those utilizing supervised learning (e.g., random forests, support vector 
machines, neural networks), can identify complex nonlinear patterns between environmental parameters and pollutant 
concentrations (Yin et al., 2018). When combined with classical statistical methods such as regression models, principal 
component analysis (PCA), and cluster analysis, these hybrid models can improve the interpretability and accuracy of 
predictive systems. The integration of these methods into environmental toxicology provides a powerful toolset for 
forecasting contamination events, enabling the deployment of preventive measures and policy interventions (Whig et al., 
2025). 
Case study context and objectives 
This study focuses on the integration of Statistical and AI models for the development of an early warning system aimed 
at detecting and predicting heavy metal contamination in water bodies. Using a case study approach, the research was 
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conducted in a semi-urban riverine region known for agricultural runoff, industrial discharges, and unregulated waste 
disposal. The area serves as a representative model for regions in developing countries, where environmental monitoring 
infrastructure is underdeveloped. The objectives of this study are threefold: (1) to evaluate the spatial and seasonal 
distribution of key heavy metals in surface water; (2) to develop integrated predictive models using both statistical and AI 
methods; and (3) to design a prototype early warning system that can be adapted for real-time monitoring and decision 
support. 
Scope and contribution 
This research contributes to the growing body of knowledge in environmental toxicology by bridging traditional statistical 
approaches with modern AI technologies to address one of the most pressing environmental health challenges. It provides 
a replicable framework for water quality surveillance, enabling government agencies, environmental bodies, and research 
institutions to transition from reactive to proactive strategies. The proposed models demonstrate how multi-source data, 
when processed through intelligent systems, can be transformed into actionable insights for safeguarding public health 
and environmental sustainability. 
 
METHODOLOGY 
Study area and sampling design 
The study was conducted in a semi-urban region with a history of industrial activity and agricultural intensification, leading 
to potential heavy metal contamination in water bodies. Representative sampling sites were selected along major surface 
water systems such as rivers, lakes, and canals based on proximity to pollution sources like effluent discharge points, 
agricultural runoff zones, and urban settlements. Water samples were collected from 20 stations across three seasons: pre-
monsoon, monsoon, and post-monsoon to capture temporal variation in contamination patterns. 
Physico-chemical and heavy metal analysis 
Each water sample was analyzed for a set of baseline physico-chemical parameters including pH, electrical conductivity 
(EC), temperature, dissolved oxygen (DO), turbidity, and total dissolved solids (TDS). Heavy metals assessed in this study 
were arsenic (As), cadmium (Cd), lead (Pb), chromium (Cr), mercury (Hg), and nickel (Ni). The concentrations were 
determined using atomic absorption spectrophotometry (AAS) and cross-validated using inductively coupled plasma mass 
spectrometry (ICP-MS) for a subset of samples. All laboratory procedures followed standard protocols outlined by APHA 
(2017). 
Integrated statistical and AI modeling approach 
The core innovation of the methodology lies in integrating traditional statistical techniques with Artificial Intelligence 
(AI) models to develop an Early Warning System (EWS) for environmental toxicology. 
Exploratory Data Analysis (EDA) and descriptive statistics 
Initial analysis included summary statistics, boxplots, and normality tests (Shapiro-Wilk and Kolmogorov-Smirnov) to 
understand the distribution of each variable. Outliers were identified using interquartile range (IQR) and Mahalanobis 
distance methods and were further validated before removal or transformation. 
Multivariate statistical analysis 
To explore the relationships among physico-chemical parameters and metal concentrations, Pearson correlation matrices 
and Principal Component Analysis (PCA) were used. PCA reduced data dimensionality and helped in identifying key 
latent variables influencing contamination. Hierarchical Cluster Analysis (HCA) was applied to classify sampling sites into 
zones of high, moderate, and low pollution levels based on similarity indices. 
Machine learning models for prediction 
Four AI models were employed to predict heavy metal concentrations based on input features: Random Forest (RF), 
Support Vector Regression (SVR), Gradient Boosting Machine (GBM), and Artificial Neural Networks (ANN). Input 
variables included pH, EC, DO, TDS, temperature, turbidity, land-use features (agricultural density, proximity to industrial 
units), and seasonal factors. Hyperparameter tuning was performed using cross-validated grid search and performance was 
evaluated using RMSE, MAE, and R² metrics on test data (30% of the dataset). Feature importance rankings were extracted 
from RF and GBM models to assess the contribution of each parameter. 
Model integration and early warning system framework 
Outputs from the best-performing AI model were integrated with statistical threshold-based alerts to design a prototype 
Early Warning System (EWS). This system included risk classification (low, medium, high) based on predicted heavy metal 
concentrations and WHO permissible limits. The EWS was visualized using GIS-based heatmaps to enable spatio-temporal 
mapping of contamination risk zones. 
Validation and sensitivity analysis 
The predictive performance of the integrated system was validated using independent test datasets and through sensitivity 
analysis by altering input parameters to examine system robustness. Receiver Operating Characteristic (ROC) curves were 
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generated for classification thresholds, and area under the curve (AUC) values were used to validate classification accuracy 
of contamination risk levels. 
Software and tools used 
All statistical analyses were conducted using R (v4.3.0) and SPSS (v27), while machine learning models were developed 
using Python (scikit-learn, TensorFlow, and XGBoost libraries). QGIS was used for spatial mapping and risk visualization 
of contamination zones. 
 
RESULTS 
The analysis of physico-chemical parameters (Table 1) revealed that water samples across the study sites exhibited moderate 
to high variability. The average pH was neutral (7.02), with a narrow range between 6.4 and 7.8, indicating slightly acidic 
to neutral conditions. Electrical conductivity (EC) averaged 615.3 µS/cm, reflecting elevated ionic content, while total 
dissolved solids (TDS) averaged 402.7 mg/L, both parameters showing higher values near urban and agricultural runoff 
sites. Dissolved oxygen (DO) levels were moderately low (mean 5.1 mg/L), suggesting a risk of hypoxic stress in certain 
areas. Turbidity values were relatively high (mean 11.6 NTU), consistent with suspended particulate matter from erosion 
and effluent discharge, and water temperature ranged from 24.5°C to 31.7°C. 
Table 1: Descriptive statistics of physico-chemical parameters 

Parameter Mean Std Dev Min Max 
pH 7.02 0.32 6.4 7.8 
EC (µS/cm) 615.3 122.5 410 890 
DO (mg/L) 5.1 1.7 2.4 8.6 
TDS (mg/L) 402.7 88.3 270 560 
Temp (°C) 28.4 2.1 24.5 31.7 
Turbidity (NTU) 11.6 4.5 3.2 22.5 

Table 2 presents the seasonal trends in heavy metal concentrations. Arsenic, Lead, and Chromium concentrations peaked 
in the post-monsoon season, with Arsenic reaching 13.7 µg/L and Lead up to 26.1 µg/L, suggesting accumulation from 
runoff and sediment resuspension. Cadmium and Nickel followed a similar trend, while mercury exhibited less variation. 
Monsoon dilution effects were evident, with slightly reduced concentrations during that season. The trends in these metals 
across seasons are further visualized in Figure 1, which illustrates the fluctuations, confirming post-monsoon as the period 
with the highest contamination risk. 
Table 2: Mean concentrations (µg/L) of heavy metals across seasons 

Heavy Metal Pre-Monsoon Monsoon Post-Monsoon 
Arsenic 12.5 10.8 13.7 
Cadmium 3.1 2.5 3.4 
Lead 24.6 20.3 26.1 
Chromium 15.8 12.4 17.0 
Mercury 1.2 1.0 1.4 
Nickel 20.7 18.1 22.3 

 

 
Figure 1: Seasonal variation in heavy metal concentration 
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Multivariate statistical analysis using Principal Component Analysis (Table 3) identified two major components explaining 
the variability in the dataset. PC1 was positively associated with EC, TDS, turbidity, and temperature, indicating a 
pollution gradient from anthropogenic sources, while PC2 loaded heavily on DO and pH, suggesting influence from 
natural buffering processes. These insights helped in reducing dimensionality and guiding input selection for predictive 
modeling. 
Table 3: Principal component loadings (PC1 and PC2) 

Variable PC1 Loading PC2 Loading 
pH 0.21 -0.66 
EC 0.83 0.35 
DO -0.56 0.71 
TDS 0.79 0.22 
Turbidity 0.65 -0.19 
Temp 0.41 0.53 

Performance evaluation of AI models for predicting heavy metal concentrations is shown in Table 4. The Random Forest 
model outperformed all others with an R² score of 0.91, the lowest RMSE (2.3), and MAE (1.7), followed by GBM (R² = 
0.89), ANN (R² = 0.87), and SVR (R² = 0.82). These results indicate the superior accuracy and generalization capacity of 
ensemble-based approaches like Random Forest and GBM for environmental prediction tasks. 
Table 4: AI model performance metrics 

Model R² Score RMSE MAE 
Random Forest 0.91 2.3 1.7 
SVR 0.82 3.6 2.9 
GBM 0.89 2.5 1.9 
ANN 0.87 2.8 2.2 

Feature importance analysis derived from the Random Forest model (Figure 2) demonstrated that TDS (importance score: 
0.23), EC (0.19), and turbidity (0.16) were the most significant predictors of heavy metal presence. pH and DO also 
contributed substantially, while land-use index and season had lesser but notable influence. This information is visualized, 
which displays a heatmap of feature importance, highlighting the dominant role of water chemistry parameters in driving 
contamination levels. 

 
Figure 2: Random forest feature importance heatmap 
 
 
 
 
DISCUSSION 
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Environmental characteristics and contamination profile 
The descriptive statistics of physico-chemical parameters (Table 1) reflect a moderately impacted aquatic environment with 
variations across space and time. The observed neutral pH and elevated EC and TDS suggest increased ionic loading, 
likely due to runoff from agricultural zones and effluent discharge from industrial areas (Liao et al., 2005). Lower DO 
levels, especially in post-monsoon samples, hint at the onset of hypoxic conditions, a condition often triggered by 
eutrophication and organic pollution (Tariq et al., 2024). High turbidity values reinforce this, indicating active sediment 
resuspension or discharge of suspended solids. These baseline characteristics establish the physical environment in which 
toxicological risks from heavy metals are intensified, especially under anthropogenic stress (Barkat et al., 2023). 
Seasonal trends and heavy metal dynamics 
The seasonal analysis (Table 2) shows a distinct post-monsoon accumulation of heavy metals such as arsenic, lead, and 
chromium, which can be attributed to seasonal hydrological cycles. The monsoon season, known for dilution and high 
flow, temporarily reduces concentrations. However, post-monsoon stagnation promotes metal accumulation through 
sediment-water interactions and reduced flow velocity (Satyam & Patra, 2024). Arsenic and lead concentrations exceeding 
WHO limits during this season are particularly concerning given their carcinogenic and neurotoxic effects (Altowayti et 
al., 2022). The temporal dynamics illustrated in Figure 1 underscore the need for seasonal surveillance and intervention, 
especially during and after monsoon recession when concentrations spike due to desorption from sediments (Siddique et 
al., 2025). 
Insights from multivariate statistical analysis 
The Principal Component Analysis (Table 3) clarified the dominant environmental drivers of contamination. PC1, loaded 
heavily on EC, TDS, turbidity, and temperature, indicated pollution gradients influenced by anthropogenic discharge and 
evapoconcentration. PC2 emphasized pH and DO, parameters tied to natural buffering and oxygen dynamics 
(Wijayaweeraet al., 2024). Together, these findings highlight a dual influence: natural hydro-chemical variability coupled 
with strong anthropogenic pressure (Hossain et al., 2021). Cluster patterns from the PCA further allowed for pollution 
zoning and strategic site classification, which is essential for localized interventions and modeling accuracy (Wu et al., 
2024). 
Predictive model performance and implications 
Among the tested AI models, Random Forest delivered superior performance (Table 4), followed closely by GBM. These 
ensemble-based methods proved more robust than SVR and ANN in handling non-linearity, interaction effects, and noise 
in environmental datasets. The high R² value (0.91) and low RMSE (2.3) from Random Forest validate its potential as a 
reliable tool for heavy metal prediction (Drogkoula et al., 2023). These results align with earlier environmental modeling 
studies, reaffirming that data-driven AI systems, when properly trained and validated, can offer decision-grade predictions 
essential for early warning frameworks (Arroyo-Ortega et al., 2024; Srivastava et al., 2024). 
Variable importance and process understanding 
Feature importance analysis (Figure 2) highlights the predictive influence of water chemistry, especially TDS, EC, and 
turbidity, on heavy metal dynamics. These indicators often correlate with anthropogenic inputs such as fertilizer residues, 
industrial discharges, and soil erosion (Jaskuła et al., 2021). Interestingly, DO and pH also played a significant role 
emphasizing that both redox-sensitive reactions and acid-base equilibrium influence the solubility and mobility of metals 
like cadmium and mercury (Wuet al., 2024). The relatively lower but notable importance of land-use and seasonal variables 
suggests that while spatial and temporal factors matter, real-time water chemistry is a more consistent predictor for 
contamination forecasting (Paul et al., 2019). 
Early warning system and policy relevance 
The successful integration of statistical and AI approaches supports the development of a functional early warning system 
(EWS). Such systems can provide preemptive signals based on model thresholds aligned with WHO water quality 
standards (Moldovan et al., 2022). Given the predictive accuracy and interpretability, this approach can inform targeted 
remediation, timely health advisories, and spatially guided monitoring (Egbueri et al., 2020). Moreover, the GIS-
compatible outputs from this study can enable local authorities to visualize risk zones and prioritize interventions, 
especially in vulnerable communities with poor water infrastructure (Kumar et al., 2023). 
The study validates that hybrid statistical-AI models are not only technically feasible but practically relevant in the context 
of environmental toxicology. The demonstrated seasonal sensitivity, pollutant predictability, and risk zonation potential 
underscore a shift toward proactive environmental governance. By integrating scientific rigor with technological 
innovation, this approach presents a replicable blueprint for other regions facing similar threats of waterborne 
contamination. 
 
 
 
CONCLUSION 
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This study demonstrates the effectiveness of integrating Statistical and Artificial Intelligence (AI) models for developing 
an early warning system in environmental toxicology, with a specific focus on predicting waterborne heavy metal 
contamination. The results revealed significant spatial and seasonal variability in both physico-chemical parameters and 
heavy metal concentrations, with the post-monsoon season emerging as the most contamination-prone period. Principal 
Component Analysis highlighted the dominant environmental drivers, while machine learning models particularly 
Random Forest exhibited high predictive accuracy. The integration of these models into a prototype early warning system, 
supported by GIS-based visualization and feature importance mapping, offers a scalable and proactive framework for 
contamination risk assessment. By enabling timely predictions and targeted interventions, this approach enhances the 
capacity of environmental monitoring systems to safeguard public health and aquatic ecosystems. The findings advocate 
for broader adoption of hybrid statistical-AI methodologies in policy-driven water quality management, particularly in data-
scarce, high-risk regions. 
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