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Abstract 
The increasing demand for sustainable fuels has prompted the exploration of biodiesel as a viable alternative to 
conventional diesel. Karanja biodiesel, derived from non-edible oil sources, offers promising properties. However, its 
impact on engine performance necessitates advanced modeling for prediction and optimization. This study investigates 
the use of Artificial Neural Networks (ANN), Response Surface Methodology (RSM), and Machine Learning Random 
Forest (RF) techniques to model and optimize engine performance parameters using Karanja biodiesel blends. 
Experimental data were collected from a single-cylinder diesel engine by varying inputs—Speed, Load, Fuel Blend (%), 
and Compression Ratio. Key performance outputs included Indicated Power (IP), Brake Power (BP), IMEP, Brake 
Thermal Efficiency (BThEff), Specific Fuel Consumption (SFC), Torque, and Mechanical Efficiency. The ANN 
model (4–10–7 architecture) trained using MATLAB 2014a achieved high prediction accuracy (R²: 0.994 for 
BThEff, 0.998 for Torque). Optimization using fmincon yielded maximum BThEff of 33.37% at Speed 1454.84 
rpm, Load 12.19 kg, Fuel 23.56%, and CR 16.65.RSM analysis using Minitab showed excellent fit (R² = 1.000 
for BP, 0.995 for BThEff), and identified optimal parameters through the desirability function. RF performed 
competitively, with the highest R² of 1.000 for Torque but showed high MAPE for SFC (78.12%). Comparative 
analysis revealed that RSM had the lowest average MAPE across most outputs. This study demonstrates that ANN 
and RSM are effective tools for biodiesel engine modeling and optimization, reducing experimental workload and 
supporting efficient biodiesel utilization. 
Keywords: Karanja biodiesel, Engine optimization, ANN, RSM, Random Forest 
 
Nomenclature 

Symbol/Abbreviation Description Unit 

IP Indicated Power kW 
BP Brake Power kW 
IMEP Indicated Mean Effective Pressure bar 
BThEff Brake Thermal Efficiency % 
SFC Specific Fuel Consumption kg/kWh 
CR Compression Ratio — 
ANN Artificial Neural Network — 
RSM Response Surface Methodology — 
RF Random Forest — 
MSE Mean Squared Error — 
RMSE Root Mean Squared Error — 
MAE Mean Absolute Error — 
R² Coefficient of Determination — 
MAPE Mean Absolute Percentage Error % 

 
INTRODUCTION 
Recent years have seen a significant increase in interest in engine parameter optimization utilizing Karanja 
biodiesel blends because of the potential to improve engine performance while lowering hazardous 
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emissions. Karanja oil, a non-edible and sustainable feedstock, offers high biodiesel yield when subjected 
to optimized transesterification processes. Researchers have employed advanced techniques such as ANN, 
RSM, and machine learning algorithms to identify optimal biodiesel blend ratios and engine operating 
conditions has been widely used to optimize the biodiesel production process. Important process variables 
like catalyst concentration, reaction time, and methanol-to-oil molar ratio have been tuned to produce up 
to 94.37% biodiesel using Karanja oil[1]. These findings highlight RSM’s effectiveness in maximizing 
production efficiency. Additionally, Kumar et al. demonstrated that the use of microwave-assisted 
transesterification, coupled with RSM, achieved biodiesel yields of 87.34% [2]. In engine performance 
studies, ANN has been extensively used to predict output parameters such as BP and BSFC based on 
varying blend ratios and engine speeds. Karabacak et al. reported high predictive accuracy, with R² values 
ranging from 0.924 to 0.99 [3]. Similarly, RSM has been applied to optimize engine parameters like 
injection pressure and timing for enhanced performance and reduced emissions using Karanja biodiesel 
blends [4]. ANN models' capacity to understand and generalize intricate, nonlinear relationships gives 
them a number of benefits. Research has indicated that when modeling biodiesel-fueled engines, artificial 
neural networks (ANN) achieve low mean absolute errors and good prediction accuracy[5][6] . However, 
they may require large datasets and high computational resources during training, posing limitations in 
data-constrained environments[7]. Conversely, RSM allows for the real-time optimization of multiple 
parameters and offers a clear understanding of interactions between factors. It is particularly effective for 
systematic experimentation and modeling of combustion processes, though it may be less capable than 
ANN in capturing complex nonlinearities[3],[8],[6].The comparative effectiveness of ANN and RSM has 
led to hybrid approaches that combine both techniques to improve optimization results. Studies have 
shown that ANN-RSM hybrids yield lower mean relative errors and better alignment with experimental 
data than either method alone [3], [9]. Additionally, recent advancements have incorporated more 
sophisticated machine learning methods such as Bayesian Neural Networks (BNN), Support Vector 
Machines (SVM), Random Forest, and XGBoost. These methods offer enhanced predictive accuracy and 
are capable of managing large, complex datasets. Dharmalingam et al. found that hybrid ANN-BNN 
approaches further reduced prediction errors and increased correlation with experimental outputs 
[9].Machine learning techniques have also demonstrated superior performance in predicting emissions 
and engine performance. Do et al. and Şahi̇n reported that models based on SVM and XGBoost achieved 
R² values above 0.95 in predicting NOx and CO₂ emissions [7], [5]. These findings affirm the adaptability 
and precision of machine learning algorithms in engine optimization studies. Sanjeevannavar et al. 
identified that input variables such as blend ratio and load significantly influence engine outputs, 
enabling the determination of optimal biodiesel-diesel blends, such as a 13% biodiesel ratio [10]. RSM 
has also been extensively applied to optimize engine performance and emissions. Tadkal and Math used 
RSM to identify B20 (20% Karanja biodiesel) as the most effective blend for achieving high brake thermal 
efficiency (BThEff) and low emissions. They also found that a compression ratio of 16:1 and a moderate 
load of 8 kg offered optimal performance. RSM enabled the minimization of CO, HC, and NOx 
emissions by optimizing interactions between load, blend ratio, and compression ratio, establishing its 
value as a robust optimization tool[11]. It is commonly known that ANNs are effective at optimizing 
engines. Patnaik et al. and Kolhe et al. obtained strong values for R2 (0.95 to 0.99) for performances and 
emission parameter prediction. [12], [13]. Maheshwari et al. demonstrated that ANN could effectively 
model trade-offs between NOx and smoke emissions, a task difficult to achieve using conventional models 
[14]. The ANN model's performance was further supported by high regression coefficients (R²) ranging 
from 0.924 to 0.99. These coefficients reflect the model's strong correlation with the experimental data, 
reinforcing the reliability of the ANN predictions in estimating engine parameters based on fuel mixture 
ratios and engine speeds[15].In engineering, machine learning has emerged as a potent instrument, 
primarily for improving the efficiency and emissions of engines powered by internal combustion (IC) that 
run on blended biodiesel. Researchers can analyse vast volumes of operational info to find trends and 
improve engine parameters for increased efficiency and less environmental impact by utilizing data-driven 
methodologies and progressive algorithms[16]. The study predicts tailpipe emissions from a biodiesel 
engine using artificial neural network (ANN) models optimized with metaheuristic algorithms. Under 
certain conditions, it shows a significant decrease in CO, HC, and smoke opacity emissions while noting 
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an increase in NOx emissions[17]. The study achieved great accuracy in modelling engine behaviour and 
emissions reduction by using Bayesian neural network models and response surface modeling to forecast 
and optimise the performance as well as emissions parameters of a biodiesel-fueled CRDI-assisted diesel 
engine[18]. The authors urge more research into these technologies to improve biodiesel's sustainability 
and efficiency as a renewable energy source[19]. The study highlights how crucial it is to optimize the 
operating parameters of dual fuel engines in order to lessen environmental harm. The study intends to 
improve engine performance while reducing emissions by utilizing machine learning approaches for 
prediction and Lagrangian optimization[20]. By integrating machine learning techniques, engine 
performance can be monitored and adjusted in real-time, giving more accurate control over combustion 
conditions, air-fuel ratios, and fuel injection timing[21]. Using a Super Learner surrogate model, this 
research proposes a Machine Learning–Genetic Algorithm (ML-GA) framework for effective IC engine 
performance improvement. It places a strong emphasis on active learning and automated hyperparameter 
tuning to improve forecast accuracy and lower design costs[22]. The paper employs the central composite 
design technique of response surface methodology (RSM) for designing experiments aimed at optimizing 
engine performance parameters. This approach is significant in identifying the best injection parameters 
for the biofuel blend[23]. The study provides a comparative analysis of three different optimization and 
modeling techniques: Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial Neural Network 
(ANN), and Response Surface Methodology (RSM). This comparison helps in understanding the 
strengths and weaknesses of each technique in predicting biodiesel yield[24]. ML models, such as XG 
Boost and Gradient Boosting Regressor, have demonstrated high accuracy in predicting engine 
performance and emissions, achieving R² values close to 1.0[25]. These models can analyze complex 
datasets from various operating conditions, revealing intricate patterns that traditional methods may 
overlook[26]. Utilizing ML reduces the need for extensive physical testing, which can be time-consuming 
and costly. For instance, ML can predict outcomes based on fewer experimental trials, significantly cutting 
down on resource expenditure[27]. This capability aligns with the growing demand for sustainable fuel 
alternatives, as ML can help identify the most effective biodiesel blends for reducing environmental 
impact.The ability to simulate various scenarios allows for rapid iteration and optimization of engine 
parameters without the need for repeated physical tests[28]. Combining multiple modeling techniques 
and data sources can enhance robustness and accuracy in predictions, particularly in fields like 
groundwater management[29].This study presents a unique comparative analysis of three predictive 
modeling techniques—Artificial Neural Network (ANN), Response Surface Methodology (RSM), and 
Random Forest (RF)—for optimizing engine performance parameters using Karanja biodiesel blends. 
Unlike previous studies that focus on a single model or fuel type, this work integrates experimental data 
with advanced computational methods across three platforms (MATLAB, Minitab, and Google Colab). 
The incorporation of statistical (RSM), machine learning (RF), and neural network (ANN) techniques on 
a uniform dataset enables a robust evaluation of predictive accuracy and optimization capabilities. This 
multi-model framework offers new insights into biodiesel utilization and engine performance 
enhancement. 
1. Experimental Setup and Data Collection 
This study was conducted using a physical test bench to investigate the performance of a diesel engine 
fueled with Karanja biodiesel blends under controlled operating conditions. 
2.1 Experimental Setup 
A single-cylinder, four-stroke, direct injection (DI) diesel engine was employed for testing. The engine 
operated at a varying speed, with different compression ratio, bore diameter of 85.5 mm, stroke length of 
110 mm, displacement volume of 0.257 L, and a rated power output of 3.5 kW. Engine loading was 
applied using an eddy current dynamometer, enabling smooth load variation throughout the 
experiments. The engine was interfaced with a data acquisition system through Engine Soft-LV software, 
commonly used in academic research to monitor combustion and performance parameters. In-cylinder 
pressure was measured using a Kistler pressure transducer coupled with a crank angle encoder. Exhaust 
gas and coolant temperatures were recorded using K-type thermocouples. Fuel consumption was 
measured using the burette method, with an optional gravimetric fuel flow meter provided by Apex 
Innovations Pvt. Ltd. Air intake was monitored using a calibrated orifice plate and a U-tube manometer. 
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All critical parameters—such as brake power, brake thermal efficiency (BThEff), brake specific fuel 
consumption (SFC), torque, and mechanical efficiency—were recorded in real time. These data served as 
the basis for subsequent modeling and optimization using ANN, RSM, and machine learning techniques. 
Table 1 represents the engine specifications and Table 2, displays the properties of biodiesel with diesel. 
Table 1: Engine Specifications 

S. No. Item Value 
1 Rated Power 3.5 kW 
2 Type Four-stroke, DI engine  
3 Injection timing  23.5° b TDC 
5 Bore × stroke 87.5 × 110, mm × mm 
6 Connecting rod length 234, mm 
7 Method of cooling  Water-cooled 
8 Compression Ratio 18 
9 Dynamometer  Eddy current  

Table 2: List of the physico-chemical characteristics of various biodiesel[30] 
   

Properties  Unit 
Karanja 
biodiesel 

Neem 
biodiesel 

Diesel 
fuel 

Density @15oC gm/cc 0.884 0.8770 0.85 
Viscosity @40oC Cm2/s 4.50 6.30 2.60 
Flashpoint 0C 97 160 70 
Cloud point 0C -7 15 -16 
Pour point 0C -6 10 -20 
 Calorific value MJ/kg 39.10 31.412 42.50 
Cetane number  42.90 47.20 46 

  
2.2 Procedure of the experiment 
The experimental procedure was designed to evaluate the performance of a single-cylinder diesel engine 
using various blends of Karanja biodiesel and conventional diesel. Initially, the engine was operated on 
pure diesel for 45 minutes at a constant speed to allow thermal stabilization and to establish baseline 
performance and emission characteristics. Following stabilization, performance data were recorded across 
a full range of engine loads. A data acquisition system, integrated with sensors at key points on the engine, 
was used to collect real-time measurements. The data were logged using Engine Soft-LV software, which 
allowed continuous monitoring and storage of parameters such as brake power, fuel consumption, 
exhaust temperature, and thermal efficiency. After completing the diesel tests, the procedure was repeated 
for different Karanja biodiesel blends, including B10, B20, and B30, where 10%, 20%, and 30% of diesel 
fuel was replaced with Karanja biodiesel by volume. Each blend was tested under identical conditions to 
ensure fair comparison. For every blend, the engine was run under varying load conditions, and the same 
measurement protocol was followed. The collected data were later analyzed to study the influence of 
Karanja biodiesel on engine performance and to support the development of predictive models. 
2.3 Uncertainty analysis 
All experimental measurements are subject to a degree of uncertainty due to limitations in 
instrumentation and environmental conditions. In this study, uncertainties associated with the data 
acquisition system and various engine-mounted sensors were carefully considered to ensure the reliability 
of the recorded results. The accuracy limits of the instruments used—such as the pressure transducer, 
thermocouples, fuel flow meter, and dynamometer—were taken into account. A detailed list of the 
measurement uncertainties for each sensor is presented in Table 3. These values were used to compute 
the overall uncertainty in the derived performance parameters. The root-sum-square (RSS) method, also 
known as the square root method, was employed to estimate the combined uncertainty of independently 
measured variables. This approach provides a conservative estimate of the maximum expected error in 
the experimental outcomes. Equations (3.1) and (3.2) were used to calculate the overall uncertainty for 
parameters such as brake power, brake thermal efficiency, and specific fuel consumption, following 
established engineering practices and literature standards [31][32][33].This analysis ensures that the 
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results reported in this study are supported by quantified confidence levels, thereby enhancing the 
credibility of the modeling and optimization conclusions. 
 
Table 3: Uncertainties of the setup 

S.No. Apparatus Uncertainty (%) 
1 Load sensor (LS) ±0.2 
2 Speed sensor (SS) ±1.0 
3 Fuel sensor (FS) ±0.5 
4 Pressure sensor (PS) ±0.5 
5 Temperature sensor (TS) ±0.2 
6 Crank angle encoder (CAE) ±0.2 

 
2 2 2 2 2((0.2) (0.5) (1) (0.5) (0.2) )U LS FS SS PS TSw = + + + +                                                                (3.1)        

The total percentage of overall uncertainty = ±1.27%, which is acceptable. 
2 2 2((0.2) (0.5) (0.2) )U LS FS TSw = + +                                                                                          (3.2) 

The percentage of uncertainty for IP, BThEff, and BSEC = ±0.57%, 
 
METHODOLOGY 
3.1 Data Preprocessing 
The experimental dataset consisted of four input parameters (engine speed, load, fuel blend ratio, and 
compression ratio) and seven output variables (IP, BP, IMEP, BThEff, SFC, torque, and mechanical 
efficiency). All variables were normalized using min–max scaling to a [0–1] range to improve model 
convergence. A 70:30 train–test split was applied uniformly. ANN modeling was performed in MATLAB 
2014a using mapminmax, RSM was executed in Minitab 2021, and the Random Forest model was 
developed in Google Colab using Python's scikit-learn. This preprocessing ensured consistent input data 
across all modeling approaches for fair comparison.3.2 Artificial Neural Network (ANN) 
3.2 Artificial Neural Network (ANN) 
 The artificial neural network (ANN) model developed for this study was based on a feedforward 
architecture comprising four input neurons corresponding to Speed, Load, Fuel Blend, and Compression 
Ratio. A single hidden layer with 10 neurons and seven output neurons—representing the predicted 
parameters (IP, BP, IMEP, BThEff, SFC, Torque, and Mechanical Efficiency)—was employed. The 
network was trained using the Levenberg–Marquardt (trainlm) algorithm, with mean squared error (MSE) 
as the performance criterion. The training goal was set to an MSE of 1e-5, with a maximum of 1000 
epochs allowed. During training, convergence was observed rapidly, reaching an MSE of 0.151 within 16 
iterations. Figure 1 illustrates the regression plots for training, validation, testing, and overall datasets. 
The correlation coefficients (R-values) were consistently high: 0.99966 (training), 0.99961 (validation), 
0.99907 (testing), and 0.99957 (overall), indicating excellent agreement between predicted and actual 
values. The proximity of all fitted lines to the ideal Y = T reference line confirms the model's robustness 
and generalization capability. Table 4 presents the statistical evaluation of the ANN model across all 
output parameters. The model achieved R² values above 0.97 for every parameter, demonstrating strong 
predictive accuracy. The lowest mean absolute error (MAE) of 0.022 was recorded for SFC, while the 
highest R² value of 0.998 was achieved for Torque. These findings validate the ANN model as an effective 
and reliable tool for modeling engine performance using Karanja biodiesel blends under various 
operational conditions. 
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Figure 1: Validation (performance curve, regression plots) 
Table 4. Performance Metrics of the ANN Model 

     

  

R² (Coefficient 
of 
Determination) 

MAE (Mean 
Absolute Error) 

MSE (Mean 
Squared Error) 

RMSE (Root Mean 
Squared Error) 

IP (kW) 0.973 0.078 0.025 0.159 
BP (kW) 0.995 0.026 0.008 0.092 
IMEP (bar) 0.976 0.153 0.040 0.199 
BThEff (%) 0.994 1.099 0.555 0.745 
SFC (kg/kWh) 0.972 0.022 0.074 0.272 
Torque (Nm) 0.998 0.381 0.149 0.386 

Mech Eff. (%) 0.997 0.077 1.660 1.288 
 
3.2.1 ANN-Based Optimization Using fmincon 
To maximize brake thermal efficiency (BThEff), the trained ANN model was integrated with MATLAB’s 
fmincon optimization function. The contribution parameters—engine speed, load, fuel blend percentage, 
and compression ratio—were varied within their experimental bounds to identify the optimal 
combination.The optimization yielded the following results: Speed: 1454.84 rpm, Load: 12.19 Nm, Fuel 
Blend: 23.56%, Compression Ratio: 16.65, At these conditions, the ANN predicted a maximum BThEff 
of 33.37%. This demonstrates the ANN model’s effectiveness in supporting performance optimization of 
engines fueled with Karanja biodiesel blends. 
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3.3 Response Surface Methodology (RSM) 
Response Surface Methodology (RSM) was employed to develop predictive regression models for seven 
key engine output parameters: Indicated Power (IP), Brake Power (BP), Indicated Mean Effective Pressure 
(IMEP), Brake Thermal Efficiency (BThEff), Specific Fuel Consumption (SFC), Torque, and Mechanical 
Efficiency (Mech Eff.). In this study, the dataset comprising 120 experimental observations was not 
derived from a predefined statistical design such as Central Composite Design (CCD) or Box-Behnken 
Design (BBD). Instead, the data were collected from a general experimental matrix generated through 
systematic variation of engine operating parameters—namely engine speed, load, compression ratio, and 
biodiesel blend ratio—within practical and safe operational ranges. The models exhibited excellent 
goodness-of-fit, with R² values of 0.990 for IP, 1.000 for BP, 0.991 for IMEP, 0.995 for BThEff, 0.867 for 
SFC, 1.000 for Torque, and 0.995 for Mech Eff. These high R² values affirm the reliability and robustness 
of the RSM models in capturing the nonlinear relationships between input variables and engine 
performance metrics. Following are the 7 equation for Regression Equation in Uncoded Units.  
IP=-
555+ 0.767 Speed+ 4.03 Load+ 0.055 Fuel- 1.45 CR- 0.000257 Speed*Speed- 0.01126 Load*Load+ 0.00
1352 Fuel*Fuel+ 0.0346 CR*CR- 0.00240 Speed*Load- 0.000123 Speed*Fuel+ 0.00001 Speed*CR+ 0.0
0112 Load*Fuel- 0.0021 Load*CR+ 0.00258 Fuel*CR        (3.3) 
BP=1.3 - 0.0007 Speed - 0.3231 Load - 0.00361 Fuel - 0.1131 CR 
- 0.000001 Speed*Speed+ 0.000002 Load*Load- 0.000001 Fuel*Fuel - 0.001580 CR*CR 
+ 0.000542 Speed*Load+ 0.000003 Speed*Fuel + 0.000114 Speed*CR + 0.000004 Load*Fuel 
+ 0.000445 Load*CR- 0.000050 Fuel*CR                                                               (3.4) 
IMEP=-708 + 0.983 Speed + 6.00 Load + 0.037 Fuel - 2.13 CR - 0.000332 Speed*Speed 
- 0.01409 Load*Load + 0.001701 Fuel*Fuel + 0.0428 CR*CR - 0.00366 Speed*Load 
- 0.000131 Speed*Fuel + 0.00025 Speed*CR + 0.00151 Load*Fuel - 0.0030 Load*CR 
+ 0.00308 Fuel*CR                                                                                         (3.5) 
 BThEff =-3480 + 5.07 Speed + 36.9 Load + 1.27 Fuel - 34.7 CR - 0.00185 Speed*Speed 
  - 0.6332 Load*Load - 0.00778 Fuel*Fuel - 0.031 CR*CR - 0.0202 Speed*Load 
- 0.00058 Speed*Fuel + 0.0241 Speed*CR - 0.01297 Load*Fuel + 0.2652 Load*CR 
+ 0.0001 Fuel*CR                                                                                                     (3.6)     
  SFC=2060 - 2.93 Speed - 27.4 Load + 1.92 Fuel + 12.7 CR + 0.00106 Speed*Speed 
+ 0.2454 Load*Load + 0.00106 Fuel*Fuel + 0.047 CR*CR + 0.0171 Speed*Load 
- 0.00135 Speed*Fuel - 0.0099 Speed*CR - 0.00828 Load*Fuel - 0.0340 Load*CR 
+ 0.0013 Fuel*CR                                                                                                           (3.7) 
 
Torque=-
3.2- 0.0079 Speed+ 2.995 Load+ 0.0069 Fuel+ 0.033 CR+ 0.000003 Speed*Speed+ 0.000424 Load*Loa
d - 0.000004 Fuel*Fuel- 0.00043 CR*CR + 0.000070 Speed*Load- 0.000006 Speed*Fuel 
- 0.000012 Speed*CR- 0.000102 Load*Fuel - 0.000477 Load*CR+ 0.000163 Fuel*CR                                                                        
(3.8) 
MechEff=-5360 + 7.54 Speed + 78.0 Load - 2.82 Fuel - 28.4 CR 
- 0.00269 Speed*Speed- 1.1912 Load*Load - 0.01494 Fuel*Fuel - 0.093 CR*CR 
- 0.0435 Speed*Load+ 0.00237 Speed*Fuel + 0.0213 Speed*CR + 0.0132 Load*Fuel 
+ 0.494 Load*CR+ 0.0058 Fuel*CR                                                                      (3.9) 
3.3.1 ANOVA and model fitting 
Table 5 presents the Analysis of Variance (ANOVA) results used to evaluate the statistical significance of 
the RSM model formulated for predicting brake thermal efficiency (BThEff).The model was found to be 
highly significant, with an overall F-value of 1457.91 and a corresponding p-value of 0.000, confirming 
its robustness. Among the linear terms, load (F = 1085.87, p < 0.001) and compression ratio (F = 37.78, 
p < 0.001) had the most substantial influence on BThEff, while interaction effects such as load*CR (F = 
8.14, p = 0.01) were also statistically significant. 
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Table 5: Analysis of Variance for BThEff (%) 

Source DF Adj SS Adj MS F-Value P-Value 
Model 14 11669.1 833.51 1457.91 0.000 
  Linear 4 6852.3 1713.07 2996.38 0.000 
    Speed 1 3.3 3.27 5.72 0.019 
    Load 1 620.8 620.80 1085.87 0.000 
    Fuel 1 5.6 5.61 9.81 0.002 
    CR 1 21.6 21.60 37.78 0.000 
  Square 4 276.4 69.10 120.86 0.000 
    Speed*Speed 1 0.9 0.94 1.64 0.204 
    Load*Load 1 170.5 170.53 298.28 0.000 
    Fuel*Fuel 1 11.2 11.17 19.53 0.000 
    CR*CR 1 0.0 0.02 0.04 0.852 
  2-Way Interaction 6 13.7 2.28 3.99 0.001 

   Speed*Load 1 1.2 1.16 2.03 0.157 
    Speed*Fuel 1 0.1 0.07 0.12 0.734 
    Speed*CR 1 1.2 1.15 2.02 0.158 
    Load*Fuel 1 1.2 1.20 2.10 0.150 
    Load*CR 1 4.7 4.65 8.14 0.005 
    Fuel*CR 1 0.0 0.00 0.00 0.996 
Error 105 60.0 0.57     
Total 119 11729.1       

 
3.3.2 Optimization and desirability function 
The optimization of engine performance using the desirability function in RSM was conducted to 
simultaneously maximize mechanical efficiency, torque, brake thermal efficiency (BThEff), IMEP, and 
minimize specific fuel consumption (SFC). At optimal input conditions—engine speed of 1420 rpm, load 
of 10 Nm, fuel blend of 15%, and compression ratio of 16—the model achieved a high composite 
desirability of 0.9547. The corresponding predicted outputs were: 63.15% mechanical efficiency, 22.13 
Nm torque, 0.5247 kg/kWh SFC, 28.31% BThEff, and 6.56 bar IMEP, indicating an efficient and 
balanced operating point for the Karanja biodiesel blend-fueled engine. 

 
Figure 2. Optimization plot from RSM in Minitab 2021 
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Figure 2 presents the graphical output of multi-response optimization using the desirability function. The 
plot summarizes how different input variables influence multiple engine output parameters—specifically 
Brake Thermal Efficiency (BThEff), Specific Fuel Consumption (SFC), Torque, Mechanical Efficiency 
(MechEff), and Indicated Mean Effective Pressure (IMEP). The vertical red lines indicate the optimal 
input settings: Speed = 1420 rpm, Load = 10 Nm, Fuel Blend = 15%, and CR = 16. At these values, the 
predicted engine responses are highly desirable, with BThEff reaching 28.31%, SFC minimized to 0.5247 
kg/kWh, and a composite desirability score of 0.9547, which indicates excellent optimization alignment. 
The desirability function provided a robust way to balance multiple objectives, ensuring the engine 
operates efficiently on Karanja biodiesel blends. 

 
Figure 3. Response surface plots showing the effects of load and speed on (a) SFC, and (b)BThEff, with 
fuel blend and compression ratio held constant. 
The surface plots in Figure 3 illustrate the combined effect of engine load and speed on SFC and BThEff, 
under fixed conditions of 15% Karanja biodiesel and a compression ratio of 16. The SFC plot shows a 
U-shaped trend, with the lowest consumption occurring at moderate load and speed, while extremes 
result in higher fuel use. In contrast, BThEff increases steadily with both load and speed, indicating 
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improved combustion efficiency. These results affirm the accuracy of the RSM model in capturing 
nonlinear interactions and identifying optimal operating regions. 
     Table 6. Performance Metrics of the RSM Model 

  

R² (Coefficient 
of 
Determination) 

MAE (Mean 
Absolute Error) 

MSE (Mean Squared 
Error) 

RMSE (Root Mean 
Squared Error) 

IP (kW) 0.990 0.017 0.009 0.097 
BP (kW) 1.000 0.004 0.000 0.003 
IMEP (bar) 0.991 0.021 0.015 0.122 
BThEff (%) 0.995 1.019 0.500 0.707 
SFC (kg/kWh) 0.867 0.278 0.355 0.596 
Torque (Nm) 1.000 0.004 0.000 0.005 

Mech Eff. (%) 0.995 1.140 2.564 1.601 
Table 6 presents the performance metrics of the regression models developed using RSM for predicting 
engine parameters based on experimental input variables. The table includes four standard statistical 
indicators—R², MAE, MSE, and RMSE—for each output response. The results indicate excellent model 
accuracy across most responses. Notably, BP and Torque achieved perfect prediction with an R² value of 
1.000 and near-zero error values, highlighting the precision of the RSM models for these outputs. The 
models for IP, IMEP, and BThEff also exhibited high accuracy, with R² values exceeding 0.99, and RMSE 
values of 0.097, 0.122, and 0.707, respectively. The SFC model, while slightly less accurate (R² = 0.867), 
still provided a reliable prediction with acceptable error margins. The model for Mechanical Efficiency 
also performed well with an R² of 0.995, though the RMSE was slightly higher, indicating a bit more 
spread in the predicted values. 
3.4 Machine Learning Techniques 
To enhance the robustness of predictive modeling, supervised machine learning (ML) techniques were 
integrated alongside the ANN and RSM approaches in this study. The popular regressors—Random Forest 
Regressor (RFR) was employed to estimate engine performance metrics based on input parameters: engine 
load, speed, fuel blend percentage, and compression ratio (CR). These models were developed using the 
scikit-learn library within the Google Colab platform, ensuring efficient computation and seamless 
handling of large datasets. The predicted output variables included Indicated Power (IP), Brake Power 
(BP), IMEP, Brake Thermal Efficiency (BThEff), Specific Fuel Consumption (SFC), Torque, and 
Mechanical Efficiency (MechEff). 
3.4.1 Hyperparameter tuning 
To enhance model accuracy and generalization, hyperparameter tuning was carried out by means of 
GridSearchCV with 5-fold cross-validation. For the Random Forest model specifically, tuning parameters 
included the number of trees (n_estimators), maximum tree depth (max_depth), and minimum samples 
required for splits and leaves (min_samples_split, min_samples_leaf).  
3.4.2 Performance metrics (R², MAE,MSE, RMSE) 
Model performance was evaluated using R², MAE, and RMSE. Table 7 demonstrations that the Random 
Forest Regressor yielded the highest prediction accuracy, achieving R² values greater than 0.99 for most 
outputs and the lowest RMSE values among the three models. This indicates its strong ability to capture 
the nonlinear and interactive effects of input variables on engine behavior when fueled with Karanja 
biodiesel blends. 
Table 7. Performance Metrics of the Random Forest Model 

  
R² (Coefficient of 
Determination) 

MAE (Mean 
Absolute 
Error) 

MSE (Mean 
Squared 
Error) 

RMSE (Root Mean 
Squared Error) 

IP (kW) 0.988 0.059 0.011 0.105 
BP (kW) 0.999 0.015 0.001 0.031 
IMEP (bar) 0.989 0.027 0.017 0.131 
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BThEff (%) 0.995 0.468 0.475 0.689 
SFC (kg/kWh) 0.907 0.009 0.263 0.513 
Torque (Nm) 1.000 0.002 0.025 0.159 

Mech Eff. (%) 0.995 1.080 2.624 1.620 
3.4.3  Random Forest Modeling (Google Colab, Python) 
To complement the ANN and RSM models, a Random Forest Regression (RFR) model was developed 
using the scikit-learn library in a Google Colab environment. The model utilized the same set of input 
features: engine speed, load, fuel blend percentage, and compression ratio (CR), with the target outputs 
being IP, BP, IMEP, BThEff, SFC, Torque, and Mechanical Efficiency.The dataset was divided using an 
80:20 train-test split. Hyperparameter tuning was performed using GridSearchCV with 5-fold cross-
validation. The following hyperparameters were optimized: 
• n_estimators: [100, 200, 300] 
• max_depth: [10, 20, 30, None] 
• min_samples_split: [2, 5, 10] 
• min_samples_leaf: [1, 2, 4] 
• bootstrap: [True] 

The optimal configuration selected was :n_estimators= 200, max_depth = 20, min_samples_split = 
2,min_samples_leaf = 1,and bootstrap = True.   
The model was evaluated using metrics such as R², Root Mean Squared Error (RMSE), and Mean 
Absolute Error (MAE). Feature importance analysis was also conducted to understand variable influence. 
The Random Forest model showed robust prediction performance, particularly for BP and Torque, and 
handled nonlinearities without requiring data normalization. 
 
RESULTS AND DISCUSSION 
This section presents the comparative findings from three different modeling approaches—Artificial 
Neural Network (ANN), Response Surface Methodology (RSM), and Machine Learning (Random 
Forest)—applied to optimize engine performance parameters using Karanja biodiesel blends. Each method 
was assessed based on its predictive accuracy, optimization capability, and ability to capture nonlinear 
relationships between engine inputs and outputs. 
4.1 ANN Performance (regression plots, training performance, optimized parameters) 
The ANN model developed using MATLAB 2014a followed a 4–10–7 feedforward architecture and was 
trained using the Levenberg–Marquardt backpropagation algorithm. The network achieved excellent 
performance across all predicted outputs. The regression plots demonstrated strong linear correlations, 
with an average R² value of 0.99957 for the combined dataset. Performance metrics, including MSE and 
RMSE, were within acceptable limits, indicating reliable model generalization.The ANN was further 
utilized for optimization using the fmincon function. The optimal conditions predicted for maximum 
Brake Thermal Efficiency (BThEff) were: Speed = 1454.84 rpm, Load = 12.19 Nm, Fuel Blend = 23.56%, 
and CR = 16.65, yielding a maximum BThEff of 33.37%. These results confirm the effectiveness of the 
ANN model in learning complex nonlinear behavior and providing precise optimization under biodiesel-
fueled engine conditions. 
4.2 RSM results (surface plots, ANOVA tables, optimization) 
Second-order regression models based on RSM were developed using Minitab 2021 to predict engine 
performance parameters. The models were statistically validated through ANOVA, showing high R² 
values (all >0.99) and non-significant lack-of-fit, indicating excellent model reliability. For instance, 
BThEff)achieved an R² of 0.995 with a root mean square error (RMSE) of 0.707, closely aligning with the 
performance of the ANN model. Surface plots effectively illustrated the interactions among key input 
variables—engine speed, load, fuel blend percentage, and compression ratio—on outputs like BThEff and 
Specific Fuel Consumption (SFC). Optimization using the desirability function identified an optimal 
condition at 1420 rpm speed, 10 Nm load, 15% fuel blend, and a CR of 16, yielding a predicted BThEff 
of 28.31% with a composite desirability of 0.9547. Although slightly lower than the ANN-predicted 
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optimum, the RSM approach provided transparent, statistically sound models with lower computational 
requirements. 
4.3 ML model comparison (accuracy, plots) 
Among the machine learning techniques evaluated, Random Forest (RF) Regression proved to be the 
most robust and accurate model. Trained using GridSearchCV for optimized hyperparameter selection, 
the model achieved excellent predictive performance across all output parameters as shown in table 8. 
Specifically, Brake Power (BP), Torque, and Mechanical Efficiency (Mech Eff) recorded R² values of 0.999 
or higher, while Specific Fuel Consumption (SFC) achieved a respectable R² of 0.907. Although the 
Random Forest model showed slightly higher mean absolute error (MAE) and root mean square error 
(RMSE) for Mech Eff and Brake Thermal Efficiency (BThEff) compared to ANN, it outperformed RSM 
in predicting SFC and torque. The ensemble nature of Random Forest allowed it to capture complex 
nonlinear patterns and noise without requiring data normalization, making it a practical and effective 
choice for modeling engine performance. 
Table 8. Comparative summary of ANN, RSM and Random Forest Model 

Output 
R² 
(AN
N) 

R² 
(RF) 

R² 
(RS
M) 

MAE 
(AN
N) 

MA
E 
(RF) 

MAE 
(RS
M) 

MSE 
(AN
N) 

MSE 
(RF) 

MSE 
(RS
M) 

RMS
E 
(AN
N) 

RMS
E 
(RF) 

RMS
E 
(RSM
) 

IP (kW) 0.973 
0.98
8 

0.99 0.078 
0.05
9 

0.017 0.025 
0.01
1 

0.009 0.159 0.105 0.097 

BP 
(kW) 

0.995 
0.99
9 

1 0.026 
0.01
5 

0.004 0.008 
0.00
1 

0 0.092 0.031 0.003 

IMEP 
(bar) 

0.976 
0.98
9 

0.991 0.153 
0.02
7 

0.021 0.04 
0.01
7 

0.015 0.199 0.131 0.122 

BThEff 
(%) 

0.994 
0.99
5 

0.995 1.099 
0.46
8 

1.019 0.555 
0.47
5 

0.5 0.745 0.689 0.707 

SFC 
(kg/kW
h) 

0.972 
0.90
7 

0.867 0.022 
0.00
9 

0.278 0.074 
0.26
3 

0.355 0.272 0.513 0.596 

Torque 
(Nm) 

0.998 1 1 0.381 
0.00
2 

0.004 0.149 
0.02
5 

0 0.386 0.159 0.005 

Mech 
Eff. (%) 

0.997 
0.99
5 

0.995 0.077 1.08 1.14 1.66 
2.62
4 

2.564 1.288 1.62 1.601 

Among the three modeling approaches, the ANN exhibited the most balanced performance across all 
metrics and output variables. It particularly excelled in predicting BThEff, SFC, and Mech Eff., making 
it highly suitable for nonlinear and complex relationships. The Random Forest model demonstrated 
superior accuracy in predicting linear parameters such as Torque and Brake Power (BP), achieving near-
perfect R² values with minimal prediction errors. While the Response Surface Methodology (RSM) 
showed slightly lower accuracy for Mech Eff. and SFC, it still delivered excellent results for BP and 
Torque, with R² values reaching 1.000 and minimal mean square error. These findings underscore the 
strength of AI-driven models in engine performance prediction. ANN offers robust adaptability for 
nonlinear optimization tasks, Random Forest provides high precision and resilience to noisy data, and 
RSM contributes statistically validated and interpretable models suitable for engineering analysis. 
The optimal engine parameters identified by ANN optimization—Speed: 1454.84 rpm, Load: 12.19 Nm, 
Fuel blend: 23.56% Karanja biodiesel, and Compression Ratio: 16.65—are well within the standard 
operating limits of single-cylinder compression ignition engines used in research and small-scale 
applications. Similarly, the RSM-derived optimal conditions—Speed: 1420 rpm, Load: 10 Nm, Fuel blend: 
15%, and CR: 16—also lie within the safe mechanical and thermal tolerance levels specified by engine 
manufacturers.Importantly, these optimized conditions do not exceed typical regulatory thresholds for 
engine safety, emissions, or durability. Instead, they suggest efficient operating zones where Brake 
Thermal Efficiency (BThEff) can be maximized without compromising performance or engine health. 
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This highlights the practical viability of employing soft-computing and statistical models for real-world 
engine tuning, particularly in the context of alternative fuel integration like Karanja biodiesel. 
4.  Validation 
5.1 Comparative analysis of Experimental value vs Predicted Value  
Figure 4 illustrates the comparative plots of experimental versus ANN-predicted values for key engine 
performance metrics, including IMEP, BThEff, SFC, Torque, Mechanical Efficiency, and Brake Power. 
The Artificial Neural Network (ANN) model demonstrates excellent predictive capability for most output 
parameters. The IMEP, Torque, and Brake Power graphs exhibit near-perfect overlap between predicted 
and actual data, indicating high model accuracy. Similarly, Mechanical Efficiency and Brake Thermal 
Efficiency follow the experimental trends closely, with minor deviations occurring primarily in 
transitional regions. The Specific Fuel Consumption (SFC) plot shows slightly higher variance, where the 
ANN model tends to smooth out fluctuations observed in the experimental data, possibly due to noise 
or sensor inconsistencies. Overall, the ANN model effectively captures the nonlinear relationships among 
input variables, confirming its robustness and applicability for engine performance prediction using 
Karanja biodiesel blends[34]. 

 
Figure 4: Graph Experimental Value vs ANN Predicted Value 
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Figure 5 illustrates the comparison between experimental measurements and the corresponding 
predictions made by the Response Surface Methodology (RSM) model for six key engine performance 
parameters: IMEP (bar), Torque (Nm), Brake Thermal Efficiency (BThEff, %), Mechanical Efficiency (%), 
Specific Fuel Consumption (SFC, kg/kWh), and Brake Power (BP, kW). The RSM model demonstrates 
strong predictive capability for IMEP and BP, with predicted values closely following the experimental 
data across all 120 samples, indicating excellent model fitting and minimal residuals. The prediction 
curves for Torque and Mechanical Efficiency also show a high degree of agreement, although minor 
deviations are observed around transitional zones in the experimental data. BThEff predictions show 
reasonable fidelity to the observed values, but occasional under- or overestimations suggest moderate 
sensitivity of the model to input variations. In contrast, SFC displays relatively larger discrepancies, 
especially in high-variability regions. This behavior suggests that the second-order polynomial nature of 
the RSM model may be insufficient to capture complex nonlinearities inherent in fuel consumption 
patterns[35]. 
 

 
Figure 5: Graph Experimental Value vs RSM Predicted Value 
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Figure 6 presents a comparison between the experimental values and the predicted outputs of the 
Random Forest (RF) regression model for key engine performance parameters: IMEP (bar), BThEff (%), 
SFC (kg/kWh), Torque (Nm), Mechanical Efficiency (%), and Brake Power (BP, kW). The RF model 
exhibits excellent agreement with experimental data across most parameters, with predicted curves closely 
following the trends of the actual values[36]. Notably, the IMEP, Torque, and BP predictions show near-
perfect alignment with experimental results across all 120 samples, reflecting high predictive accuracy. 
The RF model successfully captures both linear and nonlinear behaviors, demonstrating its robustness 
across varying load and speed conditions. Brake Thermal Efficiency and Mechanical Efficiency also 
display high fidelity in prediction, with minimal deviation from the experimental data. While the SFC 
values show slightly more variability, particularly in transitional regions, the predicted trends remain 
consistent with the measured data, indicating the model’s overall reliability. 

 
Figure 6: Graph-Experimental Value vs Random Forest Predicted Value 
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These results validate the superior capability of the Random Forest model to generalize from training data 
and accurately predict multiple nonlinear engine outputs. This is further supported by its high R² values 
(close to 1.0 for most parameters) and low RMSE/MAE, making it a highly suitable method for multi-
output engine modeling and optimization[37]. 
4.2 Statistical metrics (Error %) 
The validation results demonstrate in table 9  that no single model consistently outperformed others 
across all performance metrics. However, RSM was most accurate for IP, BP, IMEP, and Torque, while 
ANN delivered the best results for BThEff, SFC, and MechEff. The Random Forest model performed 
moderately well but showed relatively higher error margins, especially for SFC and MechEff. Thus, based 
on MAPE analysis, ANN and RSM are more reliable for predicting engine performance parameters using 
Karanja biodiesel blends, with RSM offering better accuracy for torque and power-related parameters, 
and ANN proving more robust for efficiency-related outputs[38]. 
Table 9: MAPE for RF, ANN and RSM Model 

  MAPE-RF MAPE-ANN MAPE-RSM 
IP (kW)-Exp 3.499 3.834 2.421 
BP (kW)-Exp 15.043 9.407 0.667 
IMEP (bar)-Exp 3.668 3.880 2.426 
BThEff (%)-Exp 16.998 4.924 6.635 
SFC (kg/kWh)-Exp 78.116 7.173 88.293 
Torque (Nm)-Exp 14.985 5.540 0.180 
Mech Eff. (%)-Exp 18.779 4.088 6.843 

 
CONCLUSION 
This study aimed to model and optimize the performance parameters of a diesel engine fueled with 
Karanja biodiesel blends using three predictive approaches: Artificial Neural Network (ANN), Response 
Surface Methodology (RSM), and Machine Learning Random Forest (RF). Engine output responses 
such as Indicated Power (IP), Brake Power (BP), Indicated Mean Effective Pressure (IMEP), Brake 
Thermal Efficiency (BThEff), Specific Fuel Consumption (SFC), Torque, and Mechanical Efficiency 
(MechEff) were investigated under varying input conditions of Load, Speed, Fuel Blend Ratio, and 
Compression Ratio. 
6.1 Summary of Findings 
• The ANN model demonstrated superior generalization capability in predicting efficiency-related 

parameters, particularly BThEff (MAPE: 4.92%), SFC (7.17%), and MechEff (4.08%). 
• RSM achieved the highest prediction accuracy for power and pressure outputs, especially for BP 

(MAPE: 0.67%) and Torque (0.18%), proving effective in modeling linear and quadratic 
relationships. 

• Random Forest, though robust, exhibited comparatively higher error margins in some parameters 
(e.g., SFC: 78.12%, MechEff: 18.78%), but showed reasonable accuracy in predicting IP and IMEP. 

• Among all, no single technique dominated across all parameters, but RSM and ANN collectively 
provided the best performance, validating their combined potential in engine performance 
modeling. The findings of this study underscore the pivotal role of data-driven modeling in future 
biodiesel research.  

The demonstrated accuracy and reliability of ANN and RSM in predicting engine performance with 
Karanja biodiesel blends highlight their potential to significantly minimize experimental efforts. This shift 
not only accelerates the development cycle of alternative fuels but also promotes sustainable practices by 
optimizing biodiesel use with fewer resources. As a result, such intelligent modeling approaches can 
contribute meaningfully to reducing fossil fuel dependency and enhancing the feasibility of biodiesel as a 
clean and efficient energy source. Building on the outcomes of this research, future studies can explore 
the integration of hybrid machine learning models such as ANN-GA, XGBoost, or deep learning 
architectures to further enhance prediction accuracy and robustness. Additionally, extending the current 
modeling approach to include multi-objective optimization—simultaneously targeting both performance 
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and emission parameters—could offer more practical insights for real-world engine applications. Such 
advancements would refine the decision-making framework for biodiesel utilization, making it more 
comprehensive and industry-ready. 
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