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Abstract: Today, it is a common practice to use datasets to make prediction inference in data-driven worlds. Deep 

learning experiments success depends on the existence and diversity of datasets that can deliver accurate results in 

different domain. Of these, the primary datasets (e.g., time series data) are often of spectacular efficiency. So, NP-hard 

problems in this setting makes it also very challenging, often resulting in non-convex solutions. To solve these problems, 

the critical step is to convert NP-hard problems to P problems in order to reach the best results. In this research author 

focus on datasets where it is hard to obtain an optimal solution, pointing out that finding a global minimum might 

be difficult in many situations. It also touches on the issue of how common are non-convexity problems in DC-set 

systems and lists some possible directions a follow-up research would take to improve them to be more friendly to convex 

optimization. The field can better advance deep learning applications by tackling these obstacles to make predictive 

analytics more accurate and efficient. This research main goal is to increase understanding of the difficulties associated 

with non-convex calculations in time series and real-time problem-solving scenarios. 
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INTRODUCTION 

In today's data-focused research, digging into datasets to find useful predictions is not just common but 

really important. How well deep learning experiments work depends a lot on the different and detailed 

datasets that are in use. These datasets are important because they strongly impact how accurate, 

dependable, and useful the results are in many different areas. Some datasets, like ones that track data over 

time or those considered primary sources, have their built-in patterns [1]. These patterns help to get really 

good and fitting results that make sense in different situations. NP hard problems are a complex problem 

in the world of data exploration. Exploring methods to transform NP-hard problems into more manageable 

P problems is key when addressing these formidable challenges. (Figure 1). Non-convex optimization is a 

fundamental aspect of deep learning methods, addressing intricate problems across diverse datasets [2]. 

Non-convex optimization uses functions that have multiple local minima, which makes the optimization 

process much more difficult than convex optimization, that employs an objective function featuring a 

single global minimum. Figure 2 displays a convex graph where it's easy to spot the global minimum point. 

Figure 3 illustrates multiple local minimum points. Figure 4 provides explanations for the terms associated 

with the points on the graph. In some scenarios, the learning task's natural objective is a non-convex 

function [3]. This often happens when training deep neural networks or working on tensor decomposition 

issues. Non-convex objectives and constraints are useful for accurately representing learning problems, but 

they're tough for algorithm designers. 

Figure 1. Relationship of NP hard and P problems. 
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Figure 2. Convex optimization curve. 

 

Figure 3. Non-convex optimization curve. 

 

Figure 4. minimum/maximum points. 

Unlike convex optimization, there isn't a ready-made toolkit for solving non-convex problems. Many of 

these issues are very difficult since they are known to be NP-hard. Also, some of these non-convex 

problems are not just hard to solve optimally, but also hard to solve approximately, which makes things 

even trickier. In the era of artificial intelligence, numerous real-world problems demonstrate non-convex 

characteristics owing to complex interactions and the nature of high-dimensional data [4]. The 

optimization of non-convex functions involves finding optimal solutions amidst multiple local optima, 

saddle points, and plateaus. The various datasets are available from the varieties of a field, and the nature 

of a real-time dataset provides non-convex optimization challenges. These issues come up in a number of 

domains, including reinforcement learning, computer vision, and natural language processing [1]. For 

example, maximizing the loss function a non-convex function is necessary while training deep neural 

networks for the computer vision application. The convergence and generalization of the model are 

affected when there are many minimum variables present. An additional example is: Because of the 

enormous dimensionality of the language, non-convexity is a difficult challenge in natural language 

processing. The problem is to find datasets that produce non-convex results and require additional 

techniques for optimization. This paper highlights the presence of non-convexity in three datasets and 

offers researchers insight into developing optimization methods. 
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A. Literature survey 

Identifying intrusions within a social media network, which is a novel approach presented in [8]. The soft 

computing method combines fuzzy clustering, “Particle Swarm Optimization” (PSO), and “Multi-Layer 

Perceptron” (MLP) neural networks to solve non-convex optimization problems. This application is proven 

only in the financial sector. To address the economic dispatch problem in power systems, the Water Cycle 

Optimization (WCO) algorithm is designed [9]. WCO combines global and local search characteristics, 

which are inspired by the water cycle. WCO produced a precise solution for the non-convex economic 

dispatch issue and contrasted it with other optimization techniques already in use. This paper enhanced 

and proved the PSO algorithm to address non-convex challenges more effectively. 

The review explains distributed learning within non-convex optimization problems [10]. This paper 

explored stochastic gradient descent (SGD), coordinate descent, and proximal algorithms involving batch 

as well as streaming data. The work is limited to proving communication efficiency, fault tolerance, and 

privacy protection within distributed learning. But they identified unresolved problems and potential 

research directions for the future. The non-convex optimization methods are applied to signal processing 

and machine learning applications. These developments in the new sectors are explored in the paper [11]. 

The optimized techniques used in these sectors are gradient descent, alternating direction methods of 

multipliers, and proximal gradient methods. Furthermore, this study describes the difficulties in finding 

global minima using non-convex optimization. 

To address the non-convex optimization problems within machine learning, a novel approach utilizing 

second-order optimization is introduced [12]. The author used the analysis of matrix factorizing and deep 

learning to demonstrate the effectiveness of second-order optimization over first-order optimization. This 

study says that second-order optimization techniques accurately solve the non-convex problems with highly 

complex and nonlinear objective functions. To determine the subsequent optimal solution in multi- 

objective optimization challenges, a ray tracing method is developed [13]. This method generates a set of 

random solutions, followed by the arrangement of random numbers. Subsequently, a ray extends from the 

present solution toward the non-dominated solutions, selecting the next optimal solution based on the 

intersection point of the ray with the Pareto front. The method's performance is assessed across various 

benchmark problems, revealing its superiority over existing techniques concerning solution convergence 

and diversity. The authors propose that it could be used to solve a variety of multi-objective optimization 

issues. 

The study outlined in reference [14] proposes a two-step approach designed to solve minimal cost flow 

problems that are nonlinear and non-convex. This technique blends a local search strategy with a genetic 

algorithm. The genetic algorithm first generates an initial population, which is then refined using a local 

search algorithm that is based on quasi-Newton. The algorithm's performance is assessed on benchmark 

tasks and contrasted with a number of cutting-edge techniques. The results show that this suggested 

technique outperforms other methods in terms of both computing efficiency and solution quality. As a 

result, the authors propose this approach as a viable remedy for comparable nonlinear non-convex 

optimization issues. 

To tackle the non-convex optimization challenge, PSO is proposed and addresses the complexities of 

optimizing wellbore trajectories [15]. This paper discussed the PSO algorithm and its diverse adaptations, 

including hybrid PSO methodologies. This article served as evidence for researchers and industry 

professionals to use PSO for solving non-convex optimization problems in petroleum engineering. The 

non-optimization problem is also present in the field of cyber. A novel method was created to identify 

irregularities in "Cyber Physical Production systems" (CPPS) by capturing the geometric structure and the 

data using a non-convex hull. The high-dimensional data used in this approach produced a result that 

was not optimal [16]. 

The gradient-based method involves projecting the gradient onto the feasible set, which leads to the non- 

smoothness and non-differentiability of the objective function [17]. The focus lies on non-convex 

optimization problems in control systems. Conditions for the differentiability of the projected trajectory 

are provided, demonstrating the method's robust convergence to a stationary point under certain 

assumptions, elucidated through numerical examples. 
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Another paper, [18], presents a new method for addressing sparse multiple instance learning (MIL) 

problems using a non-convex penalty function. They use the ADMM algorithm to minimize this non- 

convex penalty function, and empirically show its advantages for sparse MIL through experiments with 

various benchmark datasets, which are, in terms of classification accuracy and computational complexity, 

more efficient than existing techniques. 

The work in [19] presents an online method specifically designed for powered descent guidance with non- 

convex problems. Introduced as a way to steer spacecrafts towards safe landing locations under 

computational and sensor resources constraints, they presented a modified branch-and-bound algorithm 

in the paper. Numerical example results show that the proposed algorithm can accurately and efficiently 

guarantee that spacecrafts can arrive in safe landing sites. 

Paper [20] introduces a deterministic algorithmic structure for solving the non-convex phase retrieval 

problem. Correct Uniqueness of the solutions give rise to a sequence of non-convex optimization 

problems with convex constraints is demonstrated by the authors. This leads to almost sure exact recovery 

of the signal in a number of measurements that is sub-linear in the column-dimension of a certain matrix 

of the signal model, and with the number of measurements much smaller than existing approaches. The 

claims are verified by way of numerical simulations. 

The authors in [21] introduce a new approach for salient region detection/segmentation based on non- 

convex non-local reactive flows. Presenting a detailed description of the methodology, including 

mathematical formulation and implementation, the studied shows that the proposed approach has a good 

accuracy with fast computation speed compared to existing methods. Using several well-illustrated case 

studies, it provides a good demonstration that the new methodology works well for saliency detection and 

segmentation, and discusses the limitations and difficulties of the existing methods. 

B. Data for analysis 

• Dataset 1 [24]: The database of the "Modified National Institute of Standards and Technology" 

(MNIST). Every 28x28 pixel picture contains a caption and a handwritten number between 0 and 9. As 

an influential and widely-used benchmark, MNIST plays an important role for researchers in designing 

and comparing models operating on digit/pattern recognition and handwriting analysis purposes. 

• Dataset 2 [25]: The 6,000 images included in the CIFAR-10 dataset are split into 10,000 images for 

testing and 50,000 images for training. This dataset is widely used in academic studies to investigate 

methods like CNNs and data augmentation, which propel improvements in performance of models and 

recognition of images. 

• Dataset 3 [26]: M4 forecasting Dataset is a comprehensive collection of 100,000-time series data points 

from various domains like demographic, finance, and industry, each varying in length and frequency 

(yearly, quarterly, monthly, weekly, daily, hourly), created for the M4 Competition organized by the 

Makridakis Open Forecasting Center to advance time series forecasting. 

 

METHOD 

Figure 5 illustrates the utilization of various datasets that were modelled to assess the attainment of local 

minimum results. The following optimizers are considered. 

• “Adaptive Moment Estimation” (ADAM) 

• SGD 

• “Root Mean Square Propagation” (RMSPROP) 

All the above-mentioned optimizers are tested under the following learning rate, 

• 0.001 

• 0.01 

• 0.1 
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Figure 5. Block diagram for Analysis. 

 

Algorithm 1: Visualizing Loss Landscape with CNN 

1. Load the MNIST dataset and normalize pixel values. 

2. Define a CNN model architecture. 

3. Train the CNN model multiple times, collecting loss values. 

4. Plot loss curves for each training run. 

5. Apply PCA to reduce loss values to 2 dimensions. 

6. Visualize the 2D PCA projection of the loss landscape. 
 

Algorithm 1, based upon the CNN idea, is used with two datasets: CIFAR-10 and MNIST. The M4 

forecasting dataset, a time series dataset, is used with deep learning, as shown in Algorithm 2. To visualize 

local minima, the graph is reduced from high dimensions to low dimensions using Algorithm 3. 
 

Algorithm 2: Visualizing Loss Landscape with CNN 
 

1. Incorporate in data processing, model-building, and visualization libraries.. 

2. Load dataset (e.g., M4 time series subset). 

3. Normalize data using MinMaxScaler. 

4. Create sequences from time series for LSTM input. 

5. Split the dataset into train and test sets. 

6. Reshape data to fit the LSTM model input. 

7. Define an LSTM model with dynamic optimizer and learning rate parameters. 

8. Train the model multiple times with different optimizers (Adam, SGD, RMSProp) and learning 

rates. 

9. Store loss values after each training run. 

10. Apply PCA to reduce the loss data to 2 dimensions. 

11. Visualize PCA results for each optimizer and learning rate using scatter plots. 

 

Algorithm 3: Principal Component Analysis (PCA) 

Input: Dataset X 

Output: Reduced dimensionality representation of X 

1. To normalize X, divide by the standard deviation after eliminating the mean. 

2. Determine the standardized X covariance matrix. 

3. Apply an Eigen disintegration to the matrix of covariance. 

4. The top k eigenvectors that match the largest eigenvalues should be selected. 
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5. Convert the standardized dataset to the fresh subspace that the chosen eigenvectors have 

generated. 

6. Output reduced dimensionality representation of the dataset. 
 

 

RESULT AND DISCUSSION 

The outcomes are organized into three sections based on the dataset used. These findings demonstrate 

the presence of non-convex outcomes by revealing multiple local minima on the use of various optimizers 

and learning rates. 

A. Result on the MNIST dataset. 

When we apply a CNN model to find the correct handwriting text from the available image set, we end 

up with multiple local minima. ADAM, SGD, and RMSProp consisted the three optimizers used to 

analyze the MNIST dataset. They were each examined with three distinct learning rates: 0.001, 0.01, and 

0.1. To visualize the behaviour of the optimizers and the loss landscapes, PCA was applied. The PCA 

reduces the dimensionality of the loss values into two components. This technique helped identify local 

minima across different configurations. Across the nine 2D PCA projections, multiple local minima were 

observed for each optimizer at different learning rates, indicating that the optimization process does not 

converge smoothly to a single minimum. Instead, the landscape is characterized by a non-convex nature, 

where the model's loss fluctuates through various minima before potentially settling into a region of lower 

loss. 

• ADAM (Figure 6 to Figure 8): At lower learning rates (0.001), the model shows more concentrated and 

stable local minima, suggesting efficient convergence. As the learning rate increases to 0.01 and 0.1, the 

dispersion of local minima increases, indicating more exploration of the loss landscape and greater 

difficulty in finding stable solutions. 

• SGD (Figure 9 to Figure 11): Across all learning rates, SGD exhibits a more scattered pattern of local 

minima. At the highest learning rate (0.1), the optimizer shows significant fluctuations, suggesting 

instability and an inability to settle into deeper minima consistently. 

• RMSProp (Figure 12 to Figure 14): Similar to ADAM, RMSProp demonstrates stable local minima at 

lower learning rates, with a more moderate dispersion as the learning rate increases. This indicates that 

RMSProp is also effective in navigating the loss landscape, though not as aggressive in exploring the 

surface as SGD at higher learning rates. 

 

Figure 6. ADAM with 0.01 learning rate on the MNIST dataset. 

 

Figure 7. ADAM with 0.001 learning rate on the MNIST dataset. 
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Figure 8. ADAM with 0.1 learning rate on the MNIST dataset. 

 

Figure 9. SGD with 0.01 learning rate on the MNIST dataset. 
 

Figure 10. SGD with 0.001 learning rate on the MNIST dataset. 

 
Figure 11. SGD with 0.1 learning rate on the MNIST dataset. 
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Figure 12. RMSProp with 0.01 learning rate on the MNIST dataset. 

 
Figure 13. RMSProp with 0.001 learning rate on the MNIST dataset. 

 

Figure 14. RMSProp with 0.1 learning rate on the MNIST dataset. 

B. Result on CIFAR-10 

The CIFAR-10 dataset was evaluated using three optimizers: ADAM, SGD, and RMSProp, each tested 

with three learning rates: 0.001, 0.01, and 0.1. To gain insight into the behaviour of the optimizers and 

the underlying loss surfaces, PCA was employed to project the high-dimensional loss values into two 

principal components. In the resulting nine 2D PCA projections, multiple local minima were observed 

across different optimizers and learning rates. This indicates that the optimization process does not follow 

a smooth path to a single global minimum but instead navigates through a non-convex surface 

characterized by numerous local minima. The presence of these multiple minima demonstrates the 

complexity of optimizing deep learning models on the CIFAR-10 dataset. 

• ADAM (Figure 15 to Figure 17): At the lowest learning rate (0.001), the optimizer displays concentrated 

and well-formed local minima, suggesting efficient convergence with minimal fluctuations. However, as 

the learning rate increases to 0.01 and 0.1, the optimizer's trajectory becomes more dispersed, with wider 

fluctuations and more scattered local minima, indicating a greater exploration of the loss surface and 

challenges in consistently finding stable minima at higher learning rates. 
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• SGD (Figure 18 to Figure 20): Across all learning rates, SGD shows a more varied and scattered 

distribution of local minima, particularly at the highest learning rate (0.1). This indicates that SGD can 

become unstable with high learning rates as evidenced by high fluctuations and getting stuck at non-deep 

minima. For low learning rates, the SGD has gradual behavior, although, still has much fluctuation in 

local minima, due to its challenging to navigate the non-convex space model of CIFAR-10. 

• RMSProp (Figure 21 to Figure 23): Similar to ADAM, RMSProp demonstrates more concentrated and 

stable local minima at lower learning rates (0.001), but its behavior becomes more dispersed at higher 

learning rates. However, compared to SGD, RMSProp maintains a better balance between exploration 

and stability, with less erratic behavior, especially at intermediate learning rates (0.01). This indicates that 

RMSProp is able to handle the non-convexity of the CIFAR-10 loss surface without an overly high level 

of instability. 

 

Figure 15. ADAM with 0.01 learning rate on the CIFAR-10 dataset. 

Figure 16. ADAM with 0.001 learning rate on the CIFAR-10 dataset. 

 
Figure 17. ADAM with 0.1 learning rate on the CIFAR-10 dataset. 

 
Figure 18. SGD with 0.01 learning rate on the CIFAR-10 dataset. 
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Figure 19. SGD with 0.001 learning rate on the CIFAR-10 dataset. 

 

Figure 20. SGD with 0.1 learning rate on the CIFAR-10 dataset. 

 

Figure 21. RMSProp with 0.01 learning rate on the CIFAR-10 dataset. 
 

Figure 22. RMSProp with 0.001 learning rate on the CIFAR-10 dataset. 
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Figure 23. RMSProp with 0.1 learning rate on the CIFAR-10 dataset. 

C. Result on M4 forecasting. 

Three optimizers ADAM, SGD, and RMSProp were used to calculate the M4 statistics dataset having 

learning rates of 0.001, 0.01, and 0.1. To gain an insight into the optimization dynamics and the 

landscape of the loss, PCA was used to map the high-dimensional loss value to 2 principle components. 

This approach enabled a clearer view of the local minima that emerged during the optimization process 

for each configuration. Across the nine 2D PCA projections, multiple local minima were identified for 

all three optimizers at the different learning rates. In the M4 forecasting problem, the optimization process 

traverses a landscape with several local minima rather than convergently to a global minimum, confirming 

the non-convex character of the loss surface. 

• ADAM (Figures 24 to 26): At the smallest learning rate (0.001), ADAM shows tightly clustered local 

minima, indicating efficient convergence with limited variation. However, as the learning rate increases 

to 0.01 and 0.1, the optimizer explores a wider area, with more scattered local minima and greater 

fluctuations. This suggests that higher learning rates lead ADAM to explore the loss surface more 

extensively, but may also increase instability in finding stable solutions. 

• SGD (Figures 27 to 29): At all learning rates, SGD displays a more dispersed and unstable pattern of 

local minima. Particularly at the highest learning rate (0.1), the optimizer exhibits significant fluctuations, 

making it difficult to settle into deeper minima consistently. Even at lower learning rates, SGD's behavior 

remains less stable compared to ADAM and RMSProp, indicating the challenges it faces in navigating the 

complex loss landscape of the M4 forecasting dataset. 

• RMSProp (Figures 30 to 32): At a low learning rate (0.001), RMSProp shows stable and concentrated 

local minima, similar to ADAM. As the learning rate increases, the optimizer exhibits moderate 

dispersion, though it still maintains better stability than SGD. At higher learning rates, RMSProp explores 

a wider area of the loss surface, but remains more consistent than SGD, striking a balance between 

exploration and convergence. 

 

Figure 24. ADAM with 0.01 learning rate on the M4 Forecasting dataset. 
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Figure 25. ADAM with 0.001 learning rate on the M4 Forecasting dataset. 

 
Figure 26. ADAM with 0.1 learning rate on the M4 Forecasting dataset. 

 

Figure 27. SGD with 0.01 learning rate on the M4 Forecasting dataset. 

 
Figure 28. SGD with 0.001 learning rate on the M4 Forecasting dataset. 

 
Figure 29. SGD with 0.1 learning rate on the M4 Forecasting dataset. 
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Figure 30. RMSProp with 0.01 learning rate on the M4 Forecasting dataset. 
 

Figure 31. RMSProp with 0.001 learning rate on the M4 Forecasting dataset. 
 

Figure 32. RMSProp with 0.1 learning rate on the M4 Forecasting dataset. 

 

CONCLUSION 

Real-time data sets are integral to numerous applications, offering valuable insights and solutions to 

complex problems. However, they often pose non-convex optimization challenges, characterized by the 

presence of multiple local minima, necessitating the selection of a global minimum for optimal results. 

This paper undertakes the task of substantiating the existence of non-convex solution spaces within real- 

time datasets. To achieve this, a diverse range of datasets from deep learning domains is examined, 

collectively illustrating the pervasive nature of non-convexity across various data types and learning 

scenarios. Exploring these non-convex METPS presents a significant challenge, especially considering the 

limitations of classic optimization methods. Even with the best optimizers such as ADAM, SGD and 

RMSProp, it is difficult to reach micro-optimal solutions, which shows that traditional techniques struggle 

to deal with dataset optimizations that are performed simultaneously by end users. Therefore, specialized 

optimization techniques designed to deal with non-convex scenes become necessary to achieve an efficient 

optimization for real-time data sets. In the end, we want to minimize the loss function and find the global 

minimum. The optimization process of any method attempts to find its optimal solution to solve the 

problem, it depends on the dataset and the hyper-parameters of the optimal optimization method. 
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