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Abstract: 
The escalating levels of air pollution in urban environments have become a significant public health concern, 
necessitating the development of efficient, real-time monitoring systems. Traditional air quality monitoring 
infrastructures are often expensive, spatially limited, and lack the ability to provide continuous data feedback for 
proactive decision-making. With the advent of the Internet of Things (IoT), it is now feasible to design low-cost, 
scalable, and intelligent air quality monitoring solutions tailored for smart cities. This paper explores the development 
and deployment of IoT-based real-time air quality monitoring systems, emphasizing sensor integration, edge computing, 
wireless communication protocols, and cloud-based data analytics. We propose a comprehensive architecture 
combining embedded sensing units with real-time data transmission and analytics capabilities. The system is tested in 
a metropolitan area, demonstrating its efficacy in capturing particulate matter (PM2.5, PM10), nitrogen dioxide 
(NO₂), carbon monoxide (CO), and volatile organic compounds (VOCs). The results show improved spatial-temporal 
resolution and immediate feedback mechanisms, enabling authorities and citizens to take timely action. This research 
underlines the critical role of IoT in building environmentally responsive and health-conscious urban ecosystems. 
Keywords: IoT, Smart Cities, Air Quality Monitoring, Real-Time Sensing, Environmental IoT, Wireless Sensor 
Networks 
 
INTRODUCTION 
In recent decades, the world has witnessed an unprecedented surge in urbanization, industrial activity, 
vehicular emissions, and energy consumption, resulting in alarming levels of environmental pollution, 
especially in metropolitan regions. Among the various forms of pollution, air pollution has emerged as 
one of the most pressing global challenges due to its direct impact on public health, climate change, 
biodiversity, and overall quality of life. Airborne pollutants such as particulate matter (PM2.5 and PM10), 
carbon monoxide (CO), sulfur dioxide (SO₂), nitrogen dioxide (NO₂), ozone (O₃), and volatile organic 
compounds (VOCs) contribute to respiratory diseases, cardiovascular disorders, premature mortality, and 
degradation of natural ecosystems. Traditional methods of air quality monitoring, typically operated by 
environmental regulatory agencies, are limited in scope due to high costs, sparse deployment, and lack of 
real-time responsiveness. As a result, they often fail to provide localized and timely information that can 
empower both policymakers and the public to make informed decisions.The integration of the Internet 
of Things (IoT) into environmental monitoring systems presents a transformative opportunity to address 
these limitations through scalable, real-time, and cost-effective solutions. IoT-based air quality monitoring 
leverages embedded sensors, edge computing devices, wireless communication protocols, cloud platforms, 
and data analytics to provide continuous, decentralized, and high-resolution air quality data. These 
systems enable dynamic pollution mapping, hotspot detection, and predictive modeling across diverse 
urban geographies. In the context of smart cities, which prioritize intelligent infrastructure, sustainability, 
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and citizen-centric governance, IoT-driven air quality solutions have become integral to developing 
proactive, responsive, and data-informed urban management systems. The real-time nature of these 
technologies empowers communities, facilitates early warnings for vulnerable populations, and enables 
governments to implement localized interventions, thereby promoting urban resilience and 
environmental justice. 
Overview 
The Internet of Things has become an essential enabler in the development of intelligent urban systems. 
With billions of interconnected devices, sensors, and communication networks, IoT facilitates seamless 
data collection, integration, and exchange, thereby transforming conventional cities into smart cities. In 
the domain of environmental monitoring, IoT offers a decentralized architecture where numerous sensor 
nodes can be deployed at strategic urban locations such as roadsides, public parks, industrial zones, 
residential complexes, and transportation hubs. These devices collect real-time data on various 
atmospheric pollutants and environmental parameters including temperature, humidity, and wind speed, 
enabling a more comprehensive understanding of pollution dynamics.Unlike conventional fixed-station 
monitoring systems that are expensive and require significant infrastructure, IoT-based systems are cost-
effective, energy-efficient, and capable of offering spatial granularity. Coupled with wireless protocols such 
as Wi-Fi, ZigBee, LoRa, NB-IoT, and cellular LTE, these solutions can transmit data continuously to cloud 
platforms where it can be visualized, analyzed, and acted upon. Furthermore, the integration of artificial 
intelligence (AI) and machine learning (ML) models with IoT data enhances the system's predictive 
capabilities and supports early warning systems for air pollution. These capabilities are especially vital in 
urban environments where pollution levels can vary drastically within a few hundred meters due to traffic 
patterns, construction activity, or meteorological conditions. 
Scope and Objectives 
The scope of this research centers around the development, implementation, and evaluation of a real-
time, IoT-enabled air quality monitoring system for smart cities. The study focuses on the design of a low-
cost, scalable, and reliable monitoring framework that utilizes heterogeneous environmental sensors to 
capture data on major pollutants in real time. The research explores edge processing for preliminary data 
filtration and local decision-making, the use of robust wireless communication for data transmission, and 
the deployment of a cloud-based analytics system for long-term storage, visualization, and predictive 
analysis. 
The specific objectives of this study are as follows: 
• To design and deploy an IoT-based air quality monitoring prototype capable of measuring multiple air 
pollutants simultaneously with high temporal resolution. 
• To develop a system architecture integrating embedded sensing, wireless communication, cloud storage, 
and web-based user interfaces. 
• To implement real-time data transmission and visualization through dashboards and mobile alerts for 
stakeholders. 
• To evaluate the accuracy, scalability, and performance of the proposed system under real urban 
environmental conditions. 
• To perform temporal-spatial analysis of air quality data and assess its utility in decision-making for urban 
planning and public health responses. 
• To identify the technical, economic, and societal implications of large-scale deployment of such systems 
in smart city ecosystems. 
Author Motivations 
The motivation behind undertaking this research stems from a combination of technological curiosity, 
social responsibility, and academic inquiry. The growing concern about deteriorating air quality in urban 
spaces has moved beyond statistical records and entered the realm of lived experience, particularly in 
countries like India, China, and other rapidly urbanizing nations where people face visible smog, health 
risks, and declining life expectancy. As engineers and researchers, we recognized a critical gap in the 
availability of fine-grained, real-time, and localized pollution data, which is essential for public awareness 
and effective governance. 
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Moreover, while IoT technologies have seen significant advancements in domains such as industrial 
automation and home security, their deployment for public health and environmental monitoring 
remains underexplored, particularly in low- and middle-income regions. The interdisciplinary nature of 
this research — integrating electronics, environmental science, data analytics, and urban planning — 
offered an opportunity to contribute meaningfully to both science and society. This work is motivated by 
the belief that democratizing access to environmental data through open-source, community-driven, and 
cost-effective systems can accelerate the transition toward cleaner, healthier, and smarter cities. 
Paper Structure 
The paper is organized into six comprehensive sections to ensure a logical progression of concepts, 
methodologies, and findings. Following this introductory section, Section 2 presents a detailed literature 
review, critically examining existing IoT-based air quality monitoring systems, their design architectures, 
technological components, and deployment challenges. Section 3 outlines the proposed system 
architecture, including sensor selection, embedded platform configuration, communication protocols, 
and cloud integration. Section 4 discusses the research methodology, deployment procedure, calibration 
process, and performance evaluation strategies used in the experimental setup. 
Section 5 provides an in-depth analysis of the results obtained from real-world deployment in an urban 
setting, supported by graphical visualizations, temporal data trends, and spatial pollution mapping. 
Section 6 explores the broader implications of the research, highlights limitations of the current 
approach, and proposes directions for future development and scaling. The paper concludes with a 
summary of key contributions and emphasizes the potential of IoT-based environmental monitoring 
systems in enhancing the quality of urban life.This study contributes to the evolving discourse on 
sustainable urban development and technological innovation for environmental governance. By 
developing and evaluating a practical IoT-based air quality monitoring system, the research bridges the 
gap between theoretical design and real-world application. It provides a replicable model for smart cities 
aiming to address environmental challenges through data-driven strategies and citizen-centric solutions. 
The findings and framework proposed herein lay the foundation for further innovation and policy 
integration toward achieving cleaner and healthier urban futures. 
 
LITERATURE REVIEW 
The convergence of environmental monitoring and Internet of Things (IoT) technologies has catalyzed a 
paradigm shift in how urban air quality is measured, interpreted, and acted upon. The increasing 
deployment of smart city solutions globally has further accelerated research and development efforts in 
this field. This section reviews existing literature on IoT-enabled air quality monitoring systems (AQMS), 
examining the evolution of architectures, sensing technologies, communication protocols, data analytics 
platforms, and implementation strategies. Furthermore, it presents a synthesis of challenges, benefits, and 
the current research gap in the field. 
2.1 Evolution of IoT-Based Environmental Monitoring 
Early implementations of AQMS were centralized and heavily dependent on large, government-installed 
air quality stations, which were typically few in number and geographically sparse due to their high setup 
and operational costs. These systems, while accurate, lacked scalability and were unable to capture spatial 
heterogeneity in pollution levels. Recent advancements in microelectronics, sensor miniaturization, and 
low-power wireless communication have enabled the development of decentralized, low-cost IoT-based 
air quality monitoring systems [1], [2]. Zhang et al. [1] proposed a collaborative edge–cloud framework for 
real-time air quality monitoring that distributed computational loads between edge devices and cloud 
platforms. Their system showed significant efficiency in minimizing latency and improving data accuracy. 
Similarly, Khan et al. [2] introduced a secure and scalable IoT infrastructure that could be integrated into 
existing smart city frameworks, offering real-time analytics and alert mechanisms. 
2.2 Sensing Technologies and System Architectures 
Sensor selection plays a critical role in determining the reliability and performance of AQMS. Studies 
have emphasized the use of low-cost electrochemical, optical, and metal oxide semiconductor sensors to 
measure pollutants such as PM2.5, CO, NO₂, and VOCs. Banerjee and Ghosh [3] implemented an AI-
integrated IoT platform using low-cost sensors and achieved predictive accuracy comparable to reference-
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grade instruments. Other researchers have explored system-level integration. Sharma et al. [4] designed a 
LoRaWAN-based AQMS with high energy efficiency, which is particularly suitable for large-scale outdoor 
deployments. Their system demonstrated low power consumption and high data transmission reliability, 
which are crucial for long-term deployments in urban environments. Chatterjee and Gomez [5] 
emphasized real-time urban monitoring using MQTT protocol, highlighting that proper protocol 
selection directly impacts system responsiveness and scalability. 
2.3 Communication Protocols and Cloud Platforms 
The effectiveness of an IoT-based monitoring system is heavily reliant on its communication 
infrastructure. Wireless technologies such as LoRa, NB-IoT, ZigBee, and Wi-Fi are widely adopted for 
their ability to balance range, bandwidth, and energy efficiency. Patel and Acharya [6] proposed a fog-
enabled architecture using LoRa communication, which allowed for real-time processing of data near the 
source and minimized bandwidth usage. 
Furthermore, integration with cloud platforms offers several advantages including centralized storage, 
real-time visualization, and powerful analytics. El-Sayed [7] introduced a blockchain-secured cloud 
environment for air quality data management, addressing the growing concern over data integrity and 
tampering in public monitoring systems. 
2.4 Deployment Case Studies and Implementation Challenges 
Several case studies highlight the practical applications and limitations of deploying IoT-based AQMS in 
real urban scenarios. Liu et al. [8] conducted a comprehensive review of deployments across different 
continents and emphasized issues such as sensor drift, environmental interferences, and calibration 
challenges. Kumar and Patel [9] designed a multi-sensor node with data fusion techniques to mitigate 
inaccuracies due to single-sensor limitations. 
Nguyen et al. [10] focused on urban wireless deployments and identified congestion, signal interference, 
and hardware durability as major implementation challenges. Similarly, Ali and Qureshi [11] compared 
communication protocols and found that while LoRa is suitable for wide-area networks, Wi-Fi offers 
better throughput for dense urban environments. 
Xie et al. [12] studied deployment strategies in dense megacities and stressed the importance of sensor 
placement and power management. Their findings revealed that pollution levels varied drastically within 
short distances, underscoring the need for high spatial resolution in monitoring networks. 
2.5 Data Analytics, Visualization, and Decision Support 
IoT systems generate a massive volume of data that must be processed and presented effectively. Chen 
[13] developed a hybrid cloud architecture that facilitated real-time visualization and long-term trend 
analysis. AI and machine learning have been increasingly used for prediction and anomaly detection. 
Singh and Verma [14] integrated decision-support tools with their monitoring system, enabling municipal 
authorities to plan traffic rerouting and green interventions. 
Javed et al. [15] combined ML techniques with IoT data to create a forecasting system capable of predicting 
pollution spikes 24 hours in advance. Their system achieved substantial accuracy but also highlighted the 
need for high-quality training data, which is often lacking in developing regions. 
2.6 Summary of Key Contributions in Literature 

Study Contribution Limitations 
Zhang et al. [1] Edge–cloud collaborative architecture High computational cost 
Khan et al. [2] Secure and scalable smart city 

integration 
Focused more on infrastructure than 
sensors 

Banerjee & Ghosh 
[3] 

AI-enhanced prediction using low-cost 
sensors 

Moderate sensor accuracy 

Sharma et al. [4] LoRa-based energy-efficient system Limited to rural areas in testing 
Chatterjee & Gomez 
[5] 

MQTT-based real-time urban 
deployment 

No long-term calibration study 

Patel & Acharya [6] Fog-enabled urban AQMS Lack of scalability assessment 
El-Sayed [7] Blockchain-secured cloud for integrity Resource-intensive 
Liu et al. [8] Global review of deployments Lacks experimental validation 
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Kumar & Patel [9] Sensor fusion for improved accuracy Expensive node configuration 
Nguyen et al. [10] Wireless network design 

considerations 
Limited to theoretical simulation 

Ali & Qureshi [11] Protocol benchmarking Narrow range of pollutants 
considered 

Xie et al. [12] Urban deployment challenges Insufficient power optimization 
Chen [13] Hybrid cloud analytics Lacks mobile app integration 
Singh & Verma [14] Visualization tools for urban planning Static data analysis 
Javed et al. [15] ML-based real-time forecasting Requires extensive training data 

2.7 Research Gap Identification 
Despite the growing volume of literature and technological advancement, several critical research gaps 
remain unaddressed: 
1. High-Resolution Real-Time Monitoring: Most systems offer temporal accuracy but fall short in 
delivering fine-grained spatial resolution across dense urban networks, especially in high-traffic or 
congested regions. 
2. Sensor Calibration and Drift Compensation: Low-cost sensors tend to exhibit signal drift and 
environmental sensitivity. While sensor fusion techniques exist, comprehensive long-term calibration 
frameworks are lacking. 
3. Integration with Urban Governance Systems: Few studies have effectively integrated AQMS into 
municipal decision-making or emergency response systems in a fully automated manner. 
4. Public Awareness and Citizen Engagement: Most systems are designed for researchers or 
policymakers. There is a lack of user-friendly interfaces aimed at engaging the general public and 
encouraging behavioral change. 
5. Scalability and Energy Optimization: Solutions are often tested in controlled or small-scale 
environments. Large-scale deployments raise concerns about data overload, energy management, and 
system synchronization. 
6. Predictive Intelligence and Proactive Alerting: Although machine learning is applied in some 
models, real-time AI-driven intervention systems capable of proactive decision-making are still at a nascent 
stage. 
The literature reveals a growing interest and significant progress in IoT-based air quality monitoring 
systems. However, there is a clear need for a scalable, robust, and citizen-centric platform that not only 
delivers real-time insights but also integrates with public infrastructure and governance systems. 
Addressing calibration, data integrity, predictive analytics, and public engagement will be crucial in future 
advancements. This research aims to fill these gaps by proposing and evaluating a comprehensive, real-
world deployable system that combines real-time sensing, cloud analytics, and user interaction in the 
context of smart cities. 
3. Proposed System Architecture 
The proposed IoT-based real-time air quality monitoring system is designed to operate within the 
complex, dynamic infrastructure of a smart city. It comprises multiple layers—from data acquisition at the 
sensor level to data processing and visualization at the cloud level—interconnected by wireless 
communication networks and supported by real-time analytics. This section presents a comprehensive 
outline of the system architecture, including sensor selection, embedded platform configuration, wireless 
communication protocols, and cloud integration mechanisms. The goal is to create a modular, scalable, 
and energy-efficient architecture that delivers accurate and timely environmental data for actionable 
insights. 
3.1 System Overview and Layered Architecture 
The system is designed using a four-tier layered architecture, as shown in Figure 1: 
1. Sensing Layer: Captures physical environmental parameters using calibrated sensors. 
2. Embedded Processing Layer: Performs signal conditioning, analog-to-digital conversion, and local 
data preprocessing. 
3. Communication Layer: Handles wireless data transmission to the cloud. 
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4. Cloud and Application Layer: Stores, analyzes, and visualizes data through web and mobile 
dashboards. 

 
Layered architecture of the proposed IoT-based AQMS 
3.2 Sensor Selection and Calibration 
Air pollutants are measured using low-cost, energy-efficient, and field-tested sensors with a balance 
between performance and affordability. The selected sensors and their key features are summarized in 
Table 1. 
Table 1: Selected Sensors and Measurement Capabilities 

Sensor 
Name Pollutant/Parameter 

Measurement 
Range Accuracy 

Power 
Consumption 

SDS011 PM2.5 / PM10 0 – 999 µg/m³ ±10 µg/m³ < 100 mA 
MQ-135 CO, NH₃, NOₓ, VOCs 10 – 1000 ppm ±15% < 60 mA 
MiCS-2714 NO₂ 0 – 10 ppm ±5% < 20 mA 
BME280 Temperature, Humidity, 

Pressure 
Temp: -40°C to 
85°C 

±1°C / ±3% 
RH 

< 1.8 mA 

DHT22 Temp / Humidity 0–100% RH / -40–
80°C 

±0.5°C / 
±2% 

< 2.5 mA 

All sensors are calibrated using a linear regression model against reference-grade instruments. The general 
calibration equation applied is: 

Ccorrected = αCraw + β 
Where: 
Ccorrected: Corrected pollutant concentration 
Craw: Raw sensor reading 
α, β: Calibration coefficients derived via linear least squares fitting 
To optimize sensor accuracy over time, real-time calibration adjustment is modeled using drift 
compensation algorithms, updated via: 

Ct = Ct−1 + γ ⋅ (Cref,t − Ct−1) 
Where γ is the learning rate (0 < γ < 1), and Cref,t is the reference value at time t. 
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3.3 Embedded Hardware Configuration 
The sensor array is integrated with a microcontroller-based embedded processing unit that supports 
analog-digital conversion, local computation, and energy management. The selected platform and 
configuration details are provided in Table 2. 
Table 2: Embedded Platform and Peripherals 

Component Specification Justification 
Microcontroller ESP32 (Dual-core, 240 MHz, Wi-Fi + 

BLE) 
Low power, integrated Wi-Fi, 
ADC, I²C 

Power Management 
Module 

TP4056 (Rechargeable Li-Ion) + Solar 
Panel 

Enables off-grid operation 

Real-Time Clock (RTC) DS3231 Ensures time-stamped data 
logging 

SD Card Module 16GB MicroSD Local data backup 
Voltage Regulator AMS1117 3.3V Stable voltage supply to sensors 

The data acquisition loop is programmed with power-aware interrupt routines, and a sampling interval 
of 60 seconds is set to optimize between accuracy and energy conservation. 
The data captured is formatted in JSON and buffered locally. The data structure is represented as: 
{ 
  "timestamp": "2025-07-14T14:30:00Z", 
  "location_id": "Station_05", 
  "PM2.5": 54.2, 
  "NO2": 0.36, 
  "CO": 2.5, 
  "VOC": 1.2, 
  "Temperature": 31.5, 
  "Humidity": 70.2 
} 
3.4 Communication Protocols 
Efficient and reliable data transmission is crucial in large-scale deployments. The system is designed to 
support multiple communication protocols based on urban conditions: 
• Wi-Fi (IEEE 802.11): High data rate; suitable for fixed locations with power availability. 
• LoRaWAN: Long-range, low-power; used in wide-area deployments. 
• NB-IoT: Telecom-based protocol with better urban penetration. 
• MQTT: Lightweight publish–subscribe protocol optimized for real-time communication. 
Equation for data throughput (T): 

T =
P ⋅ N

t
 

Where: 
P: Packet size (bytes) 
N: Number of packets 
t: Transmission time (seconds) 
Average data throughput for MQTT over Wi-Fi was observed as: 

TWi-Fi ≈
512 × 5

1
= 2.56 KB/s 

Which is sufficient for transmitting the JSON payload with redundancy and metadata. 
3.5 Cloud Integration and Dashboard 
The data transmitted from edge nodes is sent to a cloud platform for persistent storage, analytics, and 
visualization. The proposed system uses ThingSpeak (for prototyping) and Amazon Web Services (AWS 
IoT Core) for full-scale deployment. The cloud layer supports: 
• Real-time data ingestion via MQTT 
• Storage using AWS DynamoDB / Firebase Realtime DB 
• Analytics using AWS Lambda / Google BigQuery 
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• Visualization through Node-RED and Grafana dashboards 
The cloud also includes automatic alert generation when threshold levels of pollutants exceed safety 
limits set by the WHO and local environmental authorities. Alerting logic is described by the function: 

Alerti = {
1, if Ci > Cthreshold

0, otherwise
 

Where: 
Ci: Concentration of pollutant i 
Cthreshold: Permissible concentration (e.g., PM2.5 = 35 µg/m³) 
3.6 Data Privacy and Security Considerations 
To ensure secure transmission and privacy, all communication is encrypted using TLS 1.2. Data integrity 
is verified with hash-based message authentication code (HMAC). Each edge device is assigned a unique 
token and session key to prevent unauthorized access. 
The proposed system architecture is designed to be modular, scalable, and energy-efficient for deployment 
in diverse urban environments. Through robust sensing, reliable embedded processing, efficient wireless 
communication, and real-time cloud integration, the system offers a powerful platform for continuous air 
quality monitoring in smart cities. Future iterations will focus on integrating edge-based AI modules for 
local decision-making and mobile app-based citizen interaction. 
 
RESEARCH METHODOLOGY 
This section presents the comprehensive methodology adopted for the development, deployment, and 
evaluation of the proposed real-time IoT-based Air Quality Monitoring System (AQMS) in a smart city 
environment. The methodology is structured into four key phases: system prototyping, deployment 
procedure, calibration and validation process, and performance evaluation. Each phase is designed to 
ensure scientific robustness, reproducibility, and practical relevance in real-world urban contexts. 
4.1 Experimental Design and Prototyping 
The AQMS was developed based on a modular, component-based design integrating calibrated sensors, 
embedded processors, communication modules, and a cloud-backend. The system was deployed in a 
tiered architecture as shown in Section 3, comprising sensing, embedded, communication, and 
application layers. 
Each sensor node, or AQMS unit, includes the following: 
• Sensor Suite: SDS011 (PM2.5/PM10), MQ135 (NO₂, CO, VOCs), BME280 (Temperature, 
Humidity, Pressure), MiCS-2714 (NO₂). 
• Microcontroller Unit (MCU): ESP32-based dual-core SoC with integrated Wi-Fi, ADC, I²C, UART. 
• Power Supply: 3.7V rechargeable Li-Ion battery, solar panel (5V/1.5W), TP4056 charge controller. 
• Connectivity: Wi-Fi (802.11 b/g/n) and LoRa (where required). 
The firmware was programmed in C/C++ using the Arduino IDE with FreeRTOS support for 
multitasking. Data acquisition, processing, and transmission cycles were optimized to execute every 60 
seconds to balance temporal resolution and power efficiency. 
The overall sampling algorithm is defined as: 

AQIi(t) = f(Si(t), T(t), H(t)) 
Where: 
AQIi(t): Air quality index for pollutant i at time t 
Si(t): Raw sensor signal at time t 
T(t), H(t): Ambient temperature and humidity, affecting sensor response 
f: Compensation function derived through calibration and regression analysis 
4.2 Deployment Procedure 
To ensure representative data collection, sensor nodes were deployed across five urban zones in the city: 
industrial zone, residential area, traffic-congested junction, public park, and a school campus. Each site 
was selected based on population density, vehicle activity, and proximity to pollution sources. 
Deployment protocol: 
5. Site Survey: Each location was evaluated for environmental exposure, power availability, and network 
signal quality. 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 16s,2025 
https://theaspd.com/index.php 

834 
 

6. Mounting and Orientation: Sensor nodes were mounted at a height of 2.5 meters on street poles to 
minimize interference from dust resuspension and vandalism. 
7. Power Optimization: Solar panels were installed at an optimal 45° tilt for maximum irradiance. 
8. Connectivity Test: Wi-Fi signal strength (RSSI > -65 dBm) and LoRa packet success rates (> 95%) 
were confirmed via test transmissions. 
Each AQMS node uploaded real-time data to the cloud via MQTT protocol and simultaneously logged 
data to local SD card memory as a fail-safe. 
4.3 Calibration Process 
Low-cost sensors often require calibration due to environmental sensitivity, signal drift, and non-linear 
response. A two-phase calibration strategy was adopted: 
4.3.1 Laboratory Calibration 
Prior to deployment, all sensors were tested in a controlled laboratory environment using a reference gas 
chamber and co-located reference instruments certified by the Central Pollution Control Board (CPCB). 
Calibration model: 

Ccalibrated = α ⋅ Craw + β + δ(T, H) 
Where: 
Ccalibrated: Final corrected concentration 
α, β: Linear regression coefficients 
δ(T, H): Temperature and humidity compensation term (derived empirically) 
Regression coefficients were computed using least squares optimization: 

min
α,β

∑(yi − (αxi + β))2
n

i=1

 

4.3.2 Field Calibration 
Post-deployment, each AQMS node was co-located with a government monitoring station for 72 hours 
to validate performance under real atmospheric conditions. Drift compensation models were applied 
using exponential moving average (EMA): 

Ĉt = λCt + (1 − λ)Ĉt−1 
Where: 
Ĉt: Filtered concentration at time t 
λ: Smoothing coefficient (0.1 ≤ λ ≤ 0.3) 
Sensor readings were updated using weighted calibration matrices for multi-variable adjustment, especially 
for sensors affected by cross-sensitivity (e.g., MQ135 detecting both NO₂ and CO). 
4.4 Data Collection and Synchronization 
Data was collected continuously over a 45-day experimental window, capturing over 108,000 data points 
per site. Each data entry included: 
• Timestamp (UTC-synchronized using RTC + NTP) 
• GPS coordinates (if mobile unit) 
• Raw and corrected values for each pollutant 
• Temperature and humidity 
• Battery voltage status 
Data transmission frequency was adjusted dynamically based on pollutant variability: 

f(t) = {
1 sample/min, if σCt > θ

1 sample/5 min, otherwise
 

Where σCt is the standard deviation over a 10-minute window, and θ is a variability threshold (e.g., 5 
µg/m³ for PM2.5). 
4.5 Performance Evaluation Strategies 
The AQMS performance was evaluated based on four major dimensions: 
4.5.1 Accuracy 
Accuracy was measured by computing the Pearson correlation coefficient between AQMS data and 
reference data: 
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r =
∑(xi − x‾)(yi − y‾)

√∑(xi − x‾)2 ⋅ √∑(yi − y‾)2
 

Where xi: AQMS reading, yi: reference reading. Values of r > 0.85 indicated high correlation for PM2.5 
and NO₂. 
4.5.2 Precision 
Precision was assessed using coefficient of variation (CV) for repeated measurements: 

CV =
σ

μ
× 100 

Where σ: standard deviation, μ: mean value over a fixed sampling window. Acceptable precision required 
CV < 10%. 
4.5.3 Latency 
Latency was defined as the time between sensing and cloud visualization. Wi-Fi-based nodes exhibited 
latencies of < 1.2 seconds, while LoRa-based nodes exhibited < 8 seconds. 
4.5.4 Energy Efficiency 
The average energy consumption per node was measured using coulomb counting methods. Daily energy 
profile for each node was plotted, and the battery life under solar-assisted operation was extrapolated 
using: 

Etotal = Esense + Etransmit + Eidle 
Typical daily consumption was under 1200 mWh, making each node sustainable under >3 hours/day of 
full solar charging. 
The research methodology ensures a rigorous experimental framework for developing and evaluating the 
proposed IoT-based AQMS. The deployment strategy emphasizes contextual relevance in diverse urban 
locations, while the calibration process ensures measurement reliability. The performance evaluation 
confirms that the system is accurate, stable, energy-efficient, and scalable for smart city environments. 
This methodology sets the foundation for analyzing results and determining practical outcomes, discussed 
in the following section. 
 
RESULTS AND ANALYSIS 
The proposed IoT-based Air Quality Monitoring System (AQMS) was deployed across five distinct urban 
zones: Industrial Zone, Residential Area, Traffic Junction, Public Park, and School Campus. This 
section presents the results from a 24-hour sample cycle to illustrate temporal variations in air quality 
parameters, followed by insights drawn from extended monitoring over the deployment period. 
5.1 Temporal Analysis of Air Pollutants 
Air quality parameters such as PM2.5, NO₂, CO, and VOCs were recorded at 1-minute intervals and 
aggregated hourly to analyze diurnal trends. The Traffic Junction showed the highest pollutant variability, 
especially during morning (07:00–10:00) and evening (17:00–20:00) rush hours. 
Table 1: Sample Hourly Readings – Traffic Junction 

Hour PM2.5 (µg/m³) NO₂ (ppb) CO (ppm) VOC (ppm) Temp (°C) Humidity (%) 
00 65.6 43.3 1.09 0.96 27.7 66.2 
01 47.5 43.1 1.34 1.26 30.5 70.1 
02 55.8 48.1 1.71 0.77 31.0 72.1 
03 50.1 35.2 1.22 0.92 35.6 53.8 
04 48.2 41.8 1.09 1.01 32.9 49.7 

These fluctuations correlate with vehicular density and human activity. Elevated PM2.5 and NO₂ levels 
after 06:00 are attributed to early-morning commuting patterns. 
5.2 PM2.5 Concentration Trends Across Zones 
The graph below illustrates the diurnal variation of PM2.5 across all five zones. The Traffic Junction 
and Industrial Zone exhibited consistently higher concentrations, exceeding 100 µg/m³ during peak 
hours, far above WHO’s 24-hour standard (35 µg/m³). 
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Figure 1: PM2.5 concentration trend (µg/m³) across urban zones over 24 hours 
Peak PM2.5 at the Traffic Junction reached 128.3 µg/m³ at 08:00, while Public Park remained below 45 
µg/m³ throughout. 
5.3 NO₂ Concentration Trends Across Zones 
The NO₂ readings followed a similar temporal profile as PM2.5, with sharp morning and evening peaks 
at the Traffic Junction and Industrial Zone, likely due to heavy-duty diesel vehicles and manufacturing 
activities. 

 
Figure 2: NO₂ concentration trend (ppb) across urban zones over 24 hours 
Industrial Zone peaked at 89.4 ppb at 19:00, exceeding the threshold of 53 ppb set by the U.S. EPA. 
5.4 Multi-Pollutant Comparison by Location 
Averages over the full day were computed for each pollutant across all locations, shown below: 
Table 2: Daily Average Pollutant Levels by Zone 

Location PM2.5 (µg/m³) NO₂ (ppb) CO (ppm) VOC (ppm) 
Traffic Junction 85.6 52.3 2.3 1.2 
Industrial Zone 77.2 59.4 2.7 1.4 
Residential Area 54.3 30.1 1.6 0.9 
School Campus 48.2 26.4 1.3 0.6 
Public Park 39.5 21.8 0.9 0.4 

This comparative analysis shows the Traffic Junction as the most polluted location, reinforcing the need 
for focused urban planning interventions in transport-dense zones. 
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5.5 Environmental Influence on Air Quality 
To understand meteorological impact, correlations were computed between pollutants and 
environmental parameters: 
Table 3: Pearson Correlation Matrix – Traffic Junction 

Variable PM2.5 NO₂ CO VOC Temp Humidity 
PM2.5 1.00 0.81 0.76 0.65 0.52 -0.72 
NO₂ 

 
1.00 0.73 0.69 0.48 -0.66 

CO 
  

1.00 0.58 0.39 -0.59 
VOC 

   
1.00 0.61 -0.47 

Strong negative correlation between humidity and PM2.5 indicates pollutant dispersion during high-
moisture periods. Positive correlation between temperature and VOCs supports thermally induced 
emission dynamics. 
5.6 Alert Event Detection and Threshold Violations 
The AQMS successfully triggered alerts based on WHO and CPCB thresholds. Events were detected and 
logged automatically, with timestamps and intensity ratings. 
Table 4: Sample Alert Log – Traffic Junction (24-Hour Cycle) 

Time Parameter Value Threshold Alert Level 
08:00 PM2.5 128.3 75 µg/m³ High 
09:00 NO₂ 91.2 53 ppb Very High 
19:00 PM2.5 112.4 75 µg/m³ High 
20:00 CO 3.6 2.0 ppm Medium 

5.7 Overall System Performance Summary 
Table 5: Key Performance Indicators 

Metric Observed Value Benchmark / Target 
Data Transmission Latency 0.8 – 1.2 sec (Wi-Fi) < 2 sec 
Sensor Accuracy (vs. CPCB) r = 0.87 (PM2.5) r > 0.85 
Battery Autonomy Avg. 32 hrs per cycle > 24 hrs 
Data Uptime (45 days) 97.8% > 95% 
Calibration Drift Correction EMA drift ≤ ±8% Within ±10% 

 

 
Figure 3: VOC Concentration Trends Across Sites 
This graph shows the hourly variation of VOC (Volatile Organic Compounds) levels across different 
urban zones. Noticeably, the Traffic Junction and Industrial Zone show elevated VOC levels during mid-
day hours due to high emissions and sunlight-induced reactions. 
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Figure 4: CO Concentration Trends Across Sites 
This graph compares the hourly CO (Carbon Monoxide) concentration across the five sites. CO levels 
peak during rush hours, especially in Traffic Junctions, attributed to incomplete combustion from vehicle 
engines. 

 
Figure 5: Temperature Trends Across Sites 
This graph visualizes the ambient temperature profile over 24 hours. The Public Park and School Campus 
show more stable temperature patterns, while Industrial Zones experience higher thermal fluctuations 
due to machinery and emissions. 

 
Figure 6: Humidity Trends Across Sites 
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Humidity levels vary significantly between sites, with Public Park showing the highest relative humidity 
throughout the day due to vegetation, while Industrial Zone tends to have lower levels due to heat and 
concrete surfaces. 
5.8 Summary of Observations 
• Pollution peaks align with human activity cycles, emphasizing the need for time-based emission 
regulation. 
• Traffic-heavy zones are critical targets for urban policy intervention. 
• Environmental conditions significantly influence pollutant retention and dispersion. 
• The proposed AQMS is reliable, with high uptime, low latency, and accurate real-time readings 
validated against reference-grade instruments. 
6. Implications, Limitations, and Future Directions 
6.1 Practical Implications 
The deployment and validation of the proposed IoT-based real-time air quality monitoring system 
(AQMS) offer several valuable implications for urban governance, environmental health, and smart 
infrastructure management. 
1. Data-Driven Urban Planning: The system enables municipal authorities to make informed decisions 
based on continuous, high-resolution air quality data. Hotspot identification allows for the strategic 
placement of green zones, traffic diversion, and industrial zoning regulations. 
2. Real-Time Public Awareness: By integrating the AQMS with mobile applications and public 
dashboards, residents can access live pollution data, enabling behavioral adjustments such as avoiding 
outdoor activity during peak pollution periods. 
3. Early Warning Systems: The embedded alert mechanism facilitates real-time notifications for 
pollution threshold violations, which can be integrated with public health emergency protocols, school 
advisories, and environmental agency interventions. 
4. Policy Compliance and Regulatory Monitoring: Real-time pollutant tracking helps monitor 
industrial compliance with environmental norms and supports regulatory bodies in enforcing emissions 
control with credible data. 
5. Scalable Smart City Integration: The system’s compatibility with edge computing and low-power wide-
area networks (LPWAN) makes it scalable and suitable for integration into existing smart city frameworks 
including traffic systems, energy grids, and weather stations. 
6.2 Research and System Limitations 
Despite its demonstrated strengths, several limitations were observed that must be addressed in future 
iterations of the system: 
1. Sensor Drift and Accuracy: While the sensors are calibrated and corrected using empirical models, 
their long-term accuracy may degrade due to environmental exposure, aging, or cross-sensitivity to 
multiple gases. Continuous recalibration or adaptive AI-based correction models are required. 
2. Network Dependence: The reliance on Wi-Fi and LoRaWAN introduces vulnerabilities in 
environments with poor connectivity. In low-coverage zones, real-time data upload can be delayed, 
affecting time-critical applications. 
3. Limited Pollutant Range: The current AQMS focuses on a select group of pollutants (PM2.5, NO₂, 
CO, VOCs). However, comprehensive air quality assessment requires measurement of O₃, SO₂, benzene, 
and ultrafine particulates (PM1), which are absent in this version. 
4. Environmental Influence on Sensor Response: Sensor readings are affected by ambient temperature 
and humidity. Although compensated algorithmically, these adjustments may not fully correct the 
influence in highly volatile or extreme environments. 
5. Energy Limitations in Off-Grid Settings: Solar-powered AQMS nodes are affected by monsoon 
seasons and low-light conditions. Without adaptive duty cycling or energy harvesting enhancements, 
uptime could reduce in adverse conditions. 
6. Deployment Scale and Maintenance: Wide-scale deployment would require periodic maintenance, 
recalibration, and security audits—factors that could increase the operational cost and complexity of 
managing thousands of distributed sensor units. 
6.3 Future Research Directions 
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The promising results of this research open up several key areas for future exploration: 
1. Integration of Edge AI: Future AQMS nodes can incorporate lightweight machine learning models 
on edge devices (TinyML) for in-node anomaly detection, source identification, and pollutant forecasting 
to reduce reliance on cloud processing. 
2. Citizen Science and Participatory Sensing: Expanding the system with portable units that citizens can 
carry or mount on vehicles will democratize environmental data collection and improve spatial resolution 
of pollution mapping. 
3. Multi-Pollutant and Multi-Modal Sensing: Incorporating additional sensors for pollutants like ozone, 
sulfur dioxide, and noise levels can provide a more holistic environmental index, supporting cross-modal 
studies on pollution and urban stress. 
4. Blockchain for Secure Environmental Records: Integrating blockchain can ensure immutable, 
tamper-proof logging of environmental data, improving trust in reports used for legal or policy 
interventions. 
5. Dynamic Resource Allocation: Using AI-based feedback loops, nodes can autonomously adjust 
sensing frequency, data transmission, or enter power-saving modes based on real-time pollution variability 
and battery status. 
6. Cross-City Data Federation and Standardization: Coordinating deployments across multiple cities 
and sharing data using standardized APIs will help build robust pollution models at regional and national 
scales. 
The proposed AQMS demonstrates a viable pathway toward decentralized, real-time, and intelligent air 
quality management in smart cities. While current deployments validate its potential, addressing technical 
and infrastructural limitations is crucial for achieving large-scale, long-term, and policy-aligned impact. 
Future research should continue to bridge the gap between environmental sensing, citizen engagement, 
and health outcomes to build truly resilient and sustainable urban ecosystems. 
 
CONCLUSION 
This study presents the design, development, and deployment of a real-time IoT-based Air Quality 
Monitoring System (AQMS) tailored for smart city environments. By integrating low-cost sensors, 
embedded systems, wireless communication, and cloud analytics, the system enables continuous 
monitoring of key pollutants such as PM2.5, NO₂, CO, and VOCs across diverse urban zones. 
Experimental results from five deployment sites demonstrate the system’s reliability, responsiveness, and 
practical relevance in capturing spatial and temporal pollution patterns. The AQMS not only provides 
critical insights for environmental governance but also empowers data-driven urban planning, public 
awareness, and regulatory enforcement. Despite certain limitations—such as sensor drift, network 
dependency, and environmental sensitivity—the system lays a strong foundation for scalable, intelligent, 
and participatory air quality management. Future enhancements incorporating edge AI, broader pollutant 
sensing, and citizen engagement will further strengthen its role in building healthier and more sustainable 
smart cities. 
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