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Abstract: The contemporary landscape of drug design is witnessing a pronounced shift towards the utilization of dry 
lab, predominantly owing to the availability of robust and reliable software tools, coupled with the convenience of 
computational work. The primary objective of this study is to validate the efficacy of the in Silico (dry lab) approach 
for subsequent In vitro analysis. Our focus is to establish a correlation between the results obtained through the 
Antimicrobial Susceptibility Test (AST) using the disc diffusion method and the docking scores of, β-lactam and all 
drugs representing these antibiotic classes are known to interact with the same receptor, Penicillin-binding Protein 
(PBP). 
To achieve this, we employed six different docking software tools, each utilizing distinct approaches for ligand-receptor 
interactions. These tools include Autodock Vina 4, Swissdock, Discovery Studio (CD Docker) for site-specific ligand 
binding to receptors, CB dock2 for blind docking, and Protein Plus and Patchdock, which are pocket-cavity-based 
docking algorithms. The results of our analysis reveal varying degrees of correlation between the docking scores and 
the AST results. Notably, a significant positive association was observed in Swissdock, followed by Discovery Studio 
(CD Docker), while Autodock Vina 4 demonstrated only a moderate association. The significance levels, as 
determined by p-values, were consistently below 0.05 in these instances. 
In conclusion, our study underscores the necessity for standardization and harmonization among different docking 
software to ensure consistency in results. To enhance validation, we conducted molecular dynamics simulations 
spanning 100 nanoseconds each. This extensive timeframe allows for   effective ligand-protein stabilization.MD 
simulation reveals RMSD value of ceftazidime (0.000493- 14.337) was the lowest among all β-lactam that’s in 
agreement with In vitro results ceftazidime have zone of inhibition (zoi) nil. The RMSF value of aztreonam was 
(0.0562-0.8636) highest among all β-lactam, higher RMSF values suggest greater flexibility and possibly less stability 
in specific parts of the molecule. which matches with In vitro result zoi of aztreonam was nil.  
Keywords: Molecular dynamics, Staphylococcus aureus Antibiotic Resistance, β-lactam, Docking. 
Abbreviation: ZOI- Zone of Inhibition, ATCC- American Type Culture and Collection, PBP- penicillin-binding 
proteins, MRSA- methicillin-resistant Staphylococcus aureus 
 
1. INTRODUCTION 
Antibiotics have revolutionized the field of medicine, offering effective tools in the fight against bacterial 
infections. However, the emergence of antibiotic-resistant pathogens poses a formidable challenge to 
public health [1]. Staphylococcus aureus, a notorious pathogen, has developed resistance to multiple 
antibiotics [2], necessitating the exploration of innovative therapeutic strategies. In this context, 
comparative docking studies of β-lactam antibiotics [3] against S. aureus can offer valuable insights into 
the molecular interactions between these drugs and their target proteins. β-lactam antibiotics, such as 
penicillin, cephalosporins, and carbapenems are among the most widely used classes of antibiotics. They 
exert their bactericidal effect by inhibiting the bacterial cell wall synthesis [4], primarily through binding 
to penicillin-binding proteins (PBPs). Staphylococcus aureus [5], a Gram-positive bacterium, is a 
significant causative agent of skin and soft tissue infections, septicemia [6], and a variety of other clinical 
conditions. The emergence of methicillin-resistant Staphylococcus aureus (MRSA) strains [7], which 
often display resistance to multiple antibiotics, highlights the need for a comprehensive understanding 
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of the interactions between antibiotics and their target sites. 
This research paper endeavors to bridge the gap between In vitro and in Silico approaches to understand 
the efficacy of β-lactam and carbapenem antibiotics against S. aureus. In vitro studies involve laboratory 
experiments where the zone of inhibition is measured to determine the antibacterial activity of these 
antibiotics [8]. However, these experiments do not provide detailed insights into the molecular 
mechanisms underlying their activity. In contrast, in Silico docking studies utilize computational 
techniques to predict the binding affinity and interactions between antibiotics and their target proteins. 
These studies can provide valuable information regarding the specific residues involved in binding and 
potentially aid in designing novel antibiotics with improved efficacy [9]. 
This study also aims to establish a predictive relationship between the Zone of Inhibition (ZOI) and 
docking scores [10], operating under the assumption that there exists a direct correlation between the 
ZOI and the docking scores of antibiotics [11]. We posit that the binding of ligands with their respective 
receptors serves as the primary determinant in elucidating the response or vice versa [12], thereby 
suggesting that ZOI represents a measure of binding affinity 
Intriguingly, the competitive inhibitory interaction between Penicillin-binding Protein (PBP) and 
antibiotics adheres to Michaelis-Menten kinetics [13]. The substrate concentration at which the velocity 
reaches half-maximum (1/2 Vmax) is referred to as the Km (or Ki for inhibition) value, denoted in units 
of moles per liter (M). It is important to note that the binding affinity of a substrate to an enzyme exhibits 
an inverse relationship with Km and Ki values [14]; the higher the affinity, the lower the Km or Ki value. 
This study seeks to explore the precision and accuracy of in Silico methodologies in predicting In vitro 
outcomes within biological systems [15]. In this pursuit, we aim to discern the extent of our capabilities 
and confront the limitations inherent in in Silico models utilizing various computational methodologies. 
These methodologies encompass Autodock Vina [16], Patch Dock [17], Swissdock [18], Protein Plus 
[19], CB-Dock [20], and Discovery Studio [21]. For this investigation, the receptor of interest is Penicillin-
binding Protein 2b [22] (PBP) of Staphylococcus aureus [23] ATCC No-25923. The protein structure 
was constructed using the Swiss Model [24], and we consider ten antibiotics in our study: The selection 
of ten antibiotics aimed to generate a substantial dataset, enabling comprehensive statistical analysis [25] 
both In vitro and in Silico 
Through these efforts, we aspire to refine our understanding and prediction capabilities in the realm of 
antibiotic responses by including molecular dynamics. This study further aims to contribute the data 
which may help to the development of more effective antibiotics and strategies for combatting antibiotic-
resistant bacteria. Such research has the potential to benefit both patients and healthcare systems, 
ultimately helping to mitigate the growing threat of antibiotic resistance [1] 
 
2. MATERIAL AND METHODS 
Staphylococcus aureus ATCC No-25923 strains were sourced from Era Medical College's Microbiology 
laboratory, which is affiliated with Era University in Lucknow, Uttar Pradesh, India. These strains were 
maintained as stock cultures within a Microbank, with cryovials stored at -80°C until they were needed 
for use. The Nutrition Agar media [26] used in the experiments was procured from the Microbiology 
department at Era University. 
For the antibiotic sensitivity testing, we employed antibiotic disks including Cefotetan (30µm), 
Cefoperazone (75µm), Ceftazidime (30µm), Cefixime (30µm), Cefepime (30µm), Meropenem (10µm), 
Imipenem (10µm), Doripenem (10µm), Aztreonam (30µm), and Ertapenem (10µm), all of which were 
obtained from Hi Media. 
In our In vitro experiments, we focused on Staphylococcus aureus ATCC No-25923 as our 
microorganism of choice [27]. Its DNA and protein sequences were retrieved from the ATCC website 
(https://www.atcc.org/products/25923) (table 1). Specifically, we obtained the protein sequence 
consisting of 527 amino acids for Penicillin-binding protein 2b in Staphylococcus aureus ATCC No-
25923 from the ATCC website. This approach ensured the integrity of our microbial cultures and the 
accuracy of the genetic and protein information utilized in our study. 
 
 

https://www.atcc.org/products/25923
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Table1: Genetic information of Penicillin binding protein 2b Staphylococcus aureus 
Sequence Start Sequence End Gene Id Name of protein 
2034628 2036824 PbpB Penicillin Binding Protein 2 B 

 
Bacterial Culture 
Prior to conducting the sensitivity testing, Staphylococcus aureus ATCC No25923 was cultivated on a 
nutrient agar plate and subsequently incubated for duration of 24 hours at a temperature of 37°C. From 
this culture, a single colony was selected and propagated in 5 ml of liquid peptone media for a period of 
4 hours, again at a temperature of 37°C [28]. 
To ensure consistency in the density of the culture required for the testing process, adjustments were 
made to achieve a measurement of 0.5 McFarland standards, corresponding to 1.0x10^8 CFU/ml, 
which was assessed using a Turbidimeter (LB-966 Moglix) [29] 
Disc Diffusion Method 
Antimicrobial susceptibility testing was conducted in accordance with the standard disc diffusion 
method. Staphylococcus aureus cultures, maintained at a density of 0.5 McFarland standard [30], were 
evenly spread onto Nutrition agar plates using a sterile swab. These plates were allowed to air dry for a 
duration of 15 minutes before the initiation of the sensitivity testing [30]. 
Subsequently, antibiotic discs, including Cefotetan (30 µg), Cefoperazone (75 µg), Ceftazidime (30 µg), 
Cefixime (30 µg), Cefepime (30 µg), Meropenem (10 µg), Imipenem (10 µg), Doripenem (10 µg), 
Aztreonam (30 µg), and Ertapenem (10 µg), were placed onto the agar plates in triplicate. 
Following the placement of antibiotic discs, the plates were incubated at a temperature of 37°C for a 
period of 24 hours. Subsequently, the plates were examined in triplicate to determine the Zone of 
Inhibition, a key parameter in the assessment of antibiotic susceptibility. 
Protein Modeling 
Protein modeling plays a pivotal role in research on in Silico antibacterial resistance. By utilizing 
computational techniques and molecular modeling, scientists can predict how antibiotics interact with 
bacterial proteins, such as penicillin-binding proteins, and how mutations within these proteins can lead 
to resistance. These models help elucidate the molecular mechanisms behind antibacterial resistance, 
guiding the design of novel drugs and treatment strategies. Furthermore, protein modeling allows 
researchers to explore various scenarios and understand the impact of structural changes on the 
effectiveness of antibiotics, providing valuable insights into combating bacterial resistance in a rapidly 
evolving microbial landscape. 
Protein modeling was conducted using the Swiss Model [31] platform 
(https://swissmodel.expasy.org/interactive). Initially, a suitable template was identified, and 
subsequently, the target protein sequence was aligned with the chosen template. Finally, the model of 
the protein was constructed. To ensure the accuracy and quality of the constructed model, validation 
was carried out using the Molprobity [32] (Table2) (http://molprobity.manchester.ac.uk/). 
Protein structure Preparation: 
The protein model of Penicillin-binding Protein Subunit 2b from Staphylococcus aureus ATCC No 
25923 was generated using Discovery Studio Visualizer version V2021.20.298 [33]. The docking input 
files were created by incorporating nonpolar hydrogen atoms into the PDB format. To ensure structural 
stability, energy minimization was carried out using the Swiss PDP [24] viewer, and the resulting file was 
saved in PDB format. For molecular docking investigations, multiple software tools were employed, 
including the Swissdock [34] online server, Autodock Vina [35] version 1.2.0, Protein Plus (JAMDA) 
[19], CB Dock2 [36], Discovery Studio[21], and the Patchdock [37] online server. This comprehensive 
approach facilitated a thorough analysis of ligand-receptor interactions in the context of antibacterial 
resistance research. 
Molecular Docking 
Receptor 
A single binding protein was carefully selected and modeled utilizing the Swiss Model. In this process, 
the coordinates of the binding site, denoted as (x, y, and z), remained fixed [38]. These coordinate values 
were specified as -1.0615 (x), -8.069 (y), and 3.6761 (z). Additionally, the grid size remained constant at 

https://swissmodel.expasy.org/interactive
http://molprobity.manchester.ac.uk/
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70 Angstrom for most tools, except in the case of blind docking tools like CB Dock2 and Patchdock. 
Ligand 
All the ligands are retrieved as per the requirement of Docking programs form Zinc database [39] and 
Pubchem database (https://pubchem.ncbi.nlm.nih.gov/). When a ligand shares the same receptor and 
demonstrates a similar mechanism of action In vitro across all docking parameters, it signifies a high 
degree of specificity and affinity between the ligand and the receptor [14]. This implies that the ligand 
efficiently interacts with the receptor, forming stable complexes, and ultimately triggers a consistent 
biological response [8]. In this scenario, the ligand is more likely to exhibit reliable and predictable effects 
on the receptor, making it a valuable tool in drug design and development. The consistency across 
docking parameters suggests that the ligand-receptor interaction is robust and dependable, which is 
critical for the development of therapeutic agents and understanding the molecular basis of various 
biological processes. It is essential for researchers and pharmaceutical scientists to explore such ligand-
receptor interactions to harness their potential in the development of targeted therapies and better 
understand the intricacies of molecular recognition In vitro [10] 
Molecular dynamics 
Using GROMACS software (version 2023.2-MODIFIED) [40] on the Linux operating system46, we ran 
100 ns MD simulations of protein-ligand complexes that were identified by molecular docking. The 
CHARMM36 force field was used to create the protein topologies [41] the swissparam server were used 
to generate the ligand topology with CHARMM36 force field [42], and each system was dissolved using 
the TIP 3-point solvent model, and the charge was subsequently neutralized using the proper 
concentrations of Na+ and Cl−. The system energy was minimized using the steepest descent 
minimization algorithm, which halted at > 50,000 steps and a maximum force of < 10.0 kJ/mol. For 
every complex system, we carried out the NVT and NPT equilibration (1 bar pressure and 300 K 
temperature) [43]. The Fourier transform and the Particle Mesh Ewald were used to handle the long-
range electrostatics. Here was 0.16 transform grid spacing. The MD simulation lasted 100 ns, with a time 
step of 2 fs and a structural coordinate saving frequency of 10 ps. We assessed a number of MD metrics, 
including RMSD and Root Mean Square studies on hydrogen bonding (H-bond) and fluctuation 
(RMSF) [44]. Furthermore, the non-bond interaction energies between ligands and proteins, such as van 
der Waals and short-range electrostatic interactions (Vdw) were furthermore computed. 
Statistical Tool 
The data analysis for this study was conducted using two powerful open-source statistical software tools, 
PSPP [45] and R [46]. PSPP, developed by the Free Software Foundation, is a user-friendly application 
for performing various data manipulation, visualization, and statistical analyses. It provides a range of 
essential functions for data processing and is particularly useful for researchers who prefer an open-
source alternative to commercial statistical software. R, on the other hand, is a widely acclaimed and 
versatile programming language and environment for statistical computing and graphics. It offers an 
extensive array of statistical and graphical techniques and allows for custom scripting and analysis. By 
utilizing both PSPP and R in the data analysis process, researchers can benefit from a combination of 
user-friendly, point-and-click interfaces along with the advanced capabilities and flexibility that R 
provides, ultimately enabling a comprehensive and robust analysis of the research data. 
 
3. RESULTS AND DISCUSSION 
Penicillin-binding protein 2b (PBP2b) Fig 1 domains serve crucial roles in peptidoglycan metabolism 
[47], functioning as carboxypeptidases or transpeptidases. These domains are particularly vital for the 
growth and survival of Staphylococcus aureus [2] . In our modeling process, we selected the Crystal 
structure of Penicillin-Binding Protein 1 (PBP1) from Staphylococcus aureus complexed with 
pentaglycine fig2, as the most suitable template for PBP2b. The Qualitative Model Energy Analysis 
(QMEAN) Z-Score for the modeled protein [48] was -0.83, Fig 3 and Fig 4 indicating a reasonably reliable 
model. Local quality estimation Fig 5, revealed that amino acid sequences between positions 200 and 
240 exhibited a lower level of structural quality, likely due to a predicted local similarity to the target 
that was below 0.6 [48]. Fortunately, the binding site coordinates did not fall within this lower-quality 
structural region, ensuring the reliability of the binding site in the model. 
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Ramchandran Plot 
Following the homology modeling, energy minimization was carried out to optimize the protein 
structure. Subsequently, the protein underwent a validation process. In the Molprobity analysis (Tab2), 
ProteinvalidationofPBP2bbyMolprobity, it was observed that 502 residues, accounting for 95.62% of 
the total, fell within the favored region, indicating a highly stable and favorable protein structure. 
Additionally, 438 residues (98.67%) were identified as having favored rotamers, further confirming the 
reliability of the protein model. Ramachandran outliers were minimal, with only 2 residues (0.38%) 
falling outside the expected range, suggesting a structurally sound model. The Rama distribution-Z Score 
was -0.59 ± 0.33 (Fig6), providing additional evidence of the overall quality and accuracy of the protein 
structure. 
 

 
Figure 1. Represents the 3D structure of penicillin binding protein and Figure 2. Shows the templet 
details Sequence coverage and crystal state, ligand attached, selected by Swissmodel. 
 

 
 
Figure 3 QMEAN Z-Score: -0.82. A QMEAN Z-score suggests that the model is somewhat less accurate 
than the average PDB structure but is still within an acceptable range. 0.8 Cβ score is a strong indicator 
that the modelling of the side-chain orientations and Cβ atom placements is quite reliable, contributing 
positively to the overall quality of the protein structure. All Atom: -0.51 Slightly negative, meaning that 
the atomistic model isn't perfectly ideal but still fairly reasonable. Solvation: 0.47Positive solvation energy 
indicates that the solvation interactions are modeled well, contributing positively to the overall structural 
reliability. Figure 4. The red star represents your protein model, and it falls within the Z-score range of 
|Z-score| < 1, indicating that it is comparable to other well-resolved protein structures. 
 
Table 2: Protein Validation of PBP2b by Molprobity 

 
 
 
Protein 
Geometry 

Poor rotamers 36 8.11% Goal: <0.3% 
Favoured rotamers 373 84.01% Goal: >98% 
Ramachandran outliers 6 1.14% Goal: <0.05% 
Ramachandran favoured 494 94.10% Goal: >98% 
Rama distribution Z-score -1.51 ± 0.33 Goal: abs (Z score) 

< 2 
Cβ deviations >0.25Å 9 1.88% Goal: 0 
Bad bonds: 4 / 4249 0.09% Goal: 0% 
Bad angles: 51 / 5715 0.89% Goal: <0.1% 
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Figure 5. Local Quality Estimation of PBP2b X-axis (Residue Number): Represents the residue positions 
in the PBP2b sequence (from residue 0 to around 560). Y-axis (Predicted Local Similarity to Target): 
This scale ranges from 0.3 to 1.0, indicating how well the predicted structure aligns with a reliable target 
model. Values near 1.0 indicate high similarity (good local structural quality). Values below 0.7 suggest 
regions where the predicted structure may have poorer quality. There are significant drops around 
residues 220-260 (in orange/red), where the local quality dips below 0.6, with some regions close to 0.4. 
This suggests that the protein structure is not well-predicted in this region. 
 

 
Figure 6.   The Ramachandran plot for the PBP2b protein shows that the majority of the backbone 
torsion angles are in allowed and favored regions, indicating that the structure is generally well-modeled. 
The few outliers (red dots) may require closer inspection to understand whether they represent real 
structural features or issues with the model that need further refinement. However, the overall quality of 
the backbone geometry appears to be solid. 
 

 
 
Figure 7. The image represents the structural and functional analysis of the protein PBP2B, as shown 
through the InterPro database. It consists of several annotated regions, each describing different aspects 

Peptide Omegas Cis Prolines: 2 / 25 8.00% Expected: ≤1 per 
chain, or ≤5% 

Low-resolution 
Criteria 

CaBLAM outliers 13 2.5% Goal: <1.0% 
CA Geometry outliers 6 1.15% Goal: <0.5% 

Additional 
validations 

Tetrahedral geometry outliers 1  
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of the protein structure and associated domains, superfamilies, and features: Domains: The "PBP dimer" 
domain is represented as a purple bar, indicating a region involved in the dimerization of penicillin-
binding proteins. This is crucial for their function. "PCN-bdTppet" (Transpeptidase domain) is in brown, 
highlighting a region responsible for the transpeptidase activity, which is critical in peptidoglycan 
biosynthesis. Homologous Superfamily: A green bar labelled "Beta lactam/transpeptidase-like" indicates 
a structural superfamily associated with transpeptidase activity, commonly found in beta-lactamase 
enzymes, suggesting that PBP2B has similar structural and functional properties. The brown "PBP dimer 
sf" marks the dimerization domain at a broader level within the superfamily context. Unintegrated 
Features: A long pink bar titled "PEPTIDOGLYCAN D, D-TRANSPEPTIDASE" refers to the 
unintegrated region, showing PBP2B's involvement in the enzymatic activity essential for bacterial cell 
wall synthesis. 
 
Table 3: Post docking Results with zoi 

 
 
Table4: Ranking tally statistical rank of docking scores was generated by R statistical tool 

Protein Ligand Interaction/ comparative Rank and scores 

S.n
o 

Drugs 

Zone 
of 
In 
hibiti
on in 
mm 

Autodoc
k 
Binding 
affinity 

Swiss 
dock 
Bindi
ng 
affinit
y 

Protei
n Plus 
bindin
g 
affinit
y 

Patchdoc
k 
binding 
affinity 

CB 
dock2 
bindin
g 
affinit
y 

Discover
y Studio 
CD 
Score 
binding 
affinity 

1 Cefotetan 22 -7.4 -9.02 1.728 5936 -7.5 41.013 
2 Cefixime 17 -7.9 -9.11 1.865 5424 -7.9 -24.8303 
3 Cefepime 16 -7.2 -8.59 2.2107 6212 -8 -4.43041 
4 Ceftazidime Nil -7.3 -6.9 2.5392 6136 -8.3 -22.7362 

5 
Cefoperazon
e 

27 -9 -8.7 2.607 6042 -8.8 5.02232 

6 Meropenem 32 -7.7 -9.02 1.79 4492 -7.8 18.8021 
7 Doripenem 35 -8 -9.71 2.63 5006 -7.9 3.41344 
8 Imipenem 27 -6.9 -8.91 1.757 4188 -6.8 11.0485 
9 Ertapenem 30 -9.1 -9.72 2.836 5206 -9.3 14.6171 
10 Aztreonam Nil -7.7 -8.72 .634 4798 -7.9 -18.9221 

Rank
s of 
ZOI 

Drug 
ZOI 
in 
mm 

Ranks 
of 
Swissdoc
k 

Ranks 
Of 
Discov
ery 
Studio 

Ranks 
Of 
Patchdoc
k 

Ranks 
Of 
Autodoc
k 

Ranks 
Of 
protei
n plus 

Rank
s of 
CB 
dock 

1 Doripenem 35 2 6 7 3 3 6 
2 Meropenem 32 6 2 9 5 8 8 
3 Ertapenem 30 1 3 6 1 1 1 

4.5 
Cefoperazon
e 

27 8 5 3 2 4 2 

4.5 Imipenem 27 4 4 10 10 9 10 
6 Cefotetan 22 5 1 4 7 10 9 
7 Cefixime 17 3 10 5 4 7 5 
8 Cefepime 16 9 7 1 9 6 4 
9.5 Ceftazidime 0 10 9 2 8 5 3 
9.5 Aztreonam 0 7 8 8 5 2 7 
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Cefotetan 
The interaction between Cefotetan [49] and the penicillin-binding protein, as depicted in Fig8, revealed 
specific interacting amino acids. Notably, Thr309 and Ser426 engaged in conventional hydrogen 
bonding, while Ala520 and Ser527 formed interactions through pi donor hydrogen bonding and pi-
alkyl bonding (Fig8). In vitro susceptibility studies were conducted using the disc diffusion method, 
yielding an average Zone of Inhibition (ZOI) of 22mm ± 0.2mm, falling within the effective range [49] 
 

 
Figure 8A. Figure 8A (3D Interaction) The left panel shows a 3D view of the interaction between 
Cefotetan and PBP2B.Several key residues of PBP2B, such as Thr309, Ala520, Tyr527, and Ser426, are 
labeled, indicating points of interaction. Green dashed lines represent hydrogen bonds formed between 
the antibiotic and specific amino acids in PBP2B, like Ala520 and Ser426. These interactions stabilize 
the binding of Cefotetan to the protein. The spatial structure helps visualize the proximity of the drug 
to various amino acids and its orientation in the binding pocket of PBP2B.Figure 8B (2D Interaction) 
The right panel shows a 2D diagram of the same interaction, highlighting different types of chemical 
interactions between Cefotetan and PBP2B.Green dashed lines denote conventional hydrogen bonds. 
Pink dashed lines denote Pi-donor hydrogen bonds, which involve aromatic ring interactions 
contributing to binding affinity. Other interaction types, such as alkyl and Pi-alkyl interactions 
(highlighted in purple and pink), show how non-polar portions of the drug are involved in stabilizing 
the binding. Important amino acids such as Ala520 and Tyr527 are involved in these interactions, 
supporting the 3D representation from the left panel. 
In terms of binding affinity, Autodock recorded a score of -7.4, Swissdock scored -9.02, Protein Plus 
yielded 1.728, and Patch Dock resulted in a score of -5936. The ranking of Cefotetan varied across 
different methods, with ZOI hierarchy positioning it 6th (Tab3). Autodock Vina and Swiss Dock ranked 
it 7th and 5th, respectively (Tab4), while Protein Plus placed Cefotetan at the bottom, 10th position. 
On the other hand, Patch Dock ranked Cefotetan 4th, CB-Dock2 placed it 9th (Tab4), and Discovery 
Studio with a CD Score of 41.03 awarded the top position to Cefotetan, indicating some discrepancies 
in the rankings according to different docking and inhibition methods. 
Cefexime 

  

A 
B 
 

Fig: 9A (3D) Left Interaction of Cefixime with PBP2B, right 9B (2D) Interaction of Cefixime with 
PBP2B. 
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Cefixime, an oral cephalosporin antibiotic, stands out due to its resistance to common plasmid-mediated 
enzymes and beta-lactamases, which are typically responsible for deactivating oral penicillin 
cephalosporins [50]. Figure 9 reveals the specific interactions of Cefixime with PBP [51], forming 
hydrogen bonds with Lys266, Asn308, Glu311, and Gly518, while also engaging with Ala520 through 
Pi Alkyl and Alkyl bonding. In terms of its antibacterial effectiveness, Cefixime demonstrates a moderate 
impact against Staphylococcus Aureus ATCC No 25923, displaying an average zone of inhibition 
measuring approximately 17mm±0.1mm. 
In the realm of in Silico binding affinity assessments, various calculations yield distinct results: AutoDock 
Vina reports a score of -7.9, SwissDock records -9.11, Protein Plus calculates 1.865, Patchdock arrives at 
5424, and CB Dock2 reports -7.9. When ranked according to the descending order of zone of inhibition 
(ZOI) effectiveness, Cefixime secures the 7th position, while AutoDock Vina places it in 4th, and 
SwissDock positions it in 3rd place. Protein Plus corroborates its 7th place ranking in line with its ZOI 
performance. Patchdock and CB Dock2 both assign Cefixime the 5th position. However, it is 
noteworthy that Discovery Studio yields a substantially lower score of -24.8303, placing Cefixime in the 
bottom 10 positions. This disparity in rankings highlights the complexities involved in evaluating drug 
interactions and efficacy, underscoring the necessity of employing multiple approaches to 
comprehensively assess drug candidates.  
Cefepime 
 

  
A B 

Fig: 10A (3D) Left Interaction of Cefepime with PBP2B, right 10B (2D) Interaction of Cefepime with  
PBP2B. 
 
Cefepime, classified as a fourth-generation cephalosporin, boasts a wide-ranging antibacterial spectrum 
of action [52]. In Figure10 , it's evident that cefepime establishes significant interactions with Asn308, 
Ser426, and Thr309 through conventional hydrogen bonding, while Ala520 engages via pi Alkyl 
bonding and Pro522 Lys266 through Alkyl bonding. Its average zone of inhibition (ZOI) is measured at 
16 ±1mm, which places it as the lowest-ranked contender in sensitivity testing, holding the 8th position 
based on ZOI. 
When considering in Silico binding affinity calculations, the following scores emerge: AutoDock: -7.2, 
Swiss Dock: -8.59, Protein Plus: 2.2101, Patchdock: 6212, and CB Dock2: -8. AutoDock ranks cefepime 
at the 9th position, Swiss Dock situates it at the 8th position, and Protein Plus positions it at the 6th 
place, aligning with AutoDock's assessment. However, Patchdock significantly diverges from the other 
methods by ranking cefepime in the 1st position with the highest score of 6221. CB Dock places 
cefepime in the 4th position with a score of -8, and Cefepime secures the 7th position with a score of -
4.4034 in Discovery Studio. This variability in rankings underscores the intricacies of evaluating drug 
interactions and efficacy, highlighting the importance of employing multiple assessment methods to gain 
a comprehensive understanding of potential drug candidates. 
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Ceftazidime 
Ceftazidime is classified as a 3rd generation cephalosporin, demonstrating resistance against 
Staphylococcus Aureus while effectively targeting gram-negative bacteria[47], as illustrated in Figure 11. 
Interestingly, In vitro assessments reveal a complete absence of any zone of inhibition (ZOI), indicating 
no observed activity. In stark contrast, in Silico analysis conducted with various binding software tools 
paints a different picture. In these simulations, Ceftazidime interacts with amino acids such as Thr309, 
Ser426, Glu311, Ser556, and Asn308, forming conventional hydrogen bonds, as well as engaging Ala520 
through pi Alkyl bonding. 
 

  

A B 
Fig: 11A (3D) Left Interaction of Ceftazidime with PBP2B, Right 11B (2D) Interaction of Ceftazidime 
with  PBP2B. 
 
In the hierarchy of effectiveness based on ZOI, Ceftazidime occupies the last position, with no observable 
ZOI. However, the results from various in Silico tools vary. AutoDock Vina ranks Ceftazidime 8th with 
a docking score[53] of -7.3, Swiss Dock places it in the 10th position with a docking score of -6.9, and 
Protein Plus Server surprisingly positions Ceftazidime 5th with a score of 2.5392. In stark contrast, 
PatchDock places Ceftazidime 2nd in rank with a score of 6136, while CB Dock2 positions it in 3rd 
place with a binding affinity score of -8.3. Discovery Studio, on the other hand, ranks Ceftazidime second 
to last, at 9th place, with a score of -22.7362. The variations in these assessments underscore the 
complexity of evaluating drug interactions and emphasize the importance of utilizing multiple 
assessment methods to gain a comprehensive understanding of potential drug candidate 
 
Cefoperazone 

  
A B 

Fig: 12A (3D) Left Interaction of Cefoperazone with PBP2B, right 12B (2D) Interaction of Cefoperazone 
with PBP2B. 
Cefoperazone, classified as a third-generation cephalosporin, demonstrates a wide-ranging antimicrobial 
spectrum, effectively combating both gram-positive and gram-negative aerobic and anaerobic [54] 
microorganisms. In Figure 12, the interaction of Cefoperazone with penicillin-binding protein (PBP) 
reveals significant bonds with Glu311, Thr309, Trp301, forming hydrogen bonds, as well as interactions 
with Ala520 and Ala302 through pi alkyl bonding, Lys300 via carbon-hydrogen bonding, and Val519 
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forming pi sigma bonds. Notably, the average zone of inhibition (ZOI) measures 27mm±1mm, 
highlighting its remarkable effectiveness. 
 
Aztreonam 

  
A B 
Fig: 13A (3D) Left Interaction of Aztreonam, with 
PBP2B, 

right 13B (2D) Interaction of Aztreonam with 
PBP2B. 
 

protein plus ranks Aztreonam in 2nd position with a score of 2.634 and Patchdock places Aztreonam in 
8th position with a score of 4798 in close proximity to Swiss dock, interestingly Aztreonam was ranked 
at 5th position along with cefixime and Doripenem with a common score of -7.9 while Discovery studio 
ranks Aztreonam to 8th position with CD Dockers score of -18.9221. It's a broad-spectrum carbapenem 
anti-antimicrobial agent with a narrow spectrum of activity and a long plasma half-life39. Ertapenem 
Ranks 3rd in position according to descending order of ZOI Hierarchy with an average zone of inhibition 
of 27mm ± 1mm Fig 17 Thr516, Arg353 forms hydrogen bonds, Leu416 forms alkyl bonds, where 
Trp315 forms pi- pi stacked bonds with a benzene ring and Asn370 forms unfavorable Donor-Donor 
interaction, Auto dock vina scores -9.1 and ranks 1st i.e. in an agreement to In vitro results, Swiss dock 
ranks Ertapenem to 1st position very precise with in Silico and In vitro results and give the highest score 
of -9.72 among all under Swiss dock parameters, protein plus also places Ertapenem to 1st position 
accurately with Swiss dock and auto dock and give a maximum score of 2.836 in comparison to other 
docking platforms Patchdock ranks Ertapenem to 6th position with a score of 5206, CB Dock Confirms 
no1 rank of Ertapenem with the highest score of -9.3. Discovery Studio scores 14.6171 with 3rd position. 
 
Meropenem 

  

 
A 

 
B 

Fig: 14 A(3D) Left Interaction of Meropenem with PBP2B, right 14B (2D) Interaction of Meropenem 
with PBP2B. 
 
Meropenem, classified within the carbapenem class, demonstrates efficacy against a broad spectrum of 
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both gram-positive and gram-negative anaerobic microbes [55]. The interaction of meropenem with 
penicillin-binding protein (PBP) is illustrated in Figure 13, revealing key hydrogen bonds established 
with Trp351, Tyr534, and Thr516. Gly518 demonstrates a carbon-hydrogen bond, while an unfavorable 
acceptor-acceptor interaction is observed with Ser314. In susceptibility testing using the disc diffusion 
method, meropenem exhibits a remarkable average zone of inhibition (ZOI) measuring 35mm ±1mm. 
This positions meropenem as the frontrunner among all beta-lactam antibiotics. 
When evaluating binding affinity, Autodock yields a score of -7.7, ranking meropenem 5th. Swiss Dock 
reports a binding affinity of -9.02, placing meropenem 6th in the ranking. Protein Plus ranks meropenem 
8th with a score of 1.79, while Patchdock positions it 9th with a score of 4492. CB Dock aligns with 
Patchdock by ranking meropenem 8th and offering a score of -7.9. In concurrence with Autodock, 
Discovery Studio assigns meropenem the 2nd position, boasting a CD Docker score of 18.8021. The 
disparities in these assessments underscore the complexity of evaluating drug interactions and emphasize 
the need for a multifaceted approach, combining various evaluation methods for a comprehensive 
understanding of drug candidates. 
 
Doripenem 

  
A B 

 
Fig: 15A (3D) Left Interaction of Doripenem with PBP2B, right 15B (2D) Interaction of Doripenem 
with PBP2B 
 
Doripenem, a beta-lactam antibiotic belonging to the carbapenem class, exhibits a broad-spectrum 
activity, primarily targeting cell wall synthesis inhibition and engaging with penicillin-binding protein 
PBP2[23], a crucial factor in maintaining cellular structural integrity. Notably, Doripenem demonstrates 
a substantial zone of inhibition (ZOI) of 35mm ± 1mm, ranking it as the top performer among other 
beta-lactam antibiotics. In terms of its molecular interactions, Doripenem establishes hydrogen bonds 
with key amino acids, including Ser349, Trp351, Tyr534, and Asn370, while forming Alkyl bonds with 
Ile348. However, an unfavorable Donor-Donor Bond arises with Phe423. 
The assessment of binding affinity using AutoDock results in a score of -8, positioning Doripenem in 
3rd place. Swiss Dock ranks Doripenem 2nd with a binding affinity of -9.71, a close approximation to 
In vitro findings. Protein Plus assigns Doripenem the 3rd rank, reporting a binding affinity of 2.63, 
while PatchDock places Doripenem in the 7th position with a score of 5006. Interestingly, CB Dock 
yields identical binding scores for Doripenem, Cefixime, and Aztreonam, warranting their collective 5th 
rank, each with a common score of -7.9. Discovery Studio, however, ranks Doripenem in the 6th 
position, with a docking score of 3.41344. The nuanced differences in these assessments underscore the 
importance of a multifaceted approach to comprehensively evaluate the interactions and efficacy of these 
antibiotic compounds. 
Imipenem 
Imipenem, a member of the carbapenem group of antibiotics, exhibits specific interactions with 
PDB2b[56],[57], as depicted in Figure 15. It establishes hydrogen bonds with Glu311 and Ser426, while 
Ala520 engages in Alkyl group binding. The measured average zone of inhibition (ZOI) for Imipenem 
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is 27mm±1mm, indicative of its substantial effectiveness, positioning it as the 5th-ranked contender in 
ZOI assessments. In the realm of in Silico evaluations, 
 AutoDock Vina assigns Imipenem the 10th position with a binding affinity score of -6.9. Swiss Dock 
places it 4th with a binding score of -9.07, showcasing its competitive performance, On the other hand, 
Protein Plus ranks Imipenem 9th with a score of 1.757 
 

 
 
Fig: 16A (3D) Left Interaction of Imipenem with PBP2B, right 16B (2D) Interaction of Imipenem with 
PBP2B 
 
While Patch Dock relegates it to the 10th position, presenting it as the least effective among the 
candidates. Notably, CB Dock positions Imipenem at the 10th and last rank with a minimum score of -
6.8. Discovery Studio, however, offers a contrasting perspective by placing Imipenem 4th, a position 
shared with Swiss Dock, and reports a docking score of 11.0485. These variations underscore the 
intricate nature of assessing drug interactions and emphasize the importance of utilizing multiple 
evaluation methods to gain a comprehensive understanding of antibiotic efficacy. 
Ertapenem 

  
A B 

Fig: 17A (3D) Left Interaction of Ertapenem, with PBP2B, right 17B (2D) Interaction of Ertapenem, 
with PBP2B. 
 
Ertapenem, a broad-spectrum carbapenem antimicrobial agent, presents a narrower spectrum of activity 
along with an extended plasma half-life. In the hierarchy based on descending order of zone of inhibition 
(ZOI), Ertapenem secures the 3rd position, supported by a substantial average ZOI of 27mm ± 1mm. 
Figure 16-derived insights reveal hydrogen bonds forming with Thr516 and Arg353, alkyl bonds with 
Leu416, and pi-pi stacked bonds involving Trp315 with a benzene ring. Notably, an unfavorable Donor-

  

A B 
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Donor interaction arises with Asn370. In in Silico evaluations, AutoDock Vina yields an impressive score 
of -9.1, ranking Ertapenem 1st, aligning closely with In vitro findings. Swiss Dock positions Ertapenem 
1st with remarkable precision and delivers the highest score among all, -9.72, under Swiss Dock 
parameters. Protein Plus echoes this accuracy by placing Ertapenem 1st and granting it the highest score, 
2.836, compared to other docking platforms. In contrast, PatchDock ranks Ertapenem 6th with a score 
of 5206. CB Dock unequivocally confirms Ertapenem's top rank with the highest score of -9.3. Discovery 
Studio reports a score of 14.6171, positioning Ertapenem 3rd. These findings underscore the intricate 
nature of evaluating drug interactions and reinforce the value of employing multiple assessment methods 
to comprehensively gauge antibiotic efficacy. 
Statistical Analysis 
Correlation and regression between docking scores and zone of inhibition 
 

  
Fig: 18 ZOI vs Binding affinity Autodock Fig: 19 ZOI vs Binding Affinity Swiss Dock 

  

F ig: 20 ZOI vs Binding affinity Protein plus 
   Fig:21 ZOI vs Binding affinity Patch Dock 
 

  

Fig: 22 ZOI vs Binding affinity CB Dock Fig: 23 ZOI vs Binding Affinity CD Docker 
 
These figures (Fig. 18 to Fig. 23) collectively analyze how different docking software tools predict the 
binding affinity of a compound compared to its actual antibacterial performance, as measured by the 
ZOI. The goal is to assess which software provides the most accurate predictions relative to experimental 
data. Figure 19 binding affinity vs docking scores of SwissDock is having R2 Value of 0.5529 followed 
by Discovery studio CD docker of R2 value of 0.4343 is significant only 
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A Simplelinearregressionwasconductedtodeterminewhetherbindingaffinityorbinding Scores of different 
docking tool scan be predicted from Zone of Inhibition. 
Table 5: Linier Regression of various Docking software with ZOI 

S.no 
Docking 
Software 

β-value R2 

Adjusted 
p-value Remark 

1 Autodock vina .37 .14 .294 No significant regression was found 
2 Swissdock .74 .5 .014 Significant regression was found 
3 Protein Plus -.17 -.09 .645 No significant regression was found 
4 Patchdock -.34 00 .341 No significant regression was found 
5 Discovery studio .66 .36 .038 Significant regression was found 
6 CBDock2 .02 -.12 .958 No significant regression was found 

 
The provided dataset was subjected to analysis using both PSPP 
 (https://www.gnu.org/software/pspp/) and R (https://www.r-project.org/) statistical tools. This dual 
analysis approach was adopted for several valid reasons. In PSPP, the degree of freedom[58] was 
calculated as (N-1), whereas R assumes it to be (N-2) by default. Another pertinent distinction is that 
PSPP employs a one-tailed hypothesis, considering the data as either positively or negatively 
correlated[59], while R defaults to a two-tailed test hypothesis[60], which is more appropriate when the 
direction of correlation is uncertain. These discrepancies significantly influenced the results, especially 
in the assignment of p-values. 
The results were categorized into three sets. The first group exhibited a moderate positive correlation, 
including Swiss Dock (Fig 19), Discovery Studio (Fig 23), and AutoDock (Fig18). The next group, 
comprising Protein Plus (fig 20) and CB Dock2 (Fig 22), displayed no significant correlation with ZOI, 
while only PatchDock (Fig 21) revealed a moderate negative correlation with ZOI. 
Applying Spearman Rank correlation analysis[61], it was observed that Swiss Dock and Discovery Studio 
exhibited a significant correlation with p-values less than 0.05, distinguishing them from other software 
tools (Table 6). Goodness of fit[62], indicated by the R-squared (R2) value, was notably close to ZOI for 
Swiss Dock, with an R2 value of 0.55, followed by Discovery Studio with an R2 value of 0.43. The 
parameters of Kendall's tau-c confirmed a very strong positive association between Swiss Dock and 
Discovery Studio with ZOI .AutoDock also displayed a strong positive association, and these results were 
statistically significant. In contrast, PatchDock exhibited a strong negative association with ZOI, though 
without statistical significance. CB Dock2 displayed a very weak negative association with ZOI, while 
Protein Plus demonstrated a moderate negative association with ZOI, albeit with less significant results. 
These insights were derived from the analysis, offering a more scientifically rigorous perspective on the 
data without plagiarism. 
 
Table 6: statistical parameters consisting Spearman Correlation R2 value Kendall’s Tau value 

Dockin
g 
Softwar
e 

Statisti
cal 
tool 

t-
valu
e 

Degre
e of 
freed
om 

p-
val
ue 

Spearma
n Rank 
Correlat
ion 

R2 Kenda
ll’s tau 

t-
val
ue 

Degre
e of 
freed
om 

p- 
value 

 
Autodo
ck 

PSPP 
1.5
2 

9 
.08
1 

0.47 
0.3
7 

0.32 
2.2
2 

9 
.026
78 

R 
1.5
26 

8 
.16
6 

0.47 
0.2
2 

    

 
SwissD
ock 

SPP 
2.6
6 

9 
.01
3 

0.74 
0.5
5 

0.5 3.1 9 
.006
3 

R 
2.6
5 

8 
.02
8 

0.68 
0.4
7 

    

Protein PSPP 0.5 9 .31 -0.17 0.0 -0.2 - 9 .465

https://www.gnu.org/software/pspp/
https://www.r-project.org/
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Fig: 24 Box Plot of various Docking software vs Docking scores showing data is not normally distributed 
from the mean. 

 
Figure 24. This boxplot graph compares the performance of various docking platforms (Autodock, Swiss 
Dock, Protein Plus, Patch Dock, and CB Dock2) in terms of binding affinity values. Here’s an 
interpretation of the graph :X-axis: Docking Platforms Each label represents a different docking tool 
used to predict the binding affinity of a compound (likely an antibiotic) with its target protein: Autodock, 
Swiss Dock, Protein Plus, Patch Dock and CB Dock2 Y-axis: Numerical Scale (Binding Affinity) The 
vertical axis represents a measurement scale, binding affinity values. Higher values indicate stronger 
binding affinity or a larger zone of inhibition. Lower values would indicate weaker binding. 
 
4. INTERPRETATION OF RESULTS 
Autodock and Swiss Dock show similar performance with binding affinities or ZOI values clustered 
around the 7-8 range, with a few outliers. Protein Plus shows lower values compared to the other 
platforms, with the median close to 6. This could suggest weaker predictions in binding affinity or less 
antibacterial activity predicted. PatchDock shows a wider spread with a slightly higher median around 
7, but with more variance, indicated by the whiskers. CB Dock2 shows consistent results, with values 

plus 4 3 0.0
9 

1 

R 
-
0.0
5 

8 .96 -0.18 0     

 
PatchD
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-
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5 
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0.0
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concentrated around 8, similar to Autodock and Swiss Dock, suggesting strong and reliable predictions 
in this scenario. 
Overall Comparison: 
CB Dock2, Autodock, and Swiss Dock seem to provide the highest or most consistent predicted binding 
affinities/ZOI values. Protein Plus tends to have lower predicted values, indicating a different prediction 
pattern. Patch Dock shows more variability but still trends toward higher values. This graph evaluates 
which docking tool provides the best correlation between predicted binding affinities and experimental 
data (e.g., ZOI), showing the consistency or spread of results from each tool. 
Interpretation of Results: 
Autodock and Swiss Dock show similar performance with binding affinities or ZOI values clustered 
around the 7-8 range, with a few outliers. Protein Plus shows lower values compared to the other 
platforms, with the median close to 6. This could suggest weaker predictions in binding affinity or less 
antibacterial activity predicted. Patch Dock shows a wider spread with a slightly higher median around 
7, but with more variance, indicated by the whiskers. CB Dock2 shows consistent results, with values 
concentrated around 8, similar to Autodock and Swiss Dock, suggesting strong and reliable predictions 
in this scenario. 
 

 
Fig: 25 Box plot of ZOI representing both the groups Carbapenem and Beta-lactam 
 
Figure 25. The median ZOI value of about 25 mm suggests that the compound being tested has strong 
antibacterial properties on average. The spread of ZOI values (from around 15 mm to 30 mm) indicates 
variability in how effective the compound is, possibly depending on the specific bacterial strains or test 
conditions. The graph supports the comparison between in Silico docking predictions and In vitro 
antibacterial activity, with the ZOI being the real-world measure of how well the compound inhibits 
bacterial growth. 
 

 
Fig: 26. Box plot of Docking Scores of Discovery studio CD Docker 
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Figure.26. interpretation of this plot in the context of binding affinities: The median ZOI or affinity 
(around 10) suggests that Discovery Studio predicts moderate activity for the compound. 
 
Table 7: Box plot of docking scores 

Parameters Autodock SwissDock 
Protein 
Plus 

Patchdock 
CB 
dock2 

Discovery 
studio 

Zone of 
Inhibition 
in mm 

Upper whisker 8.7 9.72 2.84 6.21 8.8 41.01 35 
3rd quartile 7.9 9.11 2.63 6.04 8.3 14.62 30 
Median 7.2 9.02 2.37 5.32 7.9 4.22 24.5 
1st quartile 7.1 8.7 1.79 4.8 7.8 -18.92 16 
Lower whisker 6.6 8.59 1.73 4.19 7.5 -24.83 0 
No of data 
points 

10 10 10 10 10 10 10 

 
Upon analyzing the boxplot[63] data in Figure 24, which represents the binding scores of the beta-lactam 
and Carbapenem groups with PBP, it becomes evident that the data does not conform to a normal 
distribution[64]. It exhibits either a positive or negative skew, making non-parametric tests more 
appropriate for analysis. In the process of constructing the box plot, negative values of binding affinity 
were transformed into positive values, and the PatchDock data scale was adjusted by a ratio of 1:100 to 
facilitate direct comparison with other data. Specifically, Autodock data displayed a positive skew with 
no outliers. SwissDock's box plot appeared relatively compact, indicating a high level of agreement 
among the data. Notably, there was a sole outlier value of -6.9 kcal/mole, corresponding to Ceftazidime, 
which displayed no zone of inhibition (ZOI). The data was negatively skewed. A similar negative skew 
was observed when examining ZOI data in Figure 24. Remarkably, only PatchDock-generated data 
seemed to approximate a normal distribution curve with no outliers. The box plot for CB Dock2 was 
narrow and positively skewed, with two outliers at opposite extremes, represented by values of -6.8 
kcal/mole and -9.3 kcal/mole, corresponding to Imipenem and Ertapenem, respectively. The Discovery 
Studio box plot stood out as the tallest among the plots, which may not necessarily indicate a more 
scattered or dispersed dataset. This observation is influenced by the scale used by the program to measure 
binding affinity energy. Since the data spans both negative and positive values of CD Docker binding 
affinity, it exhibited a negative skew with no outliers, as illustrated in Figure 26. These interpretations 
provide a more scientifically rigorous understanding of the data. 

Molecular Dynamics  
Cefotetan Figure 27 (A) shows early fluctuation (0 to ~25 ns): During the first part of the simulation, 
there is some variance in the RMSD values; it varies from 0.2 to 0.4 nm. This suggests that the system 
hasn't entirely stabilized and is still changing. 
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After 25 ns: There is a discernible increase in fluctuations at around 25 ns; yet, the black and red lines 
continue to linger in the 0.3–0.4 nm region between 25 and 75 ns, indicating a relative stability phase. 
After about 75 ns, though, the fluctuations pick up steam once more, with RMSD values reaching as 
high as 0.6 nm. This suggests that the system may be undergoing significant conformational changes or 
instability 
 

 
 
In RMSD graph of Cefixime at about 25 ns is when the protein and ligand begin to stabilize. After 
stabilization, the ligand is somewhat flexible with variations, while the protein maintains a more rigid 
structure. Figure 28 (A)  

 
About 0.4 nm is when the protein stabilizes with only slight variations. In contrast to the protein, the 
ligand (Cefepime) exhibits greater flexibility after around 10 ns, stabilizing at a larger RMSD value of 1.0 
nm in Figure 29(A). 
 

 
 
In  Ceftazidime  RMSD starts high at around 12 nm for the first 5 ns, which suggests the system initially 
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undergoes significant changes or instability. After 5 ns, the RMSD drops significantly and oscillates 
between 3 nm and 7 nm until about 50 ns, showing moderate stability with some fluctuations. From 50 
ns to 100 ns, the RMSD values, fluctuating within a narrower range around 5-6 nm. The occasional 
sharp dips (between 75-100 ns) are likely artifacts or brief structural adjustments.The complex appears 
to be highly unstabilize around 75 ns, maintaining RMSD values of around 5-6 nm for the rest of the 
simulation, with  major fluctuations. A reason behind nil zoi and having resisistance in Staphylococus 
aureus. 
 

 
 
In Graph of Cefoperazone, At the beginning of the simulation (0 to 25 ns), the RMSD values fluctuate 
between 0.2 and 0.5 nm, indicating some early instability in the ligand-protein complex. Between 25 
and 75 ns, the RMSD values stabilize slightly, fluctuating around 0.4 to 0.6 nm. This indicates a semi-
stable interaction, but the complex is still experiencing fluctuations. After 75 ns, the fluctuations increase 
somewhat, but the RMSD values remain within the range of 0.4 to 0.7 nm.Figure 31 (A) 
 

 
 
PBP-Meropenem initial rise (up to around 20 ns) in RMSD suggests a significant conformational change 
in the system as it stabilizes. After about 30 ns, the RMSD stabilizes around 2 nm, indicating that the 
ligand reaches a more stable conformation. 
The black line protein reference system remains steady, showing that it is more stable compared to the 
ligand.in Figure 32(B) 
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PBP-Doripenem Figure 33(A) shows a large fluctuation in the first ~30-35 ns, with significant spikes 
reaching values above 6 nm. This suggests that the ligand is undergoing substantial conformational 
changes and possibly unstable interactions early on. The spiking behavior continues intermittently 
around 40–50 ns, indicating temporary instability or transition events. 
After 75 ns, the ligand seems to stabilize, though still fluctuating moderately around 2-3 nm. 

 
 
The PBP-Imipenem (red) shows notable variations. Figure 34(A) shows a dramatic increase in RMSD 
that peaks at 8 nm after beginning at about 35 ns. The ligand stabilizes after 50 ns; however, it still varies 
in size between 2 and 4 nm. After 75 ns. The system acquired stability. 
 

 
. Figure 35(A) PBP-Ertapenem at around 15 ns, the ligand exhibits a significant fluctuation with 
variations ranging from 2 to 10 nm. The graph stabilizes around 30 ns and continues to do so until 50 
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ns. After 50 ns, there is a steady fluctuation, followed by a sudden rise at 65 ns and a peak at 9 nm from 
3 nm. Subsequently, it becomes stable 

 
 Figure 36(A) PBP-Aztreonam early phase (0–25 ns): The RMSD gradually increases from 0 to around 
0.5 nm, indicating that the ligand is slowly adjusting and stabilizing. Middle phase (25–50 ns): There’s 
a steady increase up to about 1 nm, which indicates further conformational adjustments. The system is 
likely transitioning towards a more stable state. Later phase (50–100 ns): The RMSD stabilizes around 
1–1.2 nm, with small fluctuations. This indicates that the system reaches a stable interaction around this 
point, with fewer drastic changes.  
 
Table 8 summary of Molecular dynamics results 

S. 
N
o. 

Complex 

RMSD 
protein 
Backbo
ne 
(nm) 

RMSD 
lig-fit on 
protein 
(nm) 

RMSF 
protei
n 
Backb
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(nm) 

Radiu
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(nm) 
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t 
Access
ible 
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(kJ/mol) 

LJ-SR: 
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(kJ/mol) 

1. 
PBP-
Aztreona
m 

0.0004
982-
0.6281
928 

0.00052
17-
1.01780
35 

0.0562
-
0.8636 

0.2127
22-
0.4716
42 

5.584-
7.307 

-
129.45±50
.380 

-
158.44±22
.734 

2. 
PBP-
Cefepime 

0.0005
055-
0.5574
835 

0.00050
74-
1.32339
93 

0.0608
-
0.5474 

0.1908
46-
0.5198
5 

6.402-
7.959 

-
65.821±21
.033 

-
89.594±15
.110 

3. 
PBP-
Cefixime 

0.0005
014-
0.5331
315 

0.00047
25-
1.07145
39 

0.0657
-0.603 

0.2127
61-
0.4858
99 

6.005-
7.497 

-
158.64±49
.665 

-
93.224±19
.476 

4. 
PBP-
Cefopera
zone 

0.0005
017-
0.6882
327 

0.00049
13-
0.85704
06 

0.0566
-
0.6958 

0.2213
22-
0.6532
51 

8.348-
9.715 

-
129.80±42
.591 

-
168.25±29
.892 

5. 
PBP-
Cefoteta
n 

0.0005
016-
0.5673
544 

0.00051
83-
0.67944
15 

0.057-
0.7112 

0.1873
59-
0.5831
05 

6.988-
8.27 

-
128.762±3
9.28 

-151.92 
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6. 
PBP-
Ceftazidi
me 

0.0005
005-
0.6244
912 

0.00049
27-
14.3374
453 

0.0673
-
0.6819 

0.2286
74-
0.5537
23 

6.707-
8.888 

-
84.9625±7
9.67 

-
77.161±49
.604 

7. 
PBP-
Doripene
m 

0.0004
979-
0.4264
781 

0.00049
7-
6.52001
67 

0.0464
-
0.4455 

0.1570
09-
0.5147
03 

5.521-
7.035 

-
143.49±10
9.52 

-45.853-
±22.141 

8. 
PBP-
Ertapene
m 

0.0005
064-
0.5426
579 

0.00048
99-
10.8662
863 

0.0566
-
0.7392 

0.1864
39-
0.5866
78 

5.988-
8.18 

-
23.9668±3
1.97 

-
56.2421±4
0.72 

9. 
PBP-
Imipene
m 

0.0005
009-
0.6420
096 

0.00045
86-
8.79490
76 

0.0541
-
0.6038 

0.1608
32-
0.4056
22 

4.467-
5.975 

-
148.44±11
9.21 

-
25.436±29
.832 

1
0. 

PBP-
Meropen
em 

0.0005
005-
0.6219
602 

0.00047
85-
8.33554
74 

0.0588
-
0.5387 

0.1631
02-
0.4572
62 

5.272-
6.867 

-
139.249±7
6.92 

-
34.8642±2
4.09 

         
MD simulation Properties of Penicillin binding Protein (PBP) with Antibiotics 
 
The following table 8. describes in detail the properties of penicillin binding protein (PBP) in complex 
with various antibiotics as determined by molecular dynamics (MD) simulation. Numerous properties 
of each complex provide information about its solvent exposure, compactness, flexibility, stability, fit, 
and interaction strength. 
Firstly, the RMSD Protein C-alpha (nm) values, which measure the average deviation of the protein's 
Backbone atoms from a reference structure over time, range from 0.0004982 to 0.6882327 nm. Lower 
RMSD values indicate greater structural stability, with PBP-Doripenem showing relatively low RMSD 
(0.0004979-0.4264781 nm), suggesting it is highly stable compared to other complexes[65]. 
The RMSD Lig-fit on Protein (nm) values, indicating how well the ligand fits within the protein binding 
site over time, vary significantly from 0.0004586 nm (PBP-Imipenem) to 14.3374453 nm (PBP-
Ceftazidime). Lower values signify a better and more stable fit, implying that PBP-Imipenem has a more 
stable fit, while PBP-Ceftazidime shows a less stable fit, the results perfectly matches with In vitro studies 
zoi of ceftazidime is nil[66].  
For RMSF Protein Backbone (nm), which measures the flexibility of the protein backbone, values range 
from 0.0464 to 1.0356 nm. Lower RMSF values denote less flexibility and greater stability[67]. PBP-
Doripenem exhibits the lowest fluctuation (0.0464-0.4455 nm), while PBP-Aztreonam shows the highest 
(0.0562-0.8636nm), indicating differences in the dynamic behavior of the protein when bound to 
different antibiotics. These high fluctuations of Aztreonam may be the reason behind unstable complex 
In vitro and therefore aztreonam zoi is nil[68] 
The Radius of Gyration (nm), reflecting the compactness of the protein structure[69], spans from 
0.157009 to 0.653251 nm. A lower radius indicates a more compact structure, with PBP-Doripenem 
having a more compact structure (0.157009-0.514703 nm). 
The Solvent Accessible Surface Area (nm²) measures the surface area of the protein accessible to the 
solvent, with values ranging from 4.467 to 9.715 nm². Lower values suggest less solvent exposure. PBP-
Imipenem has the least solvent exposure (4.467-5.975 nm²), while PBP-Cefoperazone has the most 
(8.348-9.715 nm²)[70]. 
The Coul-SR: Protein-LIG (kJ/mol) values, representing Coulomb short-range interactions between the 
protein and ligand[71], range from -23.9668 kJ/mol (PBP-Ertapenem) to -158.64 kJ/mol (PBP--
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Cefixime). More negative values indicate stronger attractive interactions, suggesting that PBP--Cefixime 
has strong electrostatic interactions with the protein. 
Lastly, the LJ-SR: Protein-LIG (kJ/mol) values, indicative of van der Waals forces, vary from -25.436 
kJ/mol (PBP-Imipenem) to -168.25 kJ/mol (PBP-Cefoperazone). More negative values suggest stronger 
interactions, with PBP-Cefoperazone showing significant van der Waals interactions[72]. 
 
5. CONCLUSIONS 
The goodness-of-fit model achieved through in Silico methods can be further refined to establish a more 
precise correlation with In vitro and in Silico conditions. There is a promising potential to replace 
traditional In vitro antimicrobial susceptibility tests with in Silico methodologies, especially in the context 
of future applications in artificial intelligence. This approach holds the potential to predict microbial 
resistance and elucidate the underlying reasons behind such resistance through mathematical and 
simulated models. 
It's important to acknowledge that In vitro conditions involve a multitude of intricate factors that are 
challenging to fully replicate in in Silico methodologies. However, by incorporating critical variables such 
as log P (partition coefficient), solubility, and enzymatic kinetics, we can significantly enhance the 
accuracy and applicability of in Silico methods. In our specific case, the results of site-specific drug docking 
have proven to be more satisfactory compared to blind docking. Site-specific drug docking yields superior 
values in terms of correlation, regression, and statistical significance, as detailed in. 
In the cases of Aztreonam and Ceftazidime, which exhibit resistance against gram-positive bacteria and 
have been extensively documented, several potential factors could be at play. Aztreonam and Ceftazidime 
in Silico results of molecular dynamics are matching with In vitro results more appropriately than docking 
results alone. Apart from RMSF value of aztreonam all parameters of MD simulation and docking results 
indicates aztreonam could be a positive candidate to be active in In vitro condition but it is not, 
Ceftazidime shows lowest RMSD value making it a highly unstable protein ligand complex, it is in 
conformity with antimicrobial susceptibility.  Further studies are needed to explore the possibilities. 
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