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Abstract: 
Antimicrobial resistance (AMR) presents a critical global health threat, demanding innovative approaches beyond conventional 
antibiotic development. Over the past decade, Artificial Intelligence (AI) has emerged as a transformative tool in addressing 
AMR by facilitating antibiotic discovery, predictive resistance modelling, diagnostics, and data management. This systematic 
review synthesized literature from 2015 to 2025 across five scholarly databases PubMed, Scopus, Web of Science, IEEE 
Xplore, and ScienceDirect using predefined Boolean search strings combining terms such as Artificial Intelligence machine 
Learning Antimicrobial Resistance, "Drug Discovery", "Diagnostics", and "Surveillance". Out of 372 initially identified 
articles, 52 met inclusion criteria for relevance, novelty, and methodological robustness. 
Key insights reveal that AI-enhanced drug discovery has accelerated the identification of novel antimicrobial compounds and 
enabled drug repurposing with greater precision. Machine learning algorithms have improved predictive models for resistance 
patterns, facilitating early intervention and surveillance. AI-driven diagnostic platforms, particularly deep learning-based 
imaging and decision support systems, demonstrated improved diagnostic accuracy and faster turnaround times, especially in 
resource-limited settings. However, data challenges, algorithmic biases, and lack of integration with real-world healthcare 
infrastructure remain critical barriers. 
Thematic analysis revealed five dominant themes namely (1) drug discovery and repurposing, (2) diagnostics and decision 
support, (3) resistance prediction and surveillance, (4) data management and integration, and (5) ethical and regulatory 
constraints. While thematic convergence supports AI's pivotal role in AMR mitigation, contradictions were evident in 
reproducibility, interpretability, and translational applicability across diverse health systems. 
Future directions call for the development of transparent AI frameworks, stronger cross-disciplinary collaborations, standardized 
datasets, and policy support to enable AI translation into clinical and public health interventions. Furthermore, integrating 
AI with genomics, One Health approaches, and mobile-based surveillance systems may significantly enhance AMR response 
in both high- and low-resource settings. 
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INTRODUCTION 
Over the last decade (2015–2025), the convergence of artificial intelligence (AI) and microbiology has opened 
new frontiers in combating antimicrobial resistance (AMR). AMR is a growing threat to global health, with AI 
emerging as a powerful ally in diagnostics, drug discovery, resistance prediction, and stewardship programs. This 
literature review synthesizes findings from 79 peer-reviewed articles, mapping the evolution of AI applications in 
AMR, categorizing them into four domains: diagnostics, surveillance, drug development, and clinical decision 
support. These articles were retrieved from journals such as Nature Medicine, The Lancet Infectious Diseases, 
npj Digital Medicine, and Journal of Antimicrobial Chemotherapy. 
The integration of autonomous mobile robots with artificial intelligence is poised to revolutionize drug discovery 
by enhancing efficiency and accuracy throughout the research process. This synergy will facilitate faster data 
collection, improve experimental precision, and ultimately lead to more effective drug candidates. 
As the landscape of drug discovery evolves, the role of autonomous mobile robots will extend beyond data 
collection to encompass intricate tasks such as sample preparation and high-throughput screening. These robots, 
equipped with advanced AI algorithms, can analyze vast datasets generated by omics technologies, thereby 
identifying potential drug targets with remarkable speed and accuracy. Furthermore, their ability to operate in 
real-time allows for continuous monitoring and adjustment of experimental conditions, which can significantly 
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enhance the reliability of results. This shift not only streamlines the drug development pipeline but also fosters 
a collaborative environment where human researchers can focus on interpreting complex data and making 
strategic decisions, ultimately paving the way for breakthroughs in Precision Medicine. 
In addition to enhancing data collection and analysis, the integration of autonomous mobile robots and AI in 
drug discovery raises important considerations regarding the ethical implications of their deployment. As these 
technologies become more entrenched in the research process, questions around data privacy, algorithmic bias, 
and the potential for job displacement among researchers must be addressed. For instance, while AI can optimize 
trial designs and improve patient stratification, it is crucial to ensure that these systems do not inadvertently 
reinforce existing disparities in healthcare access or outcomes. Moreover, the reliance on high-throughput 
screening facilitated by mobile robots may lead to an overemphasis on quantitative data, potentially 
overshadowing the qualitative insights that human researchers bring to the table. Balancing the strengths of 
machine learning with the nuanced understanding of human expertise will be essential for the responsible 
advancement of precision medicine. 
 
As the integration of autonomous mobile robots and AI continues to transform drug discovery, it is also essential 
to consider the role of computational tools in enhancing the precision of these technologies. The application of 
machine learning and deep learning algorithms can significantly improve the analysis of complex biological data, 
allowing for the identification of novel drug targets and optimizing lead compounds more effectively than 
traditional methods. Additionally, the capacity to analyze large-scale datasets from genomic and proteomic studies 
enables researchers to uncover intricate patterns that inform personalized treatment strategies, ultimately 
bridging the gap between technological innovation and clinical application. However, this reliance on 
computational methods must be balanced with a commitment to ethical practices, ensuring that advancements 
in drug discovery do not compromise patient safety or equity in healthcare access. By fostering a collaborative 
approach that values both machine efficiency and human insight, the future of drug discovery can be both 
innovative and responsible, paving the way for breakthroughs that benefit diverse patient populations. 
 
METHODOLOGY 
 
STUDY DESIGN 
This study employed a systematic literature review (SLR) methodology, guided by the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA 2020) framework. across five scholarly databases PubMed, 
Scopus, Web of Science, IEEE Xplore, and ScienceDirect using predefined Boolean search strings combining 
terms such as Artificial Intelligence machine Learning Antimicrobial Resistance, "Drug Discovery", "Diagnostics", 
and "Surveillance". The goal was to identify, analyze, and synthesize peer-reviewed scholarly works that explored 
the application of Artificial Intelligence (AI) in addressing various dimensions of Antimicrobial Resistance 
(AMR) from 2015 to 2025. Out of 372 initially identified articles, 52 met inclusion criteria for relevance, novelty, 
and methodological robustness 
 
RESEARCH QUESTION 
What are the key trends, applications, limitations, and future directions in the use of AI technologies to mitigate 
antimicrobial resistance in healthcare and research environments? 
 
LITERATURE REVIEW 
 
AI IN PREDICTIVE MODELLING AND RESISTANCE SURVEILLANCE 
Numerous studies have leveraged machine learning (ML) models—random forests, support vector machines 
(SVM), deep neural networks—to predict resistance phenotypes and antimicrobial susceptibility. Nguyen et al. 
(2019) used whole-genome sequencing data to train ML models that predict rifampicin resistance in 
Mycobacterium tuberculosis with 93% accuracy. Similarly, Rahimkhani & Gilani (2025) created models using 
clinical and demographic features to accurately forecast multidrug resistance in E. coli infections. 
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Other works such as that by Gibson et al. (2021) and Zhang et al. (2018) examined large datasets from EHRs and 
microbiome studies to identify patient-specific resistance profiles. ML-based clustering revealed previously 
unrecognized co-resistance patterns in nosocomial infections. A systematic review by Tängdén et al. (2022) 
covering 42 studies highlighted that AI-based models outperformed traditional antibiograms in predictive 
precision by 15–35% across various settings. 
 
Ebuleu et al. (2024) emphasizes the transformative role of artificial intelligence (AI) in HIV drug resistance 
management. Their study demonstrates how AI-driven predictive modeling, using genomic data, can accurately 
identify resistance mutations, estimate their likelihood, and inform individualized treatment strategies. This 
approach significantly enhances surveillance capabilities and supports optimized therapeutic outcomes in HIV 
care. The authors conclude that predictive models are vital for personalized HIV treatment and effective 
resistance forecasting, especially when integrated with genomic data. They recommend future research to improve 
model accuracy through clinical data integration and the exploration of advanced machine learning techniques 
to enhance predictive performance. 
Kibibi et al. (2024) highlights the critical role of artificial intelligence (AI), particularly machine learning and 
deep learning techniques, in advancing predictive modeling and drug resistance surveillance in HIV care. By 
integrating genomic sequences with clinical data, these AI methodologies can accurately detect drug resistance 
patterns, thereby supporting personalized antiretroviral therapy tailored to individual patient profiles. The study 
concludes that AI significantly enhances the prediction of resistance mutations and contributes to improved 
treatment outcomes through individualized therapy strategies. 
Zeng et al. (2021) explore how artificial intelligence (AI) techniques are increasingly leveraged in public health 
surveillance, particularly in predictive modeling. By addressing challenges such as data sparsity and complex 
interdependencies, AI enhances the capabilities of traditional statistical methods. The study shows that AI 
improves epidemic detection, trend forecasting, and response modeling, thus strengthening resistance 
surveillance and outbreak control. This study concludes that AI has become a valuable complement to 
conventional approaches and suggests future research should focus on refining AI tools for early outbreak 
detection and enhancing models for public health response assessment (Zeng et al. 2021). 
Pennisi et al. (2025) underscore the pivotal role of AI-powered predictive analytics in identifying antimicrobial 
resistance (AMR) patterns and forecasting potential outbreaks, thereby strengthening antimicrobial stewardship 
(AMS). The integration of machine learning (ML) algorithms enables rapid pathogen detection, real-time 
resistance monitoring, and data-driven public health decision-making. Their findings emphasize that AI and ML 
significantly enhance AMS efforts, though they also point to challenges around equitable implementation. This 
study calls for future research into interpretable AI/ML models and interdisciplinary collaboration to ensure fair 
and effective AI integration across healthcare systems (Pennisi et al., 2025). 
Li et al. (2024) explore the application of artificial intelligence (AI) and machine learning (ML) in predictive 
modeling and antimicrobial resistance (AMR) surveillance. By leveraging large-scale biomedical datasets, the study 
demonstrates how algorithms such as Support Vector Machines (SVMs), Random Forests, and Deep Learning 
networks can effectively identify resistance patterns and deliver accurate AMR predictions. Li et al. (2024) 
conclude that AI and ML significantly enhance resistance forecasting and will continue to play a critical role in 
combating AMR. Future research priorities include optimizing predictive algorithms, expanding datasets, and 
fostering interdisciplinary collaboration to further improve model performance and real-world applicability. 
Kusuma et al. (2023) highlights the potential of artificial intelligence (AI) in strengthening predictive modeling 
and antibiotic resistance surveillance by analyzing large datasets to uncover patterns and correlations in 
antimicrobial resistance (AMR). The study underscores AI's role in facilitating rapid diagnosis and forecasting 
resistance trends, which is vital for improving clinical responses and public health interventions. While AI 
demonstrates substantial promise in the fight against AMR, the authors note critical challenges such as ethical 
concerns and data quality limitations. Future research is recommended to enhance AI systems for faster 
diagnostic capabilities and to address the ethical and data integrity issues that hinder broader implementation 
(Kusuma et al., 2023). 
The study done by Singh et al. (2024) examined the application of artificial intelligence (AI) in monitoring 
antibiotic usage, disease incidence, and resistance trends to enable predictive modeling of future antimicrobial 



International Journal of Environmental Sciences   
ISSN: 2229-7359 
Vol. 11 No. 15s, 2025 
https://www.theaspd.com/ijes.php  

 

2121 

resistance (AMR). Their study illustrates how AI supports a proactive approach to AMR management by guiding 
novel drug development and strengthening resistance surveillance. The authors conclude that AI holds 
substantial promise in combating AMR, particularly through its integration in drug discovery and disease 
prevention efforts. Future research is directed toward detecting AMR markers, enhancing diagnostic tools, and 
facilitating the development of innovative therapeutics. 
 
Giri et al. (2024) demonstrate the effectiveness of artificial intelligence (AI) in enhancing predictive modeling for 
public health by analyzing real-time, multisource data to enable early outbreak detection and monitor disease 
transmission dynamics. The study highlights AI’s ability to predict viral evolution, which is critical for resistance 
surveillance and guiding targeted vaccine development. The authors conclude that AI significantly strengthens 
disease surveillance systems, though successful implementation requires addressing ethical and privacy concerns. 
Future research directions include leveraging emerging technologies such as quantum computing and biosensors, 
and focusing on the development of transparent, unbiased AI models for public health applications. 
Cadet et al. (2023) presented an AI-powered surveillance framework focused on threat detection, leveraging 
machine learning and deep learning to process real-time data efficiently. Although the study does not directly 
address predictive modeling or antimicrobial resistance (AMR) surveillance, it offers valuable insight into how 
AI can be applied for intelligent threat identification and adaptive system responses. The authors conclude that 
continuous model training enhances the framework’s ability to respond to emerging threats with improved 
efficiency and accuracy. Future research is recommended in developing next-generation intelligent surveillance 
systems, with emphasis on AI integration and adaptive model enhancement 
 
Research done by Nayak (2023) exploresdthe role of artificial intelligence (AI), particularly machine learning 
(ML) and deep learning (DL) in advancing predictive modeling and antimicrobial resistance (AMR) surveillance. 
The study emphasizes the use of gene expression and whole-genome sequencing (WGS) data to enhance 
prediction accuracy while minimizing the need for human intervention. Despite the potential, the author 
identifies persistent challenges, including inconsistent model performance across datasets and limited 
accessibility to high-throughput sequencing data. Future research is encouraged to focus on standardizing AI 
model performance across diverse data environments and improving access to critical genomic datasets for 
broader application in AMR detection and management. 
 
AI-DRIVEN DIAGNOSTICS 
Rapid diagnostics is a field where AI has been most visibly transformative. Deep learning models have been 
embedded in image analysis of Gram stains, ASTs, and MALDI-TOF mass spectra to enhance both sensitivity 
and speed. Buchanan et al. (2020) demonstrated that convolutional neural networks (CNNs) trained on MALDI-
TOF data achieved >95% sensitivity in identifying extended-spectrum β-lactamase (ESBL) producers within 45 
minutes. 
Other works include the IR-spectrometry-based ML approach described by Wang et al. (2021), which reduced 
diagnostic time for AMR detection to under 30 minutes. The flow-cytometry-based AST method (FAST) 
developed by Mahmud et al. (2022) also achieved high throughput bacterial profiling within 3 hours. Despite 
such advances, Lippi et al. (2019) emphasized concerns about reproducibility and generalizability across diverse 
clinical laboratories. 
Thayil, (2024) highlighted the transformative role of AI-driven diagnostics in modern healthcare systems. The 
study emphasizes how advanced algorithms are increasingly integrated into diagnostic processes to enhance 
precision, efficiency, and accuracy. By addressing limitations inherent in traditional diagnostic methods—such as 
operational delays and human error, AI significantly improves diagnostic reliability and supports timely clinical 
decision-making. Thayil concluded that AI not only boosts diagnostic accuracy but also contributes to better 
patient outcomes, making it a vital innovation for overcoming the inefficiencies of conventional healthcare 
diagnostics (Thayil, 2024). 
Tariq et al. (2024) explore how AI-driven diagnostics, particularly through machine learning and deep learning, 
are revolutionizing healthcare by enhancing accuracy, efficiency, and predictive capability in diagnostic processes. 
The article underscores a paradigm shift from conventional methods to innovative, data-driven approaches that 
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are reshaping the future of healthcare. They emphasize that while AI offers transformative benefits, its responsible 
integration is crucial to ensure ethical and effective implementation (Tariq et al., 2024). They conclude that AI 
significantly improves diagnostic practices and patient care, and recommend further research into current 
applications, challenges, and future opportunities for AI in healthcare diagnostics (Tariq et al., 2024) 
Chaudhari et al. (2024) examine the transformative impact of AI-driven diagnostics in medical imaging, 
emphasizing how artificial intelligence and machine learning enhance precision, efficiency, and clinical accuracy. 
The study highlights significant improvements in imaging techniques such as MRI, CT scans, and X-rays, where 
AI facilitates faster and more accurate anomaly detection, ultimately improving patient outcomes. This study 
concluded that while AI optimizes diagnostic performance, ethical considerations and rigorous validation of 
these tools are essential (Chaudhari et al., 2024). Future research should focus on validating AI tools and 
exploring new decision support system applications to further advance diagnostic capabilities. 
Sasikala et al. (2024) present an AI-driven diagnostic system designed for the automotive sector, showcasing how 
artificial intelligence can analyze vehicle data to accurately identify faults, determine root causes, and recommend 
repair solutions. This approach significantly improves both the efficiency and accuracy of automotive diagnostics, 
offering practical benefits for mechanics and vehicle owners alike. Sasikala et al. (2024) conclude that AI holds 
strong potential to revolutionize vehicle diagnostics, with experimental results demonstrating its effectiveness and 
reliability in real-world applications. 
 
A study was done to explore the role of AI-driven diagnostics in modern healthcare, focusing on the application 
of machine learning and deep learning to improve diagnostic accuracy, reduce turnaround times, and offer 
recommended personalized treatment. By analyzing medical images and clinical data, AI systems can detect 
complex patterns that significantly enhance disease detection and management (Khanday et al. 2024). The 
authors conclude that while AI boosts diagnostic precision and personalization, key challenges such as data 
privacy, algorithmic bias, and ethical concerns remain. Future research should prioritize bias mitigation, data 
security, and the rigorous validation and regulation of AI diagnostic tools. 
Research done by Prasad et al. (2024) examines the application of AI-driven diagnostics in the detection and 
management of chronic diseases, emphasizing the use of machine learning algorithms to analyze diverse medical 
datasets such as electronic health records and imaging data. The study highlights how AI enhances diagnostic 
accuracy and timeliness, outperforming traditional methods by identifying complex patterns and correlations 
within clinical data. The authors conclude that AI significantly improves chronic disease diagnostics but faces 
challenges related to data privacy and model interpretability. Future research should focus on resolving these 
issues and fostering cross-disciplinary collaboration to advance healthcare diagnostics. 
Al-Antari et al. (2024) discuss how AI-driven diagnostics, powered by artificial intelligence and machine learning, 
significantly enhance disease detection, classification, and treatment planning across multiple medical disciplines, 
including radiology, pathology, genomics, and personalized medicine. The integration of these technologies 
fosters greater accuracy, efficiency, and innovation in clinical practice. The article also introduces a special issue 
featuring 12 research articles showcasing advancements in AI-driven diagnostics. Al-Antari et al. (2024) conclude 
that AI and ML are transforming medical diagnostics and recommend future efforts toward expanding diagnostic 
capabilities and deeper integration of AI technologies across healthcare systems. 
A study highlighted the role of AI-driven diagnostics in automating the analysis of patient-related data through 
artificial intelligence and machine learning technologies. This approach enables more efficient and accurate 
disease identification, supports preventative care, and allows healthcare professionals to dedicate more time to 
complex cases (Logeshwaran et al., 2024). The researchers conclude that AI and ML significantly enhance 
diagnostic accuracy, improve patient outcomes, and contribute to better resource management within healthcare 
systems (Logeshwaran et al., 2024). 
A recent study explored the impact of AI-driven diagnostic decision support systems, emphasizing their ability to 
leverage clinical data to improve predictive modeling and support healthcare providers in disease diagnosis and 
treatment planning (Neravetla et al., 2024). These systems play a critical role in enhancing patient care, reducing 
clinical errors, and optimizing healthcare delivery (Neravetla et al., 2024).  This study demonstrated that AI 
significantly boosts diagnostic accuracy, minimizes errors, and contributes to improved patient outcomes, making 
it a valuable tool in modern clinical practice (Neravetla et al., 2024). 
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AI IN ANTIBIOTIC DISCOVERY AND REPURPOSING 
A revolutionized antibiotic discovery by using DL models to uncover Halicin, a compound effective against MDR 
pathogens was performed by Stokes et al. (2020). Several studies followed this approach using generative 
adversarial networks (GANs) and reinforcement learning to identify novel antimicrobial peptides (AMPs) and 
natural product analogs. 
DeepChem and Chemprop were cited in over 25 studies for their role in accelerating structure-activity 
relationship modeling and in silico prediction of toxicity and efficacy. For example, Gupta et al. (2021) used a 
neural-symbolic approach to rediscover effective β-lactams through compound library repurposing, while Cesaro 
et al. (2025) documented more than 50 successful AI-guided leads from peptide libraries against carbapenem-
resistant Acinetobacter baumannii. 
A recent study highlighted the transformative role of Artificial Intelligence (AI) in accelerating antibiotic 
discovery and drug repurposing (Singh et al., 2024). By harnessing large-scale biomedical and chemical datasets, 
AI models can identify novel associations between existing drugs and antibiotic-resistant pathogens. The study 
emphasizes AI’s capabilities in optimizing drug selection, predicting potential side effects, and navigating 
intellectual property challenges, all of which contribute to reducing both the time and cost of drug development. 
Singh et al. (2024) concluded AI significantly expedites drug repurposing for infectious diseases, improving both 
efficacy and safety profiles. They project that the future of AI in this domain will involve: 
● Virtual screening for rapid compound prioritization, 
● Target identification through integrative data mining, 
● Structure-based drug design enhanced by deep learning, and 
● Natural Language Processing (NLP) tools to extract repurposing insights from vast biomedical literature. 
 
A study done by Lin et al. (2024) introduced an explainable AI framework that leverages molecular image data 
to identify novel antibiotic candidates. The model demonstrated strong predictive performance, achieving an 
AUROC of 0.926, underscoring its accuracy in distinguishing effective antibiotic compounds. Importantly, the 
study successfully identified 76 FDA-approved drugs as viable candidates for repurposing as antibiotics, 
showcasing AI’s dual utility in both novel discovery and drug repurposing. This study concluded that their 
explainable AI approach not only effectively predicts antibiotic activity but also enhances transparency, 
facilitating trust and interpretability in AI-driven drug discovery pipelines. 
A study done by Ghandikota et al. (2024) explore the pivotal role of AI and machine learning in accelerating 
drug repurposing by efficiently analyzing vast biomedical datasets. Their study highlights how these technologies 
enable rapid identification of therapeutic candidates, including antibiotics, thereby enhancing precision 
medicine and overcoming traditional bottlenecks in drug discovery. The study showed that drug repurposing 
provides a faster and more cost-effective pathway for drug development. They also emphasize the transformative 
potential of generative AI in pioneering novel research avenues. Future directions include continued 
advancements in computational frameworks and methodologies to further optimize drug repurposing efforts 
Bilokon et al. (2024) describe AIAltMed, a drug discovery and repurposing platform that applies Tanimoto 
similarity to identify structurally related compounds. While the platform does not specifically focus on antibiotic 
discovery or repurposing, the paper highlights critical issues in the broader field of machine learning-driven 
antibiotic research. The authors emphasize an urgent need for openness and reproducibility in ML-based 
antibiotic discovery, arguing that open-access publishing alone is insufficient without comprehensive open 
science practices. For future development, they suggest extending AIAltMed to integrate PubChem data and 
systematically evaluate the advantages and limitations of Tanimoto similarity for compound identification. 
A review on how AI accelerates antibiotic discovery by predicting antimicrobial activity, evaluating drug-likeness, 
and navigating chemical space to identify promising new compounds was done in a study by Melo et al. (2021). 
The study also highlights AI’s role in drug repurposing and stresses the importance of fostering collaboration 
between computational scientists and experimental researchers to effectively tackle antimicrobial resistance and 
speed up drug development. Melo et al. (2021) concluded that there is an urgent need for openness and 
reproducibility in machine learning–based antibiotic research, emphasizing that open-access publishing alone is 
insufficient without broader open science practices. They advocate for future efforts to focus on improving data 
quality and availability, as well as strengthening interdisciplinary collaboration to drive innovation. 
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Recent study done by Chinnaiyan et al. (2024) explored how AI enhances drug repurposing by rapidly analyzing 
large biological and chemical datasets to identify new therapeutic uses for existing drugs, including antibiotics. 
This accelerates the discovery and development of effective antibiotic treatments and improves precision 
medicine approaches. 
Lin et al. (2024) concluded that AI is pivotal in speeding up drug discovery and delivery, with the pharmaceutical 
industry viewing it as a key driver of efficiency and innovation. Looking ahead, they emphasize the importance 
of integrating AI into clinical trials to further enhance these benefits, while also addressing challenges related to 
job displacement and regulatory frameworks. 
Cesaro et al. (2025) examine how AI, particularly machine learning and deep learning, advances antibiotic 
discovery and repurposing by identifying effective compounds such as antimicrobial peptides and small 
molecules. These AI-driven approaches support antibiotic stewardship and accelerate drug discovery in the 
context of infectious disease control. It was found that AI significantly enhances both diagnosis and antibiotic 
discovery in infectious diseases, while also acknowledging current limitations and areas for improvement in AI 
applications (Cesaro et al., 2025). Future research directions include strengthening AI tools for diagnostics and 
therapy and advancing methodologies for drug discovery and resistance prediction. 
The critical role of AI in antibiotic discovery was highlighted in a study emphasizing its ability to analyze large 
datasets, identify molecular patterns, predict properties, and assist in the design of novel antibiotics (Dezfooli et 
al., 2024). The study underscores how AI enhances drug design workflows and fosters collaboration, addressing 
the growing urgency for new antibiotics in the face of rising resistance. It was found that AI can significantly 
accelerate antibiotic drug discovery, making it a key tool in tackling antimicrobial resistance (Dezfooli et al., 
2024). Future research should focus on strengthening neural network databases to improve AI accuracy and 
integrating AI with traditional experimental approaches to enhance discovery outcomes. 
In furthering the understanding of AI advances antibiotic discovery Acharjee et al. (2024) explore how 
repurposing by improving target identification, optimizing drug candidates, and accurately predicting molecular 
properties should be. Their work emphasizes that while AI integration accelerates drug development, it also 
introduces challenges related to ethical data use and model interpretability, which are crucial for responsible and 
effective deployment in healthcare (Acharjee et al., 2024). This study concluded that the success of AI in 
healthcare hinges on robust ethical frameworks, clear regulatory guidelines, and the context-specific selection of 
AI algorithms suited for drug discovery. Future research should focus on these aspects to ensure safe, equitable, 
and effective applications of AI in antibiotic development 
Abbas et al. (2024) emphasize the transformative role of AI in antibiotic discovery and repurposing, particularly 
in enhancing drug design, predicting bioactivity, and identifying viable therapeutic candidates. AI effectively 
addresses key limitations of traditional drug development approaches; however, the study also highlights 
persistent challenges, including data quality issues and high computational demands. The researchers conclude 
that AI significantly enhances drug development, but future success depends on overcoming hurdles related to 
data reliability and ethical considerations. They recommend future research focus on improving data quality and 
generalizability, while also managing computational requirements and ensuring ethical integrity in AI-driven drug 
discovery. 
 
LIMITATIONS AND CHALLENGES IDENTIFIED IN LITERATURE 
Despite notable progress, challenges persist. Many ML models lack external validation, and performance degrades 
in low-resource settings due to data heterogeneity. According to a meta-analysis by Jones et al. (2021), only 38% 
of published models report reproducibility metrics. Moreover, privacy laws, ethical concerns, and interpretability 
barriers limit clinical adoption. Another concern is algorithmic bias. Studies by Obermeyer et al. (2020) and Lin 
et al. (2023) highlight the risk of AI models reinforcing healthcare disparities due to biased training data, 
emphasizing the need for transparent, explainable AI (XAI). 
Another study provided a comprehensive review of the inherent limitations associated with the use of routine 
clinical care data in real-world evidence (RWE) studies (Pfaffenlehner., 2024). The study identifies several key 
methodological challenges, including information bias, reporting bias, selection bias, and confounding, which 
collectively threaten the internal and external validity of findings derived from observational health data 
(Pfaffenlehner., 2024). Moreover, the article highlights technical and operational issues specific to routine data 
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sources, such as inadequate operationalization of variables, inconsistent coding practices, irregular follow-up, 
missing data, insufficient validation protocols, and variable data quality (Pfaffenlehner, 2024). These limitations 
substantially hinder robust analytical interpretation, and the reliability of evidence used to inform clinical and 
policy decisions. The review concludes that without systematic efforts to recognize and mitigate these limitations, 
the credibility of RWE-based conclusions remains questionable (Pfaffenlehner., 2024). Future research directions 
call for targeted strategies to address biases, enhance data validation techniques, and improve overall data quality 
to ensure that real-world analyses yield meaningful and actionable inferences 
Another researcher critically examines the methodological limitations undermining the evidence base for labor 
induction strategies (Vieira., 2018). The review identifies several pervasive issues, including the absence of well-
designed randomized controlled trials (RCTs), the use of heterogeneous study populations, and the lack of 
standardized definitions for efficacy and safety outcomes (Vieira., 2018). Additionally, many studies suffer from 
being underpowered and rely on subjective assumptions in sample size calculations, thereby limiting the reliability 
and comparability of findings across trials. These methodological weaknesses contribute to significant uncertainty 
in interpreting the clinical effectiveness and safety of various labor induction methods (Vieira., 2018). The article 
concludes that due to these persistent limitations, the optimal strategy for labor induction remains unclear 
(Vieira., 2018). To advance the field, future research should prioritize robust, adequately powered head-to-head 
RCTs, and adopt consistent, clinically relevant outcome measures to enable more meaningful comparisons and 
evidence-based clinical guidance. 
Steijger (2022) explores the methodological and practical challenges of implementing Distributional Cost-
Effectiveness Analysis (DCEA) in healthcare decision-making. The literature highlights critical limitations, 
including restricted data availability, limited familiarity with DCEA among policymakers, and the difficulty of 
accurately estimating socioeconomic disparities in health outcomes. In addition, DCEA inherits several 
shortcomings from traditional cost-effectiveness analyses, such as failing to account for variations in healthcare 
quality and disparities in benefits coverage, which further constrains its applicability. 
The article concludes that while DCEA offers valuable insights into health equity, its broader adoption is 
hindered by systemic and methodological constraints. Future research should prioritize the application of DCEA 
across diverse income settings, and emphasize the enhancement of data infrastructure—through database linkages, 
enriched health registries, and expanded analytical capacity—to support more equitable and informed healthcare 
policy decisions 
The study explored the evolving challenges of Business Process Management (BPM) in the context of digital 
transformation and the emerging Industry 5.0 paradigm (Szelągowski and Berniak-Woźny, 2024). The literature 
reveals that most BPM initiatives remain heavily focused on technological and methodological dimensions, often 
neglecting broader organizational and stakeholder impacts. A key limitation identified is the lack of a holistic 
BPM framework that integrates knowledge management (KM) and aligns with the human-centric and culturally 
adaptive principles essential for Industry 5.0 readiness. Szelągowski and Berniak-Woźny (2024) concluded that 
future BPM development must move beyond IT-centric approaches to embrace integrated models that consider 
organizational culture, human values, and knowledge flows. Future research should focus on embedding KM 
into BPM frameworks and addressing Industry 5.0’s cultural and stakeholder-driven requirements, enabling 
organizations to achieve more resilient, adaptive, and inclusive process management systems. 
Pettit et al. (2016) critically examine the limitations of the Quality-Adjusted Life Year (QALY) framework, a 
cornerstone of health economics and cost-effectiveness analysis. The literature identifies three central areas of 
concern: ethical challenges, methodological shortcomings, and theoretical assumptions underlying QALY 
calculations. Key issues include the diminished role of healthcare providers in value assessments, the 
underrepresentation of rare diseases, and the exclusion of non-health-related benefits and individualized patient 
preferences. Pettit et al. (2016) concluded that the dominant reliance on QALYs in health technology assessment 
(HTA) warrants re-evaluation, particularly as it struggles to accommodate ethical diversity, contextual variation, 
and emerging therapeutic innovations. Future research should focus on refining QALY methodologies to better 
align with the complexities of regenerative medicine, and on incorporating broader societal and non-health 
benefits to enhance the fairness and relevance of economic evaluations in healthcare. 
Another study examined the methodological challenges inherent in generating robust evidence for treatment 
efficacy and effectiveness in rare diseases (Tingley et al., 2018). The literature highlights key limitations such as 
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insufficient sample sizes leading to reduced statistical power, inability to adequately address clinical heterogeneity, 
and the prevalent use of short-term or surrogate endpoints that often lack clear clinical relevance (Tingley et al., 
2018). These factors collectively undermine the strength and applicability of clinical findings in rare disease 
contexts. 
Tingley et al., (2018) concluded that while traditional randomized controlled trials face significant limitations in 
this domain, observational studies play a critical role in clinical evaluative research. Future research should 
prioritize the development of structured frameworks for evidence synthesis in rare diseases and implement 
strategies to reduce bias and confounding in treatment effectiveness assessments to support more reliable and 
generalizable conclusions. 
Palla et al. (2010) critically assess the methodological challenges in conducting literature-based meta-analyses of 
gene-environment (G×E) interactions. The review identifies several persistent obstacles, including heterogeneous 
study designs, selective reporting biases, and the complexity of accurately specifying environmental exposures. 
Moreover, the requirement for extremely large sample sizes further limits the feasibility of drawing robust 
quantitative conclusions or achieving generalizable findings. 
The authors conclude that current literature-based approaches to G×E interaction analysis are insufficiently 
powered and methodologically fragmented, undermining their scientific utility. Future research should focus on 
the formation of large, collaborative scientific consortia that enable data sharing, standardized measurement of 
environmental factors, and the development of well-defined cohorts to improve exposure precision and statistical 
power in G×E research. 
Adalsteinsson et al. (2023) critically evaluate the quality of evidence regarding Mohs surgery and staged excision 
for melanoma treatment. Their review reveals that 97.9% of studies exhibit serious or critical risk of bias, largely 
attributed to poorly defined clinical outcomes, absence of randomized controlled trials (RCTs), and inconsistent 
definitions of local recurrence rates. These methodological weaknesses significantly compromise the reliability of 
current evidence on surgical efficacy. This study concluded that advancing the evidence base necessitates longer 
patient follow-up periods and rigorous randomized study designs to yield more definitive and generalizable 
conclusions. Future research should focus on establishing standardized tumor classifications, employing 
randomized controlled methodologies, and ensuring adequate follow-up duration to improve the quality and 
clinical relevance of surgical outcome data. 
A group of researchers examined the multifaceted challenges associated with Big Data management, identifying 
three primary categories: data-related challenges, processing challenges, and management challenges (Syafiqah 
and Suryanti., 2018). Among these, processing challenges emerge as the most critical, reflecting the inherent 
complexity of efficiently handling the diverse data types unstructured, semi-structured, and structured that 
constitute Big Data ecosystems. These limitations underscore the technical and organizational difficulties in 
harnessing Big Data’s full potential. Syafiqah and Suryanti (2018) concluded that a comprehensive understanding 
of the distinct data types and their specific challenges is essential for advancing Big Data analytics. Future research 
should focus on developing robust strategies to address the critical processing challenges and optimize the 
integration and management of heterogeneous data sources within Big Data environments. 
 
ANALYSIS ON RESEARCH DONE ON AI IN PREDICTIVE MODELLING AND RESISTANCE 
SURVEILLANCE 
Below on table 1 is detailed thematic comparison of the studies by Ebuleu et al. (2024), Kibibi et al. (2024), Zeng 
et al. (2021), Pennisi et al. (2025), Li et al. (2024), Kusuma et al. (2023), Singh et al. (2024), Giri et al. (2024), 
Cadet et al. (2023), and Nayak (2023). The analysis identified thematic similarities, contradictions, and 
differences, and explains these within the context of AI in predictive modelling and resistance surveillance. 
 
Table1. Thematic Similarities and Differences Across Studies 

Theme Similarities Across Studies 
Contradictions or 

Differences 
Explanation 

1. Predictive 
Modeling for 

AMR 

Most studies (Ebuleu, Kibibi, Li, Nayak, 
Kusuma, Singh) agree that AI enhances 

Cadet does not 
address predictive 
modeling, focusing 

The majority of studies are in 
health/biomedical domains; 
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Theme Similarities Across Studies 
Contradictions or 

Differences 
Explanation 

AMR prediction accuracy using 
genomic/clinical data. 

instead on threat 
detection. 

Cadet is in public safety, hence 
the divergence. 

2. Real-Time 
Surveillance 

Zeng, Giri, Cadet, and Pennisi 
emphasize AI’s role in real-time 
outbreak monitoring and early 

detection. 

Ebuleu, Kibibi, 
Nayak focus more 
on drug resistance 
patterns than on 

surveillance 
timelines. 

Some studies center on clinical 
treatment, others on 

epidemiological surveillance. 
The variation reflects their 
primary research objectives. 

3. Personalized 
Treatment 

Ebuleu, Kibibi, Singh, Pennisi highlight 
how AI supports personalized medicine 

and therapy optimization. 

Zeng, Cadet, and 
Giri do not discuss 

personalized 
treatment, focusing 

instead on 
population-level 

surveillance. 

Clinical studies prioritize 
individual outcomes, whereas 

public health/surveillance 
papers focus on community-

wide implications. 

4. Data Quality 
and Ethical 
Concerns 

Kusuma, Giri, and Nayak identify issues 
like data inconsistency, inaccessibility, 

and privacy as major barriers to AI 
deployment. 

Ebuleu, Kibibi, and 
Singh do not 

foreground ethical 
or data access issues, 

focusing on AI 
performance. 

The discrepancy likely stems 
from whether the study 

includes a technical/systemic 
vs. clinical application focus. 

5. Use of 
Machine 
Learning 

Techniques 

All health-focused studies use or 
mention ML/DL algorithms (e.g., 

SVM, RF, neural nets). 

Cadet and Zeng use 
ML for non-AMR 
applications like 

threat or outbreak 
detection. 

Commonality in algorithm use, 
but differences in application 

contexts (AMR vs. general 
surveillance). 

6. Emerging 
Technologies & 

Integration 

Giri, Singh, Nayak, and Li promote 
integration of AI with biosensors, 

quantum computing, and multi-omic 
data. 

Earlier works (e.g., 
Zeng 2021) or 

narrowly scoped 
studies don’t discuss 

integration with 
emerging 

technologies. 

More recent studies emphasize 
future readiness and tech 

convergence, reflecting evolving 
research agendas. 

7. 
Interdisciplinary 
Collaboration 

Pennisi, Giri, Singh advocate for cross-
disciplinary collaboration (AI experts + 

biomedical scientists). 

Others (e.g., 
Ebuleu, Kibibi) 
acknowledge it 

indirectly or not at 
all. 

More complex studies recognize 
that real-world implementation 

requires multidisciplinary 
synergy across science and 

policy. 

8. Explainability 
& Trust in AI 

Pennisi, Nayak, and Li discuss 
interpretable AI and the need for 

transparency. 

Others (Ebuleu, 
Kusuma, Singh) do 

not emphasize 
model 

interpretability. 

Clinical and regulatory success 
depends on trust in AI 

decisions; not all studies reflect 
this need equally depending on 

their goals. 

9. Drug 
Development 

Singh, Nayak, and Kusuma explore how 
AI can identify AMR markers and 

support drug discovery. 

Studies like Cadet, 
Zeng, and Giri are 

surveillance-focused 
and don’t link to 

drug development. 

Drug discovery relevance arises 
mainly in biomedical or 
pharmaceutical research 

contexts. 
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Theme Similarities Across Studies 
Contradictions or 

Differences 
Explanation 

10. AI 
Deployment 
Challenges 

Giri, Nayak, Kusuma all highlight data, 
bias, ethics, and infrastructure as key 

barriers. 

Ebuleu, Kibibi, and 
Singh are more 
optimistic and 

highlight benefits 
more than 
limitations. 

Reflects methodological 
maturity: some authors focus 

on promise, others on practical 
challenges of real-world 

implementation. 

 
KEY FINDINGS OF THEMATIC SIMILARITIES 
● AI enhances predictive modelling and AMR surveillance: Consistently reported across most health-focused 

studies. 
● Machine learning is the core AI approach: Algorithms like SVM, Random Forests, and Deep Learning networks 

are universally adopted. 
● AI supports treatment personalization and drug development: Strong consensus among biomedical articles. 
● Emerging tech and AI integration are key for future progress: Identified in recent studies as a vital advancement. 
● Ethical concerns and data access are shared worries: Especially emphasized in more systemically aware studies. 
 
Key findings of Thematic Contradictions and Divergences 
● Focus of Application: Some studies (Cadet, Zeng, Giri) are public health and surveillance-focused, while others 

(Ebuleu, Singh, Nayak) are clinical and AMR-focused. 
● Consideration of Ethics: Some studies deeply analyze ethical, transparency, and privacy issues, others omit them 

entirely. 
● Model Explainability and Interdisciplinary Collaboration: More developed in Pennisi and Nayak, less addressed 

in narrower clinical studies. 
● Drug Development Emphasis: A few studies explicitly link AI to pharmaceutical innovation, which others 

ignore. 
 
EXPLANATION OF VARIATIONS 
● Disciplinary Origin: Public health and surveillance researchers prioritize population-wide data systems, while 

biomedical researchers focus on individual treatment pathways. 
● Research Maturity: Earlier-stage studies often focus on potential benefits, while more developed or system-wide 

analyses include ethical and operational limitations. 
● Scope and Aim: Some articles explore AI methods, others assess AI implementation in real-world settings, 

explaining the variation in challenges discussed. 
 
Insights gained from AI in predictive modelling and resistance surveillance 
The past decade has witnessed substantial progress in integrating AI into AMR research. While predictive 
diagnostics and virtual screening dominate the field, real-world clinical integration and environmental 
surveillance are also gaining traction. However, limitations concerning model transferability, interpretability, and 
regulatory approval must be addressed. Future work should prioritize data standardization, external validation, 
and ethical governance to ensure AI's sustainable role in combating AMR.This review sets the stage for the 
subsequent sections detailing the methodology, problem analysis, and synthesized insights drawn from the 
literature corpus. 
 
ANALYSIS OF AI DIAGNOSTICS OVERVIEW 
Table 2 shows the thematic comparative analysis on similarities, differences, and contradictions among the nine 
reviewed 2024 studies on AI-driven diagnostics, followed by a detailed explanation for each theme. 
 
Table 2. Thematic Similarities and Contradictions Across AI-Driven Diagnostic Studies 
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Theme Studies in Agreement (Similarity) Differences Contradictions / Gaps 
1. Diagnostic Accuracy & 

Efficiency 
All studies (100%) 

None – all report 
enhancement 

None – full consensus 

2. Predictive & Personalized 
Diagnosis 

Tariq, Khanday, Prasad, Al-Antari, 
Logeshwaran, Neravetla 

Thayil, Swathi (not 
addressed) 

Some studies ignore 
personalization 

3. Medical Imaging & 
Clinical Data Analysis 

Tariq, Khanday, Prasad, Al-Antari 

Thayil, Swathi, 
Logeshwaran, 

Neravetla (limited or 
no focus) 

Imbalanced focus on 
imaging vs. clinical 

data 

4. Automation & Workflow 
Optimization 

Thayil, Swathi, Logeshwaran, 
Neravetla 

Khanday, Al-Antari 
(less emphasis) 

Some focus more on 
analytics than workflow 

5. Data Privacy & Ethical 
Concerns 

Tariq, Khanday, Prasad, Al-Antari 

Thayil, Swathi, 
Logeshwaran, 
Neravetla (not 

mentioned) 

Ethics 
underrepresented in 

several 

6. Bias & Model 
Interpretability 

Khanday, Prasad, Al-Antari 
Others do not 

mention this directly 
Major gap in most 

clinical papers 
7. Cross-Disciplinary 

Application 
Swathi (automotive) 

Others are all 
healthcare-specific 

Swathi stands apart 
from clinical scope 

 
Thematic Insights from table 2 similarities, differences, and contradictions summarised as follows 
Diagnostic Accuracy & Efficiency 
Similarity: All studies unanimously affirm that AI enhances the speed and precision of diagnostics. Whether 
applied to medical imaging, chronic disease diagnosis, or vehicle diagnostics, AI consistently outperforms 
traditional approaches. 
Interpretation: This widespread agreement reflects a well-established benefit of AI. Its computational power 
enables faster, more consistent pattern recognition than human assessment alone. 
Predictive & Personalized Diagnosis 
Similarity: Most healthcare studies done by (Tariq, Khanday, Prasad, Al-Antari) highlight how AI enables 
personalized care, adjusting diagnoses and treatment plans to individual patient profiles. 
Difference: However, Swathi et al. and Thayil et al. do not discuss this aspect, focusing instead on general 
diagnostic accuracy and operational improvement. 
Contradiction: The absence of personalization in some studies may suggest either a narrow application scope 
(e.g., automation only) or a missed opportunity to leverage AI’s full potential. 
Medical Imaging & Clinical Data Analysis 
Similarity: Tariq, Prasad, Al-Antari, and Khanday demonstrate strong emphasis on AI’s role in medical imaging 
(MRI, CT, X-rays) and electronic health records (EHR) analysis. 
Difference: Swathi, Logeshwaran, and Thayil focus less on image/data-specific AI applications, leaning toward 
systems-level or automation impacts. 
Contradiction: There is a disproportionate focus on imaging in some articles, while other studies undervalue 
AI’s broader data-processing capabilities, showing thematic fragmentation. 
Automation & Workflow Optimization 
Similarity:Thayil, Swathi, Logeshwaran, and Neravetla agree that AI enhances workflow by automating repetitive 
diagnostics, freeing clinicians to focus on complex cases. 
Difference: Khanday, Prasad, and Al-Antari primarily focus on decision support and data analysis, with less 
emphasis on automation and timesaving in clinical routines. 
Contradiction: Some studies see AI as a support tool, others as a workflow optimizer. This tension reflects varying 
conceptualizations of AI’s role assistant against automator. 
Data Privacy & Ethical Concerns 
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Similarity: Khanday, Prasad, Tariq, and Al-Antari explicitly identify data privacy, algorithmic transparency, and 
ethical issues as key concerns. 
Difference: Thayil, Swathi, Logeshwaran, and Neravetla do not mention these aspects, despite their relevance. 
Contradiction: Omission of privacy and ethics in some studies reveals a critical thematic gap. Ethical deployment 
is fundamental to AI adoption in real-world clinical settings, yet not universally acknowledged. 
Bias & Model Interpretability 
Similarity: Only Khanday, Prasad, and Al-Antari address AI bias and interpretability, stressing the need for 
explainable AI (XAI). 
Difference: Other studies, especially those focused on efficiency or automation, neglect these issues entirely. 
Contradiction: This presents a contradiction: while AI is praised for accuracy, a lack of interpretability raises 
concerns about trust and clinical accountability in several articles. 
Cross-Disciplinary Application 
Similarity: Swathi et al. uniquely show that AI-driven diagnostics are applicable beyond healthcare (e.g., vehicle 
systems). 
Difference: All other studies are strictly within healthcare contexts. 
Contradiction: While Swathi’s study validates the versatility of AI diagnostics, its non-medical focus diverges 
from the rest, creating a scope mismatch but also revealing untapped interdisciplinary potential. 
 
Table 3 Key findings on thematic Agreements and Gaps 

Consensus Partial Agreement Significant Gaps / Contradictions 
- AI improves diagnostic accuracy 

and speed across all fields. 
- Personalized diagnostics 

emphasized in most but not all. 
- Ethics, bias, and model interpretability 

often overlooked. 
- Automation streamlines workflow 

and enhances resource use. 
- Imaging and data analysis well 

covered, but not evenly. 
- Cross-disciplinary use largely 

unexplored outside Swathi et al. 
- AI contributes to better patient 

outcomes. 
- Data privacy acknowledged in 

half the studies. 
- Some studies do not distinguish AI as a 

support vs. replacement tool. 
 
Insights gained from from table 3 for Research and Practice 
● Research should bridge thematic gaps by prioritizing ethical AI design, addressing bias, and promoting 

explainability. 
● Funding bodies should support balanced, interdisciplinary investigations that apply AI to various sectors while 

adhering to safety and fairness. 
● Healthcare institutions should be cautious in integrating AI without addressing its limitations, ensuring 

clinicians remain central to the decision-making process. 
 
ANALYSIS ON AI IN ANTIBIOTIC DISCOVERY AND REPURPOSING 
Table 4 below detailed comparative thematic analysis showing similarities and contradictions across the reviewed 
studies on AI in antibiotic discovery and repurposing, organized by theme. 
 
Table 4. Comparative Thematic Analysis: Similarities and Differences 

Theme Similarities Across Studies Contradictions / Differences Explanation 

1. AI in 
Novel 

Antibiotic 
Discovery 

- All studies agree that deep 
learning accelerates drug 

discovery.- Discovery of new 
molecules like Halicin cited 

across studies. 

- Some models (e.g., CNNs) 
prioritize accuracy, while 

others (e.g., GANs) focus on 
creativity in chemical space.- 
Variability in datasets affects 

reproducibility. 

Different AI algorithms serve 
different goals (e.g., predictive 

power vs. novelty). Limited 
reproducibility stems from dataset 
dependency and proprietary tools. 

2. Drug 
Repurposing 

via AI 

- Universal agreement that 
repurposing is faster and 

cheaper.- Identified drugs like 

- Some studies emphasize in 
silico-only predictions, while 
others insist on in vitro/in 

There's a tension between 
computational optimism and real-

world clinical translation. The 
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Theme Similarities Across Studies Contradictions / Differences Explanation 
sertraline or metformin 

consistently recognized for 
antimicrobial potential. 

vivo validation.- Differences 
in opinion about clinical 

readiness. 

need for evidence-based validation 
drives these contradictions. 

3. Predictive 
Modeling 

(QSAR, ML) 

- Most studies show ML/AI 
outperforms traditional 
methods in predicting 

activity, toxicity, ADMET.- 
Widespread use of models 

like SVM, RF, CNN. 

- Variability in accuracy and 
generalizability across 

bacterial strains and datasets.- 
Some ML models poorly 

predict multi-drug resistant 
strains. 

Performance depends heavily on 
training data quality and 

pathogen-specific factors. No 
single model works best 

universally. 

4. Resistance 
Surveillance 

and Genomic 
Integration 

- Consensus that AI can track 
and predict AMR genes.- AI 

facilitates rapid genome 
analysis to identify resistance 

markers. 

- Some studies focus on 
bacterial genomic data only, 

others integrate host-pathogen 
interactions.- Data sources 

(e.g., metagenomic vs. isolate-
based) vary significantly. 

The depth of integration (single-
genome vs. multi-omics) affects 

AI’s predictive scope. Studies from 
high-resource labs tend to use 

more complex, integrative 
datasets. 

5. Multi-
Omics and 

Systems 
Biology 

- Increasing use of multi-
layered data (genome, 

proteome, transcriptome).- 
Acknowledged as a future 
direction in AI-enabled 

discovery. 

- Resource-intensive; not all 
studies use true multi-omics 

due to cost or access 
limitations.- Implementation 

uneven across studies. 

Differences reflect disparities in 
technological access, especially 
between high-income countries 

and LMICs. 

6. De Novo 
Design via 
Generative 

Models 
(GANs, 
VAEs) 

- Commonly used for 
molecular novelty 

generation.- Recognized as 
expanding the chemical 

search space beyond 
traditional heuristics. 

- Some studies question the 
synthetic feasibility of AI-

designed molecules.- Others 
find many structures lack 

biological realism. 

Generative AI can create 
chemically valid but biologically 
irrelevant molecules. Realistic 

filtering is needed to bridge 
chemistry with clinical 

applicability. 

7. Tool 
Accessibility 

and 
Platforms 

- Most studies use or mention 
open platforms like 

DeepChem, Chemprop.- A 
few highlight proprietary tools 

like Atomwise or 
BenevolentAI. 

- Access disparities: some tools 
require advanced AI 

knowledge or computing 
power.- LMIC-based studies 

use fewer tools or rely on 
collaborations. 

Tool accessibility affects the global 
equity of AI-enabled antibiotic 
research. Advanced users get 

better results due to more 
computing and training access. 

8. Validation 
Gaps 

- Universal agreement: AI 
predictions must be validated 

in vitro/in vivo.- Multiple 
studies point out the "dry 

lab–wet lab gap". 

- Some projects move into 
clinical trials, others stop at in 

silico validation.- Different 
standards of “sufficient 

validation”. 

Validation depth depends on 
funding, infrastructure, and team 
composition (bioinformaticians 
vs. experimental scientists). This 

remains the largest gap in AI-
driven drug development. 

 
  



International Journal of Environmental Sciences   
ISSN: 2229-7359 
Vol. 11 No. 15s, 2025 
https://www.theaspd.com/ijes.php  

 

2132 

NOTABLE SUMMARY OF KEY SIMILARITIES 
● AI accelerates early-phase drug discovery. 
● Drug repurposing is more affordable and time efficient. 
● Predictive models outperform traditional screening. 
● Wet-lab validation is crucial but under-addressed. 
● Resistance surveillance is improved by genomic AI tools. 
 
FINDINGS OF KEY DIFFERENCES / CONTRADICTIONS 
● Extent of validation I found that some studies stop at prediction; others proceed to clinical pipelines. 
● Tool accessibility such as LMICs often excluded from complex AI due to cost and expertise. 
● Type of AI model used as choice in the studies (e.g., RF vs. GANs) affects results and interpretability. 
● Omics integration depth observed is that few studies use full systems biology due to high resource demands. 
● Synthetic feasibility of AI-designed molecules often overlooked. 
 
SUMMARY EXPLANATION OF THEMATIC CONTRADICTIONS 
● Methodological diversity: Different AI models serve different roles; lack of standardization leads to diverse 

outcomes. 
● Resource inequality: Well-funded labs can do end-to-end discovery to validation; low-resource settings often 

focus only on prediction. 
● Disciplinary silos: AI teams often lack biologists and vice versa, leading to bottlenecks in interdisciplinary 

translation. 
● Data quality: Some studies rely on curated datasets, while others use raw or narrow data, affecting model 

robustness. 
 
I performed detailed thematic synthesis of the reviewed articles, showing thematic Similarities, thematic 
contradictions or differences and interpretation and explanation of each theme across studies. This type of 
analysis supports a comprehensive and critical literature review that highlights both consensus and diversity across 
recent research. 
Thematic Comparison of Studies on AI in Antibiotic Discovery and Repurposing (2021–2025) 
 
Table 5. Theme: AI-Driven Antibiotic Discovery and Drug Repurposing 

Similarities Differences/Contradictions 
- Most studies agree that AI accelerates drug 

discovery and repurposing (Singh, Lin, 
Dezfooli, Abbas). 

- Some studies focus primarily on repurposing (Singh, 
Ghandikota), while others emphasize novel compound 

discovery (Lin, Melo, Dezfooli). 
- Common consensus that AI reduces time 

and cost of drug development. 
- Bilokon’s study introduces a general repurposing platform 

(AIAltMed), not specific to antibiotics. 
 
Table 5 above shows that there is strong thematic convergence on AI's ability to both repurpose existing drugs 
and identify novel antibiotics, although the emphasis differs. Some papers contribute broader frameworks (e.g., 
AIAltMed), while others directly address infectious disease-specific outcomes. 
 
Table 6. Theme: Predictive Modeling and Molecular Property Optimization 

Similarities Differences/Contradictions 
- AI models (ML, DL) are widely used for 
predicting bioactivity, drug-likeness, and 
toxicity (Dezfooli, Melo, Abbas, Cesaro). 

- Lin’s model is image-based (molecular visualization), 
which differs from most text- or structure-based 

approaches. 

- Structure-based compound optimization is a 
shared feature in several studies. 

- Varying validation methods: Some studies use 
AUROC metrics (Lin), while others focus on generative 

or similarity modeling. 
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There’s thematic alignment on using AI for molecular prediction, though the technical approaches vary (e.g., 
image-based vs. molecular descriptors) as shown on table 6 above. These differences highlight evolving modeling 
strategies tailored to specific discovery goals. 
 
Table 7. Theme: Ethical, Regulatory, and Interpretability Challenges 

Similarities Differences/Contradictions 
- Ethical data use, transparency, and 
regulatory oversight are emphasized 

(Acharjee, Abbas, Bilokon). 

- Some studies (e.g., Singh, Lin) focus more on performance 
and utility than ethics and regulation. 

- Consensus that open science practices 
are critical. 

- Only a subset of studies (Bilokon, Melo) explicitly critique 
open-access limitations and call for comprehensive 

reproducibility. 
 
Table 7 shows that among studies there is partial alignment on ethical and regulatory needs, with some studies 
prioritizing AI performance and others highlighting the risks of non-transparent models. The field is evolving 
from functional success to responsible implementation. 
 
Table 8. Theme: Data Quality and Availability 

Similarities Differences/Contradictions 
- Almost all studies mention that data 
quality is a bottleneck (Melo, Abbas, 

Bilokon). 

- Some studies propose using public datasets like PubChem 
(Bilokon), while others stress the need for new curated datasets 

(Dezfooli, Acharjee). 
- Agreement that better data enhances 
model accuracy and generalizability. 

- Few studies address bias or data imbalance issues in 
antimicrobial datasets explicitly. 

 
Table 8 show that the studies have a high-quality and accessible datasets that are universally acknowledged as 
foundational for effective AI models. Differences lie in proposed solutions: some suggest expanding current 
databases, others call for new curation standards. 
 
Table 9. Theme: Interdisciplinary Collaboration 

Similarities Differences/Contradictions 
- Emphasized by most studies as essential for 

model validation and translation (Cesaro, Melo, 
Acharjee). 

- Not all studies engage with the practical implementation 
of collaboration (e.g., Singh and Lin focus more on 

technical outputs). 
- Acknowledged as key to bridging computation 

with wet-lab research. 
- Differences in how deeply the studies describe 

collaboration mechanisms (e.g., co-design, data validation). 
 
The theme of collaboration is widely supported by studies shown in table 9, though some papers treat it as a 
suggestion, while others embed it structurally in their methodologies. This reflects the need to move from 
theoretical support to practical application of interdisciplinary partnerships. 
 
Table 10. Theme: Clinical Integration and Precision Medicine 

Similarities Differences/Contradictions 
- AI is seen as a tool for personalizing treatment 
and improving clinical outcomes (Chinnaiyan, 

Ghandikota). 

- Not all studies address clinical translation directly (e.g., 
Bilokon and Lin are more computational). 

- Agreement on the importance of aligning AI 
with clinical workflows. 

- Only a few papers propose AI use in clinical trial design 
(Chinnaiyan). 
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While clinical relevance is a consistent aspiration, only a few studies as shown in table 10 offer concrete strategies 
for implementation (e.g., integration into trials or hospital systems). Others remain preclinical or computational 
in focus. 
 
Insights gained from and future implication on AI in antibiotic discovery and repurposing 
This thematic synthesis reveals strong convergence on AI's potential to transform antibiotic discovery and 
repurposing through faster, data-driven, and predictive methods. However, variation exists in focus areas some 
prioritize technical development, others emphasize ethical frameworks and translational integration. 
Contradictions mainly stem from the differences in scope (broad drug repurposing vs. antibiotic-specific tools), 
variation in model types and validation methods, uneven treatment of ethics, reproducibility, and clinical 
relevance. 
To advance the field, future research should focus on unifying technical rigor with ethical practice, 
reproducibility, and real-world integration, ensuring that AI tools are not only powerful but also trustworthy, 
accessible, and impactful. 
 
CONCLUSION 
The systematic review and thematic synthesis of recent literature revies clearly demonstrate that Artificial 
Intelligence (AI) is playing a transformative role in addressing global health challenges, particularly within the 
domains of antimicrobial resistance (AMR) surveillance, diagnostics, and antibiotic discovery and repurposing. 
The convergence of AI with microbiological and clinical data enables faster, more accurate, and cost-efficient 
solutions, enhancing both patient outcomes and public health preparedness. 
Collectively, the studies affirm AI’s potential to Improve predictive modeling in AMR surveillance, accelerate 
and optimize drug discovery pipelines and wnhance diagnostic precision and facilitate personalized medicine. 
However, these gains are consistently offset by challenges that undermine long-term sustainability and trust. 
Approximately 30% of the studies analyzed highlight issues related to data heterogeneity, bias, and lack of model 
interpretability, particularly in low- and middle-income country (LMIC) contexts. Ethical issues such as data 
privacy, algorithmic bias, and regulatory compliance were addressed in only 18% of the literature, revealing an 
important oversight in the current discourse. 
In addition, the literature reveals technological constraints, such as the high computational demands of AI 
models and their limited integration into existing health systems, as well as organizational barriers that hinder 
cross-disciplinary collaboration. These systemic limitations collectively signal the urgent need for more equitable, 
ethical, and methodologically sound frameworks for AI deployment in healthcare. 
 
RECOMMENDATIONS 
To unlock the full potential of AI in combating AMR and improving global health equity, the following actions 
are recommended: 
1. Data Infrastructure and Standardization 
o Develop and maintain high-quality, diverse, and interoperable datasets, ensuring anonymization, informed 

consent, and representativeness across populations. 
2. Explainability and Model Transparency 
o Design explainable AI (XAI) systems that promote clinical interpretability and user trust, particularly in high-

stakes decision-making environments. 
3. Ethical and Legal Safeguards 
o Implement robust ethical frameworks for data governance, aligned with international standards (e.g., GDPR, 

HIPAA), to mitigate risks related to algorithmic bias and data misuse. 
4. Interdisciplinary Collaboration 
o Foster stronger partnerships between clinicians, microbiologists, data scientists, ethicists, and policy-makers 

to ensure that AI innovations are clinically relevant and ethically grounded. 
5. Integration and Sustainability 
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o Invest in computational infrastructure and develop policies to facilitate the seamless integration of AI into 
existing healthcare systems, with continuous monitoring, evaluation, and maintenance protocols to ensure 
sustainability. 
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